Unraveling the Metabolic and Microbiome Signatures in Fecal Samples of Pregnant Women with Prenatal Depression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Chemicals and Reagents
2.3. Fecal Sample Collection
2.4. Fecal Sample Preparation
2.5. LC-MS Analysis
2.6. Analysis of Metabolomics Data
2.7. 16S rRNA Gene Sequencing
2.8. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Metabolomics Analysis
3.3. Screening and Annotation of Differential Metabolites
3.4. Correlation Analysis of Differential Metabolites
3.5. Pathway and Enrichment Analysis of Metabolites Associated with PND
3.6. Correlation Analysis Between Differential Metabolites and Gut Microbiota
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dadi, A.F.; Miller, E.R.; Woodman, R.; Bisetegn, T.A.; Mwanri, L. Antenatal depression and its potential causal mechanisms among pregnant mothers in Gondar town: Application of structural equation model. BMC Pregnancy Childbirth 2020, 20, 168. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Lin, Z.; Cai, Y.; Chen, N.; Zhou, Y.; Zhang, J.; Hong, G. Assessing the risk of prenatal depressive symptoms in Chinese women: An integrated evaluation of serum metabolome, multivitamin supplement intake, and clinical blood indicators. Front. Psychiatry 2024, 14, 1234461. [Google Scholar] [CrossRef]
- Maes, M.; Abe, Y.; Sirichokchatchawan, W.; Suwimonteerabutr, J.; Sangkomkamhangd, U.; Almulla, A.F.; Satthapisit, S. The Cytokine, Chemokine, and Growth Factor Network of Prenatal Depression. Brain Sci. 2023, 13, 727. [Google Scholar] [CrossRef]
- Sidebottom, A.C.; Vacquier, M.; LaRusso, E.; Schulte, A.K.; Nickel, A. Prenatal and postpartum depression diagnosis in a large health system: Prevalence and disparities. Ann. Med. 2023, 55, 2281507. [Google Scholar] [CrossRef]
- Ren, F.Y.; Zhu, X.W.; Liu, J.; Zhai, Q.R.; Wang, J.; Gao, Y.; Zhang, T.; Guan, L.Y.; Guo, Y.Y.; Chang, L.L.; et al. Associations of multiple risk factors with prenatal depression and anxiety: Evidence from the Tianjin Birth Cohort (TJBC) study. J. Affect. Disord. 2024, 366, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Ding, C.X.; Dou, C.Y.; Zhu, Z.E.; Zhang, D.; Yi, Q.Q.; Wu, H.Y.; Xie, L.S.; Zhu, Z.L.; Song, D.L.; et al. Associations between maternal prenatal depression and neonatal behavior and brain function—Evidence from the functional near-infrared spectroscopy. Psychoneuroendocrinology 2022, 146, 105896. [Google Scholar] [CrossRef]
- Meltzer-Brody, S. New insights into perinatal depression: Pathogenesis and treatment during pregnancy and postpartum. Dialogues Clin. Neurosci. 2011, 13, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Sawyer, K.M. The role of inflammation in the pathogenesis of perinatal depression and offspring outcomes. Brain Behav. Immun. Health 2021, 18, 100390. [Google Scholar] [CrossRef]
- Ahlers, N.E.; Weiss, S.J. Exposure to particulate matter, prenatal depressive symptoms and HPA axis dysregulation. Heliyon 2021, 7, e07166. [Google Scholar] [CrossRef]
- Xu, Q.; Jiang, M.; Gu, S.; Zhang, X.; Feng, G.; Ma, X.; Xu, S.; Wu, E.; Huang, J.H.; Wang, F. Metabolomics changes in brain-gut axis after unpredictable chronic mild stress. Psychopharmacology 2022, 239, 729–743. [Google Scholar] [CrossRef]
- Suda, K.; KazunoriMatsuda, K. How Microbes Affect Depression: Underlying Mechanisms via the Gut–Brain Axis and the Modulating Role of Probiotics. Int. J. Mol. Sci. 2022, 23, 1172. [Google Scholar] [CrossRef]
- Rieder, R.; Wisniewski, P.J.; Alderman, B.L.; Campbell, S.C. Microbes and mental health: A review. Brain Behav. Immun. 2017, 66, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.J.; Wei, Y.; Hashimoto, K. Brain–gut–microbiota axis in depression: A historical overview and future directions. Brain Res. Bull. 2022, 182, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Fang, Z.; Wang, F.; Mei, Z.; Huang, X.; Lin, Y.; Lin, Z. A causal relationship between gut microbiota and subcortical brain structures contributes to the microbiota–gut–brain axis: A Mendelian randomization study. Cereb. Cortex. 2024, 34, bhae056. [Google Scholar] [CrossRef]
- Rathour, D.; Shah, S.; Khan, S.; Singh, P.K.; Srivastava, S.; Singh, S.B.; Khatri, D.K. Role of gut microbiota in depression: Understanding molecular pathways, recent research, and future direction. Behav. Brain Res. 2023, 436, 114081. [Google Scholar] [CrossRef]
- Hur, H.J.; Park, H.Y. Gut Microbiota and Depression, Anxiety, and Cognitive Disorders. In Sex/Gender-Specific Medicine in the Gastrointestinal Diseases; Springer Nature: Singapore, 2022; pp. 379–391. [Google Scholar] [CrossRef]
- Yu, M.; Jia, H.M.; Zhou, C.; Yang, Y.; Zhao, Y.; Yang, M.H.; Zou, Z.M. Variations in gut microbiota and fecal metabolic phenotype associated with depression by 16S rRNA gene sequencing and LC/MS-based metabolomics. J. Pharm. Biomed. Anal. 2017, 138, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Carding, S.; Verbeke, K.; Vipond, D.T.; Corfe, B.M.; Owen, L.J. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 2015, 26, 26191. [Google Scholar] [CrossRef]
- Liu, L.X.; Wang, H.Y.; Rao, X.C.; Yu, Y.; Li, W.X.; Zheng, P.; Zhao, L.B.; Zhou, C.J.; Pu, J.C.; Yang, D.Y.; et al. Comprehensive analysis of the lysine acetylome and succinylome in the hippocampus of gut microbiota-dysbiosis mice. J. Adv. Res. 2021, 30, 27–38. [Google Scholar] [CrossRef]
- Cheung, S.G.; Goldenthal, A.R.; Uhlemann, A.C.; Mann, J.J.; Miller, J.M.; Sublette, M.E. Systematic Review of Gut Microbiota and Major Depression. Front. Psychiatry 2019, 10, 00034. [Google Scholar] [CrossRef]
- Caspani, G.; Kennedy, S.; Foster, J.A.; Swann, J. Gut microbial metabolites in depression: Understanding the biochemical mechanisms. Microb. Cell 2019, 6, 454–481. [Google Scholar] [CrossRef]
- Bai, S.J.; Bai, H.L.; Li, D.T.; Zhong, Q.; Xie, J.; Chen, J.J. Gut Microbiota-Related Inflammation Factors as a Potential Biomarker for Diagnosing Major Depressive Disorder. Front. Cell. Infect. Microbiol. 2022, 12, 831186. [Google Scholar] [CrossRef] [PubMed]
- Peirce, J.M.; Alviña, K. The role of inflammation and the gut microbiome in depression and anxiety. J. Neurosci. Res. 2019, 97, 1223–1241. [Google Scholar] [CrossRef] [PubMed]
- Marchev, A.S.; Vasileva, L.V.; Amirova, K.M.; Savova, M.S.; Balcheva-Sivenova, Z.P.; Georgiev, M.I. Metabolomics and health: From nutritional crops and plant-based pharmaceuticals to profiling of human biofluids. Cell. Mol. Life Sci. 2021, 78, 6487–6503. [Google Scholar] [CrossRef]
- Muthubharathi, B.C.; Gowripriya, T.; Balamurugan, K. Metabolomics: Small molecules that matter more. Mol. Omics 2021, 17, 210–229. [Google Scholar] [CrossRef]
- An, N.; Zhang, M.; Zhu, Q.-F.; Chen, Y.-Y.; Deng, Y.-L.; Liu, X.-Y.; Zeng, Q.; Feng, Y.-Q. Metabolomic Analysis Reveals Association between Decreased Ovarian Reserve and In Vitro Fertilization Outcomes. Metabolites 2024, 14, 143. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Q.; Zheng, J.; Yuan, B.; Feng, Y. Mass spectrometry-based fecal metabolome analysis. TRAC-Trends Anal. Chem. 2019, 112, 161–174. [Google Scholar] [CrossRef]
- Yuan, X.M.; Chen, B.Q.; Duan, Z.L.; Xia, Z.Q.; Ding, Y.; Chen, T.; Liu, H.Z.; Wang, B.S.; Yang, B.L.; Wang, X.Y.; et al. Depression and anxiety in patients with active ulcerative colitis: Crosstalk of gut microbiota, metabolomics and proteomics. Gut Microbes 2021, 13, 1987779. [Google Scholar] [CrossRef]
- Sinha, R.; Ahn, J.; Sampson, J.N.; Shi, J.; Yu, G.; Xiong, Q.; Hayes, R.B.; Goedert, J.J. Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PloS ONE 2016, 11, e0152126. [Google Scholar] [CrossRef]
- Zhou, L.; Ni, Z.X.; Yu, J.; Cheng, W.; Cai, Z.L.; Yu, C.Q. Correlation Between Fecal Metabolomics and Gut Microbiota in Obesity and Polycystic Ovary Syndrome. Front. Endocrinol. 2020, 11, 628. [Google Scholar] [CrossRef]
- Xie, T.Q.; Fan, X.X.; Pang, H.H.; Zang, T.Z.; Wu, N.; Liu, J.; Li, Z.Y.; Li, S.; Zhu, Q.F.; Slack, J.E.; et al. Association between gut microbiota and its functional metabolites with prenatal depression in women. Neurobiol. Stress 2024, 28, 100592. [Google Scholar] [CrossRef]
- Kimmel, M.; Jin, W.; Xia, K.; Lun, K.; Azcarate-Peril, A.; Plantinga, A.; Wu, M.; Ataei, S.; Rackers, A.; Carroll, I.; et al. Metabolite trajectories across the perinatal period and mental health: A preliminary study of tryptophan-related metabolites, bile acids and microbial composition. Behav. Brain Res. 2022, 418, 113635. [Google Scholar] [CrossRef] [PubMed]
- Galley, J.D.; Chen, H.J.; Antonson, A.M.; Gur, T.L. Prenatal stress-induced disruptions in microbial and host tryptophan metabolism and transport. Behav. Brain Res. 2021, 414, 113471. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Li, J.; Zhou, X.J.; Wu, M.H.; Li, L.; Pei, G.; Chen, N.H.; Liu, K.L.; Xie, M.Z.; Huang, H.Y. HS-GC-IMS-Based metabonomics study of Baihe Jizihuang Tang in a rat model of chronic unpredictable mild stress. J. Chromatogr. B 2020, 1148, 122143. [Google Scholar] [CrossRef]
- Ma, S.; Xie, X.H.; Deng, Z.P.; Wang, W.; Xiang, D.; Yao, L.H.; Kang, L.J.; Xu, S.X.; Wang, H.L.; Wang, G.H.; et al. A Machine Learning Analysis of Big Metabolomics Data for Classifying Depression: Model Development and Validation. Biol. Psychiatry 2024, 96, 44–56. [Google Scholar] [CrossRef]
- Felger, J.C. The role of dopamine in inflammation-associated depression: Mechanisms and therapeutic implications. In Inflammation-Associated Depression: Evidence, Mechanisms and Implications; Dantzer, R., Capuron, L., Eds.; Springer International Publishing: Cham, Switzerland, 2016; Volume 31, pp. 123–134. [Google Scholar] [CrossRef]
- Davies, W. Sulfation pathways: The steroid sulfate axis and its relationship to maternal behaviour and mental health. J. Mol. Endocrinol. 2018, 61, T199–T210. [Google Scholar] [CrossRef] [PubMed]
- Maguire, J. Neuroactive Steroids and GABAergic Involvement in the Neuroendocrine Dysfunction Associated with Major Depressive Disorder and Postpartum Depression. Front. Cell. Neurosci. 2019, 13, 83. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhao, X.J.; Lu, X.; Lin, X.H.; Xu, G.W. A data preprocessing strategy for metabolomics to reduce the mask effect in data analysis. Front. Mol. Biosci. 2015, 2, 4. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
- Tuem, K.B.; Atey, T.M. Neuroactive Steroids: Receptor Interactions and Responses. Front. Neurol. 2017, 8, 442. [Google Scholar] [CrossRef]
- Melcangi, R.C.; Giatti, S.; Garcia-Segura, L.M. Levels and actions of neuroactive steroids in the nervous system under physiological and pathological conditions: Sex-specific features. Neurosci. Biobehav. Rev. 2016, 67, 25–40. [Google Scholar] [CrossRef]
- Kaleta, M.; Oklestkova, J.; Klíčová, K.; Kvasnica, M.; Koníčková, D.; Menšíková, K.; Strnad, M.; Novák, O. Simultaneous Determination of Selected Steroids with Neuroactive Effects in Human Serum by Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry. ACS Chem. Neurosci. 2024, 15, 1990–2005. [Google Scholar] [CrossRef] [PubMed]
- Kudova, E. Rapid effects of neurosteroids on neuronal plasticity and their physiological and pathological implications. Neurosci. Lett. 2021, 750, 135771. [Google Scholar] [CrossRef] [PubMed]
- Scheggi, S.; Concas, L.; Corsi, S.; Carta, M.; Melis, M.; Frau, R. Expanding the therapeutic potential of neuro(active)steroids: A promising strategy for hyperdopaminergic behavioral phenotypes. Neurosci. Biobehav. Rev. 2024, 164, 105842. [Google Scholar] [CrossRef]
- Cheng, C.; Gomez, D.; McCombe, J.A.; Smyth, P.; Giuliani, F.; Blevins, G.; Baker, G.B.; Power, C. Disability progression in multiple sclerosis is associated with plasma neuroactive steroid profile. Neurol. Sci. 2021, 42, 5241–5247. [Google Scholar] [CrossRef]
- Wang, M.Y.; Hu, S.W.; Fu, X.H.; Zhou, H.X.; Yang, S.Q.; Yang, C. Neurosteroids: A potential target for neuropsychiatric disorders. J. Steroid Biochem. Mol. Biol. 2024, 239, 106485. [Google Scholar] [CrossRef]
- Deligiannidis, K.M.; Vaughn, R. Staying Up to Date With Evolving Postpartum Depression Pathophysiology and Treatment Research. J. Clin. Psychiatry 2023, 84, 48374. [Google Scholar] [CrossRef]
- Wenzel, E.S.; Pinna, G.; Eisenlohr-Moul, T.; Bernabe, B.P.; Tallon, R.R.; Nagelli, U.; Davis, J.; Maki, P.M. Neuroactive steroids and depression in early pregnancy. Psychoneuroendocrinology 2021, 134, 105424. [Google Scholar] [CrossRef] [PubMed]
- McEvoy, K.; Payne, J.L.; Osborne, L.M. Neuroactive Steroids and Perinatal Depression: A Review of Recent Literature. Curr. Psychiatry Rep. 2018, 20, 78. [Google Scholar] [CrossRef]
- Vitku, J.; Hill, M.; Kolatorova, L.; Kubala Havrdova, E.; Kancheva, R. Steroid Sulfation in Neurodegenerative Diseases. Front. Mol. Biosci. 2022, 9, 839887. [Google Scholar] [CrossRef]
- Stárka, L.; Dušková, M.; Hill, M. Dehydroepiandrosterone: A neuroactive steroid. J. Steroid Biochem. Mol. Biol. 2015, 145, 254–260. [Google Scholar] [CrossRef]
- Mijeong, P.C.; Andrew, M.; Robert, H.P.; Terrell, T.G.; David, H.F. Sulfated and unsulfated steroids modulate γ-aminobutyric acidA receptor function through distinct sites. Brain Res. 1999, 830, 72–87. [Google Scholar] [CrossRef]
- Foster, P.A.; Mueller, J.W. SULFATION PATHWAYS: Insights into steroid sulfation and desulfation pathways. J. Mol. Endocrinol. 2018, 61, 271–283. [Google Scholar] [CrossRef]
- Wang, P.; Yuan, P.Q.; Lin, S.; Zhong, H.J.; Zhang, X.L.; Zhuo, Y.; Li, J.; Che, L.Q.; Feng, B.; Lin, Y.; et al. Maternal and Fetal Bile Acid Homeostasis Regulated by Sulfated Progesterone Metabolites through FXR Signaling Pathway in a Pregnant Sow Model. Int. J. Mol. Sci. 2022, 23, 6496. [Google Scholar] [CrossRef] [PubMed]
- Piechota, J.; Jelski, W. Intrahepatic Cholestasis in Pregnancy: Review of the Literature. J. Clin. Med. 2020, 9, 1361. [Google Scholar] [CrossRef]
- Chang, J.P.C.; Lin, C.Y.; Lin, P.Y.; Shih, Y.H.; Chiu, T.H.; Ho, M.; Yang, H.T.; Huang, S.Y.; Gałecki, P.; Su, K.P. Polyunsaturated fatty acids and inflammatory markers in major depressive episodes during pregnancy. Prog. Neuro-Psychoph. 2018, 80, 273–278. [Google Scholar] [CrossRef]
- Dinan, T.; Siggins, L.; Scully, P.; O’Brien, S.; Ross, P.; Stanton, C. Investigating the inflammatory phenotype of major depression: Focus on cytokines and polyunsaturated fatty acids. J. Psychiatr. Res. 2009, 43, 471–476. [Google Scholar] [CrossRef]
- Lin, P.Y.; Chang, C.H.; Chong, M.F.F.; Chen, H.; Su, K.P. Polyunsaturated Fatty Acids in Perinatal Depression: A Systematic Review and Meta-analysis. Biol. Psychiatry 2017, 82, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Lopetuso, L.R.; Scaldaferri, F.; Petito, V.; Gasbarrini, A. Commensal Clostridia: Leading players in the maintenance of gut homeostasis. Gut Pathog. 2013, 5, 23. [Google Scholar] [CrossRef]
- Zhu, X.; Han, Y.; Du, J.; Liu, R.; Jin, K.; Yi, W. Microbiota-gut-brain axis and the central nervous system. Oncotarget 2017, 8, 53829–53838. [Google Scholar] [CrossRef]
- Pan, I.; Issac, P.K.; Rahman, M.M.; Guru, A.; Arockiaraj, J. Gut-Brain Axis a Key Player to Control Gut Dysbiosis in Neurological Diseases. Mol. Neurobiol. 2024, 61, 9873–9891. [Google Scholar] [CrossRef]
- Balaguer-Trias, J.; Deepika, D.; Schuhmacher, M.; Kumar, V. Impact of Contaminants on Microbiota: Linking the Gut-Brain Axis with Neurotoxicity. Int. J. Environ. Res. Public Health 2022, 19, 1368. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; D’Souza, R.; Hong, S.T. The role of gut microbiota in the gut-brain axis: Current challenges and perspectives. Protein Cell 2013, 4, 403–414. [Google Scholar] [CrossRef]
- Hase, A.; Jung, S.E.; Rot, M.A.H. Behavioral and cognitive effects of tyrosine intake in healthy human adults. Pharmacol. Biochem. Behav. 2015, 133, 1–6. [Google Scholar] [CrossRef]
- Alabsi, A.; Khoudary, A.C.; Abdelwahed, W. The Antidepressant Effect of L-Tyrosine-Loaded Nanoparticles: Behavioral Aspects. Ann. Neurosci. 2016, 23, 89–99. [Google Scholar] [CrossRef]
- Bloemendaal, M.; Froböse, M.I.; Wegman, J.; Zandbelt, B.B.; van de Rest, O.; Cools, R.; Aarts, E. Neuro-Cognitive Effects of Acute Tyrosine Administration on Reactive and Proactive Response Inhibition in Healthy Older Adults. eNeuro 2018, 5, 1–18. [Google Scholar] [CrossRef]
- Xie, J.; Wang, Y.; Zhong, Q.; Bai, S.J.; Zhou, C.J.; Tian, T.; Chen, J.J. Associations Between Disordered Microbial Metabolites and Changes of Neurotransmitters in Depressed Mice. Front. Cell. Infect. Microbiol. 2022, 12, 906303. [Google Scholar] [CrossRef]
- Zhao, S.; Khoo, S.; Ng, S.K.; Chi, A.P. Brain Functional Network and Amino Acid Metabolism Association in Females with Subclinical Depression. Int. J. Environ. Res. Public Health 2022, 19, 3321. [Google Scholar] [CrossRef] [PubMed]
- Ayano, G. Dopamine: Receptors, Functions, Synthesis, Pathways, Locations and Mental Disorders: Review of Literatures. J. Ment. Disord. Treat. 2016, 2, 1000120. [Google Scholar] [CrossRef]
- Sperner-Unterweger, B.; Kohl, C.; Fuchs, D. Immune changes and neurotransmitters: Possible interactions in depression? Prog Neuro-Psychoph. 2014, 48, 268–276. [Google Scholar] [CrossRef]
- Belujon, P.; Grace, A.A. Dopamine System Dysregulation in Major Depressive Disorders. Int. J. Neuropsychopharmacol. 2017, 20, 1036–1046. [Google Scholar] [CrossRef]
- Cui, C.; Han, Y.Y.; Li, H.X.; Yu, H.X.; Zhang, B.; Li, G. Curcumin-driven reprogramming of the gut microbiota and metabolome ameliorates motor deficits and neuroinflammation in a mouse model of Parkinson’s disease. Front. Cell. Infect. Microbiol. 2022, 12, 887407. [Google Scholar] [CrossRef] [PubMed]
- Zaplana, T.; Miele, S.; Tolonen, A.C. Lachnospiraceae are emerging industrial biocatalysts and biotherapeutics. Front. Bioeng. Biotechnol. 2024, 11, 1324396. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.M.; Qiu, W.H.; Ma, Q.Y.; Yu, Z.Y.; Yang, W.M.; Hu, T.N.; Guo, Y.; Chen, X.Y. Improving precision management of anxiety disorders: A Mendelian randomization study targeting specific gut microbiota and associated metabolites. Front. Microbiol. 2024, 15, 1380912. [Google Scholar] [CrossRef]
- Apryatin, S.A. The Neurometabolic Function of the Dopamine-Aminotransferase System. Metabolites 2025, 15, 21. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, H.J.; Kleppe, R.; Szigetvari, P.D.; Haavik, J. The dopamine hypothesis for ADHD: An evaluation of evidence accumulated from human studies and animal models. Front. Psychiatry 2024, 15, 1492126. [Google Scholar] [CrossRef]
- Hurben, A.K.; Tretyakova, N.Y. Role of Protein Damage Inflicted by Dopamine Metabolites in Parkinson’s Disease: Evidence, Tools, and Outlook. Chem. Res. Toxicol. 2022, 35, 1789–1804. [Google Scholar] [CrossRef]
- Milaneschi, Y.; Simmons, W.K.; Van Rossum, E.F.C.; Penninx, B.W.J.H. Depression and obesity: Evidence of shared biological mechanisms. Mol. Psychiatry 2018, 24, 18–33. [Google Scholar] [CrossRef]
- Afari, N.; Noonan, C.; Goldberg, J.; Roy-Byrne, P.; Schur, E.; Golnari, G.; Buchwald, D. Depression and obesity: Do shared genes explain the relationship? Depress. Anxiety 2010, 27, 799–806. [Google Scholar] [CrossRef]
- Mueller, J.W.; Gilligan, L.C.; Idkowiak, J.; Arlt, W.; Foster, P.A. The Regulation of Steroid Action by Sulfation and Desulfation. Endocr. Rev. 2015, 36, 526–563. [Google Scholar] [CrossRef]
Item | Control Group (N = 41) | Prenatal Depression Group (N = 36) | t/χ2 | p |
---|---|---|---|---|
Occupation | NA | 0.273 a | ||
Medical | 2 (2.6%) | 4 (5.2%) | ||
Non-medical | 34 (44.2%) | 24 (31.2%) | ||
Unemployed | 5 (6.5%) | 8 (10.4%) | ||
Educational background | 2.921 | 0.232 | ||
College degree or below | 11 (14.3%) | 6 (7.8%) | ||
Bachelor’s degree | 16 (20.8%) | 21 (27.3%) | ||
Master’s degree or above | 14 (18.2%) | 9 (11.7%) | ||
Household_per_monthly_income | NA | 0.065 a | ||
<5000 yuan/month | 4 (5.2%) | 2 (2.6%) | ||
5000–10,000 yuan/month | 24 (31.2%) | 13 (16.9%) | ||
≥10,000 yuan/month | 13 (16.9) | 21 (27.3%) | ||
Gravidity | 9.597 | 0.008 | ||
1 | 31 (40.3%) | 15 (29.5%) | ||
2 | 7 (9.1%) | 12 (15.6%) | ||
≥3 | 3 (3.9%) | 9 (11.7%) | ||
Parity | 1.975 | 0.159 | ||
0 | 35 (45.5%) | 25 (32.5%) | ||
≥1 | 6 (7.8%) | 11 (14.3%) | ||
Fertilization_way | NA | 0.999 a | ||
Natural conception | 37 (48.1%) | 33 (42.9%) | ||
Assisted reproductive technology | 4 (5.2%) | 3 (3.9%) | ||
Age, years | 29.2 ± 3.23 | 30.53 ± 3.93 | 1.521 | 0.133 |
Height, cm | 162.4 ± 4.48 | 161.68 ± 5.02 | −0.743 | 0.460 |
Weight at present, kg | 64.27 ± 7.07 | 63.29 ± 7.87 | −0.572 | 0.568 |
Weight before pregnancy, kg | 52.84 ± 6.16 | 52.98 ± 7.10 | 0.086 | 0.931 |
Pregestational BMI, kg/m2 | 19.99 ± 1.92 | 20.24 ± 2.33 | −0.223 | 0.824 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Mei, P.-C.; An, N.; Fan, X.-X.; Liu, Y.-Q.; Zhu, Q.-F.; Feng, Y.-Q. Unraveling the Metabolic and Microbiome Signatures in Fecal Samples of Pregnant Women with Prenatal Depression. Metabolites 2025, 15, 179. https://doi.org/10.3390/metabo15030179
Li J, Mei P-C, An N, Fan X-X, Liu Y-Q, Zhu Q-F, Feng Y-Q. Unraveling the Metabolic and Microbiome Signatures in Fecal Samples of Pregnant Women with Prenatal Depression. Metabolites. 2025; 15(3):179. https://doi.org/10.3390/metabo15030179
Chicago/Turabian StyleLi, Jia, Peng-Cheng Mei, Na An, Xiao-Xiao Fan, Yan-Qun Liu, Quan-Fei Zhu, and Yu-Qi Feng. 2025. "Unraveling the Metabolic and Microbiome Signatures in Fecal Samples of Pregnant Women with Prenatal Depression" Metabolites 15, no. 3: 179. https://doi.org/10.3390/metabo15030179
APA StyleLi, J., Mei, P.-C., An, N., Fan, X.-X., Liu, Y.-Q., Zhu, Q.-F., & Feng, Y.-Q. (2025). Unraveling the Metabolic and Microbiome Signatures in Fecal Samples of Pregnant Women with Prenatal Depression. Metabolites, 15(3), 179. https://doi.org/10.3390/metabo15030179