Differences in the Prevalence and Clinical Correlates Between Early-Onset and Late-Onset Major Depressive Disorder Patients with Comorbid Abnormal Lipid Metabolism
Abstract
:1. Introduction
2. Methods
2.1. Subjects
2.2. Demographic Characteristics, Clinical Interview, and Assessment
2.3. Biomarker Measurements
2.4. Statistical Analysis
3. Results
3.1. Prevalence of ALM in Early-Onset and Late-Onset MDD Patients
3.2. Comparison of Demographic and Clinical Variables and Lipid Levels Between ALM and Non-ALM Subgroups in Early- and Late-Onset MDD Patients
3.3. Risk Factors Associated with ALM in the Early-Onset Group
3.4. Risk Factors Associated with ALM in the Late-Onset Group
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greenberg, P.E.; Fournier, A.A.; Sisitsky, T.; Simes, M.; Berman, R.; Koenigsberg, S.H.; Kessler, R.C. The Economic Burden of Adults with Major Depressive Disorder in the United States (2010 and 2018). PharmacoEconomics 2021, 39, 653–665. [Google Scholar] [CrossRef]
- Friedrich, M.J. Depression Is the Leading Cause of Disability Around the World. JAMA 2017, 317, 1517. [Google Scholar] [CrossRef] [PubMed]
- Rozing, M.P.; Veerhuis, R.; Westendorp, R.G.J.; Eikelenboom, P.; Stek, M.; Marijnissen, R.M.; Oude Voshaar, R.C.; Comijs, H.C.; van Exel, E. Inflammation in older subjects with early- and late-onset depression in the NESDO study: A cross-sectional and longitudinal case-only design. Psychoneuroendocrinology 2019, 99, 20–27. [Google Scholar] [CrossRef]
- Köhler, C.A.; Freitas, T.H.; Maes, M.; de Andrade, N.Q.; Liu, C.S.; Fernandes, B.S.; Stubbs, B.; Solmi, M.; Veronese, N.; Herrmann, N.; et al. Peripheral cytokine and chemokine alterations in depression: A meta-analysis of 82 studies. Acta Psychiatr. Scand. 2017, 135, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Hirano, S.; Shinotoh, H.; Shimada, H.; Ota, T.; Sato, K.; Tanaka, N.; Zhang, M.R.; Higuchi, M.; Fukushi, K.; Irie, T.; et al. Voxel-Based Acetylcholinesterase PET Study in Early and Late Onset Alzheimer’s Disease. J. Alzheimer’s Dis. JAD 2018, 62, 1539–1548. [Google Scholar] [CrossRef] [PubMed]
- Szücs, A.; Szanto, K.; Wright, A.G.C.; Dombrovski, A.Y. Personality of late- and early-onset elderly suicide attempters. Int. J. Geriatr. Psychiatry 2020, 35, 384–395. [Google Scholar] [CrossRef]
- Tebeka, S.; Le Strat, Y.; Mandelbrot, L.; Benachi, A.; Dommergues, M.; Kayem, G.; Lepercq, J.; Luton, D.; Ville, Y.; Ramoz, N.; et al. Early- and late-onset postpartum depression exhibit distinct associated factors: The IGEDEPP prospective cohort study. BJOG Int. J. Obstet. Gynaecol. 2021, 128, 1683–1693. [Google Scholar] [CrossRef] [PubMed]
- Mai, N.; Wu, Y.; Zhong, X.; Chen, B.; Zhang, M.; Peng, Q.; Ning, Y. Different Modular Organization Between Early Onset and Late Onset Depression: A Study Base on Granger Causality Analysis. Front. Aging Neurosci. 2021, 13, 625175. [Google Scholar] [CrossRef]
- Korten, N.C.; Comijs, H.C.; Lamers, F.; Penninx, B.W. Early and late onset depression in young and middle aged adults: Differential symptomatology, characteristics and risk factors? J. Affect. Disord. 2012, 138, 259–267. [Google Scholar] [CrossRef]
- Grayson, L.; Thomas, A. A systematic review comparing clinical features in early age at onset and late age at onset late-life depression. J. Affect. Disord. 2013, 150, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Chen, L.; Su, Y.A.; Fang, Y.R.; Srisurapanont, M.; Hong, J.P.; Hatim, A.; Chua, H.C.; Bautista, D.; Si, T.M. Is early-onset in major depression a predictor of specific clinical features with more impaired social function? Chin. Med. J. 2015, 128, 811–815. [Google Scholar] [CrossRef]
- Emslie, G.J.; Mayes, T.L.; Ruberu, M. Continuation and maintenance therapy of early-onset major depressive disorder. Paediatr. Drugs 2005, 7, 203–217. [Google Scholar] [CrossRef] [PubMed]
- Shaker, N.M.; Sultan, M.; Mohamed, M.Y.; Helal, S.A.; Abd El Moneam, M.H.E. Lipid Profile and Impulsivity in Suicidal Patients with Major Depressive Disorder. Arch. Suicide Res. Off. J. Int. Acad. Suicide Res. 2021, 25, 641–656. [Google Scholar] [CrossRef] [PubMed]
- Gohar, S.M.; Dieset, I.; Steen, N.E.; Mørch, R.H.; Iversen, T.S.; Steen, V.M.; Andreassen, O.A.; Melle, I. Association between serum lipid levels, osteoprotegerin and depressive symptomatology in psychotic disorders. Eur. Arch. Psychiatry Clin. Neurosci. 2019, 269, 795–802. [Google Scholar] [CrossRef] [PubMed]
- Korczak, D.J.; Cleverley, K.; Birken, C.S.; Pignatiello, T.; Mahmud, F.H.; McCrindle, B.W. Cardiovascular Disease Risk Factors Among Children and Adolescents With Depression. Front. Psychiatry 2021, 12, 702737. [Google Scholar] [CrossRef]
- Almulla, A.F.; Thipakorn, Y.; Algon, A.A.A.; Tunvirachaisakul, C.; Al-Hakeim, H.K.; Maes, M. Reverse cholesterol transport and lipid peroxidation biomarkers in major depression and bipolar disorder: A systematic review and meta-analysis. Brain Behav. Immun. 2023, 113, 374–388. [Google Scholar] [CrossRef] [PubMed]
- Morelli, N.R.; Maes, M.; Bonifacio, K.L.; Vargas, H.O.; Nunes, S.O.V.; Barbosa, D.S. Increased nitro-oxidative toxicity in association with metabolic syndrome, atherogenicity and insulin resistance in patients with affective disorders. J. Affect. Disord. 2021, 294, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Maes, M.; Delanghe, J.; Meltzer, H.Y.; Scharpé, S.; D’Hondt, P.; Cosyns, P. Lower degree of esterification of serum cholesterol in depression: Relevance for depression and suicide research. Acta Psychiatr. Scand. 1994, 90, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Stuchtey, F.C.; Block, A.; Osei, F.; Wippert, P.M. Lipid Biomarkers in Depression: Does Antidepressant Therapy Have an Impact? Healthcare 2022, 10, 333. [Google Scholar] [CrossRef]
- Pinto, B.; Conde, T.; Domingues, I.; Domingues, M.R. Adaptation of Lipid Profiling in Depression Disease and Treatment: A Critical Review. Int. J. Mol. Sci. 2022, 23, 2032. [Google Scholar] [CrossRef] [PubMed]
- Heron, D.S.; Shinitzky, M.; Hershkowitz, M.; Samuel, D. Lipid fluidity markedly modulates the binding of serotonin to mouse brain membranes. Proc. Natl. Acad. Sci. USA 1980, 77, 7463–7467. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Nagappa, A.N.; Patil, C.R. Role of oxidative stress in depression. Drug Discov. Today 2020, 25, 1270–1276. [Google Scholar] [CrossRef]
- Zhu, T.; De Luca, V.; Gallaugher, L.A.; Woldeyohannes, H.O.; Soczynska, J.K.; Szymkowicz, S.; Muzina, D.J.; Kennedy, S.H.; McIntyre, R.S. Admixture analysis of age at onset in major depressive disorder. Gen. Hosp. Psychiatry 2012, 34, 686–691. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, N.; Chen, J.; Guan, Q.; Yuan, X.; Shen, Y.; Zhang, X.; Hao, W.; Zhang, R.; Zhai, D. Association between early-onset affective disorders and hypothyroidism in a larger number of psychiatric drug-free patients. J. Affect. Disord. 2022, 299, 31–36. [Google Scholar] [CrossRef]
- Huang, X.; Sun, Y.; Wu, A.; Zhang, X. Differences in the prevalence and clinical correlates of comorbid suicide attempts in patients with early- and late-onset major depressive disorder. Front. Psychiatry 2023, 14, 1173917. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M. A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 1960, 23, 56–62. [Google Scholar] [CrossRef]
- Zimmerman, M.; Martinez, J.H.; Young, D.; Chelminski, I.; Dalrymple, K. Severity classification on the Hamilton Depression Rating Scale. J. Affect. Disord. 2013, 150, 384–388. [Google Scholar] [CrossRef] [PubMed]
- HAMILTONM The assessment of anxiety states by rating. Br. J. Med. Psychol. 1959, 32, 50–55. [CrossRef] [PubMed]
- Dong, M.X.; Wei, Y.D.; Hu, L. The disturbance of lipid metabolism is correlated with neuropsychiatric symptoms in patients with Parkinson’s disease. Chem. Phys. Lipids 2021, 239, 105112. [Google Scholar] [CrossRef]
- Kay, S.R.; Fiszbein, A.; Opler, L.A. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr. Bull. 1987, 13, 261–276. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Li, Z.; Wang, Y.; Huang, H.; Chen, W.; Dong, L.; Wu, J.; Chen, J.; Miao, Y.; Qi, L.; et al. Prevalence and clinical correlates of psychotic depression in first-episode and drug-naïve outpatients with major depressive disorder in a Chinese Han population. J. Affect. Disord. 2020, 263, 500–506. [Google Scholar] [CrossRef]
- Tanir, Y.; Karayagmurlu, A.; Kaya, İ.; Kaynar, T.B.; Türkmen, G.; Dambasan, B.N.; Meral, Y.; Coşkun, M. Exacerbation of obsessive compulsive disorder symptoms in children and adolescents during COVID-19 pandemic. Psychiatry Res. 2020, 293, 113363. [Google Scholar] [CrossRef]
- Liu, Y.; Kong, X.; Wang, W.; Fan, F.; Zhang, Y.; Zhao, M.; Wang, Y.; Wang, Y.; Wang, Y.; Qin, X.; et al. Association of peripheral differential leukocyte counts with dyslipidemia risk in Chinese patients with hypertension: Insight from the China Stroke Primary Prevention Trial. J. Lipid Res. 2017, 58, 256–266. [Google Scholar] [CrossRef]
- Hosmer, D.; Lemeshow, S. Applied Logistic Regression; Wiley-Interscience: Hoboken, NJ, USA, 2000. [Google Scholar]
- Li, Z.; Wang, Z.; Zhang, C.; Chen, J.; Su, Y.; Huang, J.; Yi, Z.; Yuan, C.; Hong, W.; Wang, Y.; et al. Reduced ENA78 levels as novel biomarker for major depressive disorder and venlafaxine efficiency: Result from a prospective longitudinal study. Psychoneuroendocrinology 2017, 81, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Hickie, I.; Scott, E.; Naismith, S.; Ward, P.B.; Turner, K.; Parker, G.; Mitchell, P.; Wilhelm, K. Late-onset depression: Genetic, vascular and clinical contributions. Psychol. Med. 2001, 31, 1403–1412. [Google Scholar] [CrossRef]
- Skoog, I.; Waern, M.; Duberstein, P.; Blennow, K.; Zetterberg, H.; Börjesson-Hanson, A.; Östling, S.; Guo, X.; Kern, J.; Gustafson, D.; et al. A 9-year prospective population-based study on the association between the APOE*E4 allele and late-life depression in Sweden. Biol. Psychiatry 2015, 78, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.J.; Blumenthal, J.A.; Babyak, M.A.; Doraiswamy, P.M.; Hinderliter, A.; Hoffman, B.M.; Waugh, R.; Sherwood, A. Intima-media thickness and age of first depressive episode. Biol. Psychol. 2009, 80, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Shen, Y.; Wang, L.; Cao, Z.; Feng, W.; Liu, J.; Wang, L.; Meng, P.; Yang, J.; Xu, W.Y.; et al. Association between carotid intima media thickness and small dense low-density lipoprotein cholesterol in acute ischaemic stroke. Lipids Health Dis. 2020, 19, 177. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.; Li, S.; Gao, Y.; Tian, H. Relations of lipid parameters, other variables with carotid intima-media thickness and plaque in the general Chinese adults: An observational study. Lipids Health Dis. 2018, 17, 107. [Google Scholar] [CrossRef]
- Mulvahill, J.S.; Nicol, G.E.; Dixon, D.; Lenze, E.J.; Karp, J.F.; Reynolds, C.F., 3rd; Blumberger, D.M.; Mulsant, B.H. Effect of Metabolic Syndrome on Late-Life Depression: Associations with Disease Severity and Treatment Resistance. J. Am. Geriatr. Soc. 2017, 65, 2651–2658. [Google Scholar] [CrossRef]
- Bharti, V.; Bhardwaj, A.; Hood, K.; Elias, D.A.; Metcalfe, A.W.S.; Kim, J.S. A systematic review and meta-analysis of lipid metabolomic signatures of Major Depressive Disorder. J. Psychiatr. Res. 2021, 139, 197–205. [Google Scholar] [CrossRef]
- Mehdi, S.M.A.; Costa, A.P.; Svob, C.; Pan, L.; Dartora, W.J.; Talati, A.; Gameroff, M.J.; Wickramaratne, P.J.; Weissman, M.M.; McIntire, L.B.J. Depression and cognition are associated with lipid dysregulation in both a multigenerational study of depression and the National Health and Nutrition Examination Survey. Transl. Psychiatry 2024, 14, 142. [Google Scholar] [CrossRef]
- Wang, J.J.; Zhuang, Z.H.; Shao, C.L.; Yu, C.Q.; Wang, W.Y.; Zhang, K.; Meng, X.B.; Gao, J.; Tian, J.; Zheng, J.L.; et al. Assessment of causal association between thyroid function and lipid metabolism: A Mendelian randomization study. Chin. Med. J. 2021, 134, 1064–1069. [Google Scholar] [CrossRef]
- Delitala, A.P.; Fanciulli, G.; Maioli, M.; Delitala, G. Subclinical hypothyroidism, lipid metabolism and cardiovascular disease. Eur. J. Intern. Med. 2017, 38, 17–24. [Google Scholar] [CrossRef]
- Vogel, A.; Brunner, J.S.; Hajto, A.; Sharif, O.; Schabbauer, G. Lipid scavenging macrophages and inflammation. Biochim. Et Biophys. Acta. Mol. Cell Biol. Lipids 2022, 1867, 159066. [Google Scholar] [CrossRef]
- Yang, C.; He, Z.; Zhang, Q.; Lu, M.; Zhao, J.; Chen, W.; Gao, L. TSH Activates Macrophage Inflammation by G13- and G15-dependent Pathways. Endocrinology 2021, 162, bqab077. [Google Scholar] [CrossRef]
Early Onset (n = 349) | Late Onset (n = 1369) | |||||||
---|---|---|---|---|---|---|---|---|
With ALM (n = 277) | Without ALM (n = 72) | F | p | With ALM (1116) | Without ALM (253) | F | p | |
Age, year | 19 (18, 20) | 19 (18, 20) | −0.262 | 0.793 | 39 (30, 48) | 37 (29, 46.5) | −2.08 | 0.038 |
Duration of illness | 3.5 (2.5, 5) | 3.5 (2.5, 6) | −1.096 | 0.273 | 6 (3, 9) | 4.5 (3, 7.5) | −3.949 | <0.001 |
Age of onset | 19 (18, 20) | 19 (18, 20) | −0.67 | 0.503 | 39 (30, 48) | 37 (29, 46) | −2.03 | 0.042 |
Sex, n (%) | 0.76 | 0.383 | 0.545 | 0.46 | ||||
1 | 115 (41.5) | 34 (47.2) | 353 (31.6) | 86 (34) | ||||
2 | 162 (58.5) | 38 (52.8) | 763 (68.4) | 167 (66) | ||||
BMI, kg/m2 | 24.17 (2.16) | 24.03 (1.97) | 0.244 | 0.622 | 24.5 (1.91) | 24.08 (1.64) | 10.739 | 0.001 |
Education, n (%) | 3.936 | 0.268 | 1.691 | 0.639 | ||||
1 | 9 (3.2) | 1 (1.4) | 333 (29.8) | 70 (27.7) | ||||
2 | 187 (67.5) | 49 (68.1) | 428 (38.4) | 96 (37.9) | ||||
3 | 76 (27.4) | 18 (25) | 282 (25.3) | 73 (28.9) | ||||
4 | 5 (1.8) | 4 (5.6) | 73 (6.5) | 14 (5.5) | ||||
Married, n (%) | 25 (9) | 7 (9.7) | 0 | 1 | 974 (87.3) | 210 (83) | 2.865 | 0.091 |
Early Onset (n = 349) | Late Onset (n = 1369) | |||||||
---|---|---|---|---|---|---|---|---|
With ALM (n = 277) | Without ALM (n = 72) | F | p | With ALM (1116) | Without ALM (253) | F | p | |
Suicide attempt, n (%) | 48 (17.3) | 7 (9.7) | 1.95 | 0.163 | 254 (22.8) | 37 (14.6) | 7.676 | 0.006 |
Severe anxiety, n (%) | 26 (9.4) | 5 (6.9) | 0.173 | 0.677 | 154 (13.8) | 19 (7.5) | 6.831 | 0.009 |
Exhibiting psychotic symptoms, n (%) | 34 (12.3) | 2 (2.8) | 4.592 | 0.032 | 124 (11.1) | 11 (4.3) | 9.866 | 0.002 |
TSH, mIU/L | 4.77 (3.2, 6.8) | 3.76 (2.13, 4.51) | −4.793 | <0.001 | 5.82 (2.44) | 3.45 (1.87) | 339.477 | <0.001 |
FT3, pmol/L | 4.97 (0.72) | 4.88 (0.75) | 0.995 | 0.319 | 4.91 (0.73) | 4.81 (0.7) | 3.676 | 0.055 |
FT4, pmol/L | 16.65 (3) | 17.05 (3.05) | 0.996 | 0.319 | 16.73 (3.08) | 16.54 (3.26) | 0.741 | 0.389 |
Fasting plasma glucose, mmol/L | 5.38 (0.7) | 5.21 (0.5) | 3.572 | 0.06 | 5.47 (0.63) | 5.18 (0.61) | 43.556 | <0.001 |
LDL-C, mmol/L | 3.01 (0.93) | 2.3 (0.51) | 38.969 | <0.001 | 3.12 (0.87) | 2.52 (0.48) | 114.088 | <0.001 |
HAMD | 31 (28, 32) | 28 (26, 29) | −6.557 | <0.001 | 31 (29, 32) | 28 (27, 30) | −11.271 | <0.001 |
HAMA | 21 (18, 23) | 19 (17, 22) | −2.917 | 0.004 | 21 (19, 23) | 19 (17, 22) | −5.834 | <0.001 |
PANSS | 7 (7, 9) | 7 (7, 7) | −3.775 | <0.001 | 7 (7, 9) | 7 (7, 7) | −6.595 | <0.001 |
CGI | 6 (5, 7) | 5 (5,6) | −4.566 | <0.001 | 6 (5, 7) | 5 (5, 6) | −9.642 | <0.001 |
A-TG, IU/mL | 19.12 (13.7, 31.29) | 18.92 (13.22, 24.48) | −1.044 | 0.297 | 22.21 (15.02, 59.06) | 19.89 (14.04, 33.65) | −2.248 | 0.025 |
A-TPO, IU/mL | 17.13 (12.2, 33.06) | 16.01 (11.2, 28.0) | −1.453 | 0.146 | 17.79 (12.32, 36.93) | 17.48 (12.6, 28.81) | −0.867 | 0.386 |
TC, mmol/L | 5.32 (1.14) | 4.13 (0.63) | −14.012 | <0.001 | 5.51 (1.06) | 4.34 (0.56) | 291.031 | <0.001 |
HDL-C, mmol/L | 1.25 (0.98, 1.42) | 1.3 (1.18, 1.54) | −3.329 | 0.001 | 1.21 (0.95, 1.38) | 1.27 (1.18, 1.52) | −6.840 | <0.001 |
TG, mmol/L | 2.34 (1.72, 2.92) | 1.26 (1.09, 1.50 | −10.193 | <0.001 | 2.25 (1.7, 2.87) | 1.26 (1.09, 1.47) | −19.775 | <0.001 |
SBP, mmHg | 110.9 (9.8) | 106.1 (7.95) | 14.529 | <0.001 | 122.66 (9.73) | 118.67 (9.63) | 34.778 | <0.001 |
DBP, mmHg | 72.5 (6.14) | 70.36 (5.37) | 7.291 | 0.007 | 77.26 (6.63) | 75.55 (6.02) | 14.222 | <0.001 |
B | Wald | p | OR | 95% CI Lower | 95% CI Upper | |
---|---|---|---|---|---|---|
Suicide attempt | −0.391 | 3.001 | 0.083 | 0.676 | 0.434 | 1.053 |
HAMD | 0.174 | 24.247 | <0.001 | 1.19 | 1.11 | 1.275 |
TSH | 0.226 | 31.344 | <0.001 | 1.254 | 1.158 | 1.357 |
CGI | 0.528 | 16.475 | <0.001 | 1.695 | 1.314 | 2.187 |
Fasting plasma glucose | 0.265 | 3.648 | 0.056 | 1.303 | 0.993 | 1.711 |
Severe anxiety | 0.799 | 6.953 | 0.008 | 2.223 | 1.228 | 4.024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Wu, A.; Zhang, X. Differences in the Prevalence and Clinical Correlates Between Early-Onset and Late-Onset Major Depressive Disorder Patients with Comorbid Abnormal Lipid Metabolism. Metabolites 2025, 15, 117. https://doi.org/10.3390/metabo15020117
Huang X, Wu A, Zhang X. Differences in the Prevalence and Clinical Correlates Between Early-Onset and Late-Onset Major Depressive Disorder Patients with Comorbid Abnormal Lipid Metabolism. Metabolites. 2025; 15(2):117. https://doi.org/10.3390/metabo15020117
Chicago/Turabian StyleHuang, Xiao, Anshi Wu, and Xiangyang Zhang. 2025. "Differences in the Prevalence and Clinical Correlates Between Early-Onset and Late-Onset Major Depressive Disorder Patients with Comorbid Abnormal Lipid Metabolism" Metabolites 15, no. 2: 117. https://doi.org/10.3390/metabo15020117
APA StyleHuang, X., Wu, A., & Zhang, X. (2025). Differences in the Prevalence and Clinical Correlates Between Early-Onset and Late-Onset Major Depressive Disorder Patients with Comorbid Abnormal Lipid Metabolism. Metabolites, 15(2), 117. https://doi.org/10.3390/metabo15020117