Association of Oxidative Stress Biomarkers with Metabolic Parameters in Dairy Goats During the Periparturient Period
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Metabolic and Oxidative Biomarker Concentration in the Bloodstream
3.2. Pearson’s Rho Correlation Between Metabolic and Oxidative Biomarkers
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Drackley, J.K. ADSA Foundation Scholar Award. Biology of dairy cows during the transition period: The final frontier? J. Dairy Sci. 1999, 82, 2259–2273. [Google Scholar] [CrossRef] [PubMed]
- Sordillo, L.M.; Raphael, W. Significance of metabolic stress, lipid mobilization, and inflammation on transition cow disorders. Vet. Clin. N. Am. Food Anim. Pract. 2013, 29, 267–278. [Google Scholar] [CrossRef]
- Huang, Y.; Wen, J.; Kong, Y.; Zhao, C.; Liu, S.; Liu, Y.; Wang, J. Oxidative status in dairy goats: Periparturient variation and changes in subclinical hyperketonemia and hypocalcemia. BMC Vet. Res. 2021, 17, 238. [Google Scholar] [CrossRef]
- Adewuyi, A.A.; Gruys, E.; van Eerdenburg, F.J. Non esterified fatty acids (NEFA) in dairy cattle. A review. Vet. Q. 2005, 27, 117–126. [Google Scholar] [CrossRef]
- Dann, H.M.; Litherland, N.B.; Underwood, J.P.; Bionaz, M.; D’Angelo, A.; McFadden, J.W.; Drackley, J.K. Diets during far-off and close-up dry periods affect periparturient metabolism and lactation in multiparous cows. J. Dairy Sci. 2006, 89, 3563–3577. [Google Scholar] [CrossRef]
- Pedernera, M.; Celi, P.; García, S.; Salvin, H.; Barchia, I.; Fulkerson, W. Effect of diet, energy balance and milk production on oxidative stress in early-lactating dairy cows grazing pasture. Vet. J. 2010, 186, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Ciampi, F.; Sordillo, M.L.; Gandy, J.C.; Caroprese, M.; Sevi, A.; Albenzio, M.; Santillo, A. Evaluation of natural plant extracts as antioxidants in a bovine in vitro model of oxidative stress. J. Dairy Sci. 2020, 103, 8938–8947. [Google Scholar] [CrossRef]
- Glasauer, A.; Chandel, N.S. ROS. Curr. Biol. 2013, 23, R100–R102. [Google Scholar] [CrossRef]
- Sordillo, L.M. Nutritional strategies to optimize dairy cattle immunity. J. Dairy Sci. 2016, 99, 4967–4982. [Google Scholar] [CrossRef] [PubMed]
- Hernández, J.; Muiño, R.; Benedito, J.; Abuelo, A.; Castillo, C. Redox status and oxidative stress in bovine. Large Anim. Rev. 2022, 28, 145–151. [Google Scholar]
- Abuelo, A.; Hernández, J.; Benedito, J.L.; Castillo, C. The importance of the oxidative status of dairy cattle in the periparturient period: Revisiting antioxidant supplementation. J. Anim. Physiol. Anim. Nutr. 2015, 99, 1003–1016. [Google Scholar] [CrossRef]
- Celi, P.; Di Trana, A.; Quaranta, A. Metabolic profile and oxidative status in goats during the peripartum period. Aust. J. Exp. Agr. 2008, 48, 1004–1008. [Google Scholar] [CrossRef]
- Celi, P.; Di Trana, A.; Claps, S. Effects of plane of nutrition on oxidative stress in goats during the peripartum period. Vet. J. 2010, 184, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Abuelo, A.; Hernández, J.; Benedito, J.L.; Castillo, C. Oxidative stress index (OSi) as a new tool to assess redox status in dairy cattle during the transition period. Animal 2013, 7, 1374–1378. [Google Scholar] [CrossRef]
- Castillo, C.; Hernandez, J.; Bravo, A.; Lopez-Alonso, M.; Pereira, V.; Benedito, J.L. Oxidative status during late pregnancy and early lactation in dairy cows. Vet. J. 2005, 169, 286–292. [Google Scholar] [CrossRef]
- Invernizzi, G.; Koutsouli, P.; Savoini, G.; Mariani, E.; Rebucci, R.; Baldi, A.; Politis, I. Oxidative indices as metabolic stress predictors in periparturient dairy cows. Ital. J. Anim. Sci. 2019, 18, 1356–1360. [Google Scholar] [CrossRef]
- Bernabucci, U.; Ronchi, B.; Lacetera, N.; Nardone, A. Influence of body condition score on relationships between metabolic status and oxidative stress in periparturient dairy cows. J. Dairy Sci. 2005, 88, 2017–2026. [Google Scholar] [CrossRef]
- Official Methods of Analysis TM, 21st ed.; AOAC International: Rockville, MD, USA, 2023; Available online: https://www.aoac.org/official-methods-of-analysis/ (accessed on 12 December 2024).
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Trotti, R.; Carratelli, M.; Barbieri, M.; Micieli, G.; Bosone, D.; Rondanelli, M.; Bo, P. Oxidative stress and a thrombophilic condition in alcoholics without severe liver disease. Haematologica 2001, 86, 85–91. [Google Scholar] [PubMed]
- Miller, J.K.; Brzezinska-Slebodzinska, E.; Madsen, F.C. Oxidative stress, antioxidants, and animal function. J. Dairy Sci. 1993, 76, 2812–2823. [Google Scholar] [CrossRef]
- Sadjadian, R.; Seifi, H.A.; Mohri, M.; Naserian, A.A.; Farzaneh, N. Variations of energy biochemical metabolites in periparturient dairy Saanen goats. Comp. Clin. Pathol. 2013, 22, 449–456. [Google Scholar] [CrossRef]
- Radin, L.; Šimpraga, M.; Vince, S.; Kostelić, A.; Milinković-Tur, S. Metabolic and oxidative status of Saanen goats of different parity during the peripartum period. J. Dairy Res. 2015, 82, 426–433. [Google Scholar] [CrossRef]
- Seifi, H.A.; Gorji-Dooz, M.; Mohri, M.; Dalir-Naghadeh, B.; Farzaneh, N. Variations of energy-related biochemical metabolites during transition period in dairy cows. Comp. Clin. Pathol. 2007, 16, 253–258. [Google Scholar] [CrossRef]
- Pilotto, A.; Savoini, G.; Baldi, A.; Invernizzi, G.; De Vecchi, C.; Theodorou, G.; Koutsouli, P.; Politis, I. Short communication: Associations between blood fatty acids, β-hydroxybutyrate, and α-tocopherol in the periparturient period in dairy cows: An observational study. J. Dairy Sci. 2016, 99, 8121–8126. [Google Scholar] [CrossRef] [PubMed]
- Wankhade, P.R.; Manimaran, A.; Kumaresan, A.; Jeyakumar, S.; Ramesha, K.P.; Sejian, V.; Rajendran, D.; Varghese, M.R. Metabolic and immunological changes in transition dairy cows: A review. Vet. World 2017, 10, 1367–1377. [Google Scholar] [CrossRef]
- Overton, T.; McArt, J.; Nydam, D. A 100 Year Review: Metabolic health indicators and management of dairy cattle. J. Dairy Sci. 2017, 100, 10398–10417. [Google Scholar] [CrossRef]
- McCarthy, M.M.; Mann, S.; Nydam, D.V.; Overton, T.R.; McArt, J.A. Short communication: Concentrations of nonesterified fatty acids and β-hydroxybutyrate in dairy cows are not well correlated during the transition period. J. Dairy Sci. 2015, 98, 6284–6290. [Google Scholar] [CrossRef]
- Zamuner, F.; DiGiacomo, K.; Cameron, A.W.N.; Leury, B.J. Short communication: Associations between nonesterified fatty acids, β-hydroxybutyrate, and glucose in periparturient dairy goats. J. Dairy Sci. 2020, 103, 6672–6678. [Google Scholar] [CrossRef]
- Karagiannis, I.; Panousis, N.; Kiossis, E.; Tsakmakidis, I.; Lafi, S.; Arsenos, G.; Boscos, C.; Brozos, C. Associations of pre-lambing body condition score and serum β-hydroxybutyric acid and non-esterified fatty acids concentrations with periparturient health of Chios dairy ewes. Small Rumin. Res. 2014, 120, 164–173. [Google Scholar] [CrossRef]
- Konvičná, J.; Vargová, M.; Paulíková, I.; Kováč, G.; Kostecká, Z. Oxidative stress and antioxidant status in dairy cows during prepartal and postpartal periods. Acta Vet. Brno 2015, 84, 133–140. [Google Scholar] [CrossRef]
- Bernabucci, U.; Ronchi, B.; Lacetera, N.; Nardone, A. Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season. J. Dairy Sci. 2002, 85, 2173–2179. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Sharma, N.; Singh, N.K.; Singh, O.P.; Pandey, V.; Verma, P.K. Oxidative stress and antioxidant status during transition period in dairy cows. Asian-Australas. J. Anim. Sci. 2011, 24, 479–484. [Google Scholar] [CrossRef]
- Song, Y.; Li, X.; Li, Y.; Li, N.; Shi, X.; Ding, H.; Zhang, Y.; Li, X.; Liu, G.; Wang, Z. Non-esterified fatty acids activate the ROS–p38–p53/Nrf2 signaling pathway to induce bovine hepatocyte apoptosis in vitro. Apoptosis 2014, 19, 984–997. [Google Scholar] [CrossRef]
- Zhang, M.; Heirbaut, S.; Jing, X.; Stefanska, B.; Vandaele, L.; De Neve, N.; Fievez, V. Transition cow clusters with distinctive antioxidant ability and their relation to performance and metabolic status in early lactation. J. Dairy Sci. 2023, 106, 5723–5739. [Google Scholar] [CrossRef] [PubMed]
- Di Trana, A.; Celi, P.; Claps, S.; Fedele, V.; Rubino, R. The effect of hot season and nutrition on the oxidative status and metabolic profile in dairy goats during mid lactation. Anim. Sci. 2006, 82, 717–722. [Google Scholar] [CrossRef]
- Boukrouh, S.; Noutfia, A.; Moula, N.; Avril, C.; Hornick, J.-L.; Chentouf, M.; Cabaraux, J.F. Effects of sulla flexuosa hay as alternative feed resource on goat’s milk production and quality. Animals 2023, 13, 709. [Google Scholar] [CrossRef]
- Boukrouh, S.; Noutfia, A.; Moula, N.; Avril, C.; Hornick, J.-L.; Chentouf, M.; Cabaraux, J.F. Ecological, morpho-agronomical, and nutritional characteristics of Sulla flexuosa (L.) Medik. ecotypes. Sci. Rep. 2023, 13, 13300. [Google Scholar] [CrossRef] [PubMed]
- Fumo, V.; Meli, G.; Invernizzi, G. Camelina sativa and Cynara cardunculus cakes supplementation on performance and milk composition in dairy goats during the transition period. Ital. J. Anim. Sci. 2023, 22, 114–115. [Google Scholar]
- Onjai-Uea, N.; Paengkoum, S.; Taethaisong, N.; Thongpea, S.; Paengkoum, P. Enhancing milk quality and antioxidant status in lactating dairy goats through the dietary incorporation of purple napier grass silage. Animals 2024, 14, 811. [Google Scholar] [CrossRef] [PubMed]
- Agazzi, A.; Invernizzi, G.; Campagnoli, A.; Ferroni, M.; Fanelli, A.; Cattaneo, D.; Galmozzi, A.; Crestani, M.; Dell’Orto, V.; Savoini, G. Effect of different dietary fats on hepatic gene expression in transition dairy goats. Small Rumin. Res. 2010, 93, 31–40. [Google Scholar] [CrossRef]
- Savoini, G.; Omodei Zorini, F.; Farina, G.; Agazzi, A.; Cattaneo, D.; Invernizzi, G. Effects of fat supplementation in dairy goats on lipid metabolism and health status. Animals 2019, 9, 917. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Chen, X.; Xiao, J.; Chen, X.H.; Zhang, X.F.; Wang, T.; Zhen, Y.G.; Qin, G.X. Prepartum body condition score affects milk yield, lipid metabolism, and oxidation status of Holstein cows. Asian-Australas. J. Anim. Sci. 2019, 12, 1889–1896. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Qin, G.; Zhen, Y.; Zhang, X.; Chen, X.; Dong, J.; Li, C.; Aschalew, N.D.; Wang, T.; Sun, Z. Correlation of oxidative stress-related indicators with milk composition and metabolites in early lactating dairy cows. Vet. Med. Sci. 2021, 7, 2250–2259. [Google Scholar] [CrossRef]
- Sordillo, L.M.; Mavangira, V. The nexus between nutrient metabolism, oxidative stress and inflammation in transition cows. Anim. Prod. Sci. 2014, 54, 1204–1214. [Google Scholar] [CrossRef]
- Wisnieski, L.; Norby, B.; Pierce, S.J.; Becker, T.; Gandy, J.C.; Sordillo, L.M. Cohort-level disease prediction by extrapolation of individual-level predictions in transition dairy cattle. Prev. Vet. Med. 2019, 169, 104692. [Google Scholar] [CrossRef]
| Ingredients | Dry-Off | Kidding | Lactation |
|---|---|---|---|
| Ryegrass hay | 100 | ||
| Mixed hay 1 | 76.6 | 45.7 | |
| Concentrate 2 | 23.4 | 27.4 | |
| Alfalfa hay | 15.2 | ||
| Whole corn | 11.7 | ||
| Tot | 100 | 100 | 100 |
| Dry matter | 88.5 | 88.2 | 88.1 |
| Crude protein | 10.1 | 12.2 | 14.2 |
| Ether extract | 1.7 | 2.9 | 3.2 |
| Crude fiber | 30.5 | 31.1 | 24.6 |
| NDF | 59.6 | 56.2 | 43.3 |
| ADF | 36.5 | 31.6 | 24.8 |
| ADL | 5.8 | 4.3 | 3.6 |
| Calcium | 0.5 | 0.9 | 0.8 |
| Phosporus | 0.3 | 0.3 | 0.4 |
| Starch | - | 10.7 | 20.5 |
| Ash | 8.5 | 6.28 | 5.3 |
| NFCs 3 | 20.1 | 22.4 | 52.7 |
| Digestible protein | 6.02 | 8.45 | 10.11 |
| ME (Mcal/kg DM) | 2.10 | 2.38 | 2.57 |
| NEL (Mcal/kg DM) | 1.35 | 1.53 | 1.66 |
| FMU (unit/kg DM) 4 | 0.79 | 0.90 | 0.98 |
| DM digestibility (%) | 60.13 | 65.80 | 70.76 |
| OM digestibility (%) | 62.93 | 68.49 | 73.68 |
| Dry-Off LSM ± SEM | Kidding LSM ± SEM | 30 DIM LSM ± SEM | |
|---|---|---|---|
| Total cholesterol (mmol/L) | 2.72 ± 0.10 | 1.98 ± 0.10 ** | 2.58 ± 0.10 |
| Triglycerides (mmol/L) | 0.32 ± 0.01 ** | 0.15 ± 0.01 | 0.18 ± 0.01 |
| NEFAs (mmol/L) | 0.21 ± 0.04 | 0.55 ± 0.04 ** | 0.32 ± 0.04 |
| BHB (mmol/L) | 0.33 ± 0.02 | 0.44 ± 0.02 ** | 0.32 ± 0.02 |
| ROS (Carr. U) | 160.91 ± 6.99 | 183.13 ± 6.99 * | 174.36 ± 6.99 |
| SAC (umol HClO/mL) | 433.81 ± 28.89 | 434.87 ± 28.89 | 450.78 ± 28.89 |
| OSi (Carr. U/(umol HCLO/mL) | 0.40 ± 0.03 | 0.50 ± 0.03 * | 0.42 ± 0.03 |
| NEFA | BHB | TC | TRI | ROS | SAC | OSi | ||
|---|---|---|---|---|---|---|---|---|
| NEFAs | Rho | 1 | 0.48 | −0.15 | −0.26 | 0.19 | 0.11 | 0.22 |
| p value | _ | <0.0001 ** | 0.16 | 0.01 * | 0.06 | 0.26 | 0.03 * | |
| BHB | Rho | 1 | 0.17 | −0.14 | 0.10 | 0.17 | 0.11 | |
| p value | _ | 0.09 | 0.16 | 0.33 | 0.09 | 0.29 | ||
| TC | Rho | 1 | 0.28 | −0.06 | 0.08 | −0.18 | ||
| p value | _ | 0.005 * | 0.55 | 0.44 | 0.08 | |||
| TRI | Rho | 1 | 0.20 | 0.03 | 0.04 | |||
| p value | _ | 0.05 | 0.79 | 0.71 | ||||
| ROS | Rho | 1 | 0.04 | 0.40 | ||||
| p value | _ | 0.72 | <0.0001 ** | |||||
| SAC | Rho | 1 | −0.71 | |||||
| p value | _ | <0.0001 ** | ||||||
| OSi | 1 | |||||||
| _ |
| Dry-Off | Kidding | 30 Days in Milk | ||||||
|---|---|---|---|---|---|---|---|---|
| NEFA | BHB | NEFA | BHB | NEFA | BHB | |||
| Dry-off | NEFA | Rho | 1 | −0.29 | 0.06 | 0.56 ** | 0.26 | 0.54 ** |
| p value | _ | 0.11 | 0.76 | 0.001 | 0.15 | 0.001 | ||
| BHB | Rho | 1 | −0.005 | −0.19 | −0.09 | 0.04 | ||
| p value | _ | 0.98 | 0.31 | 0.60 | 0.83 | |||
| Kidding | NEFA | Rho | 1 | 0.65 ** | −0.14 | 0.27 | ||
| p value | _ | <0.0001 | 0.42 | 0.13 | ||||
| BHB | Rho | 1 | −0.13 | 0.32 | ||||
| p value | _ | 0.46 | 0.07 | |||||
| 30 days in milk | NEFA | Rho | 1 | 0.40 * | ||||
| p value | _ | 0.02 | ||||||
| BHB | Rho | 1 | ||||||
| p value | _ | |||||||
| Dry-Off | Kidding | 30 Days in Milk | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| ROS | SAC | OSi | ROS | SAC | OSi | ROS | SAC | OSi | |||
| Dry-off | ROS | Rho | 1 | 0.19 | 0.40 * | 0.06 | 0.17 | −0.19 | 0.44 * | 0.24 | 0.05 |
| p value | _ | 0.29 | 0.02 | 0.75 | 0.36 | 0.30 | 0.01 | 0.18 | 0.76 | ||
| SAC | Rho | 1 | −0.72 ** | −0.004 | 0.10 | −0.53 ** | 0.24 | 0.45 * | −0.24 | ||
| p value | _ | <0.0001 | 0.98 | 0.33 | 0.002 | 0.19 | 0.01 | 0.19 | |||
| OSi | Rho | 1 | 0.16 | −0.50 ** | 0.39 * | 0.17 | −0.36 * | 0.43 * | |||
| p value | _ | 0.38 | 0.004 | 0.03 | 0.36 | 0.045 | 0.01 | ||||
| Kidding | ROS | Rho | 1 | 0.26 | 0.42 * | 0.46 | −0.48 ** | 0.52 ** | |||
| p value | _ | 0.15 | 0.02 | 0.01 | 0.005 | 0.002 | |||||
| SAC | Rho | 1 | −0.76 ** | 0.16 | 0.71 | −0.40 | |||||
| p value | _ | <0.0001 | 0.38 | <0.0001 | 0.02 | ||||||
| OSi | Rho | 1 | 0.05 | −0.52 ** | 0.41 | ||||||
| p value | _ | 0.78 | 0.002 | 0.02 | |||||||
| 30 days in milk | ROS | Rho | 1 | 0.11 | 0.46 ** | ||||||
| p value | _ | 0.53 | 0.008 | ||||||||
| SAC | Rho | 1 | −0.72 ** | ||||||||
| p value | _ | <0.0001 | |||||||||
| OSi | Rho | 1 | |||||||||
| p value | _ | ||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meli, G.; Fumo, V.; Chen, W.; Savoini, G.; Invernizzi, G. Association of Oxidative Stress Biomarkers with Metabolic Parameters in Dairy Goats During the Periparturient Period. Metabolites 2025, 15, 790. https://doi.org/10.3390/metabo15120790
Meli G, Fumo V, Chen W, Savoini G, Invernizzi G. Association of Oxidative Stress Biomarkers with Metabolic Parameters in Dairy Goats During the Periparturient Period. Metabolites. 2025; 15(12):790. https://doi.org/10.3390/metabo15120790
Chicago/Turabian StyleMeli, Giovanna, Valentina Fumo, Wenning Chen, Giovanni Savoini, and Guido Invernizzi. 2025. "Association of Oxidative Stress Biomarkers with Metabolic Parameters in Dairy Goats During the Periparturient Period" Metabolites 15, no. 12: 790. https://doi.org/10.3390/metabo15120790
APA StyleMeli, G., Fumo, V., Chen, W., Savoini, G., & Invernizzi, G. (2025). Association of Oxidative Stress Biomarkers with Metabolic Parameters in Dairy Goats During the Periparturient Period. Metabolites, 15(12), 790. https://doi.org/10.3390/metabo15120790

