Impact of the Dietary Fat Concentration and Source on the Fecal Microbiota of Healthy Adult Cats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Measurement of the pH and Microbial Metabolites in the Fecal Samples
2.3. 16S rDNA Sequencing
2.4. Statistical Data Analysis
3. Results
3.1. Health Status, Feed Intake and Body Weight of the Cats
3.2. Fecal pH and Microbial Metabolites
3.3. Alpha Diversity of the Fecal Microbiota
3.4. Bacterial Phyla in the Fecal Samples
3.5. Bacterial Genera in the Fecal Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ignatiou, A.; Pitsouli, C. Host-diet-microbiota interplay in intestinal nutrition and health. FEBS Lett. 2024, 598, 2482–2517. [Google Scholar] [CrossRef] [PubMed]
- Lubbs, D.C.; Vester, B.M.; Fastinger, N.D.; Swanson, K.S. Dietary protein concentration affects intestinal microbiota of adult cats: A study using DGGE and qPCR to evaluate differences in microbial populations in the feline gastrointestinal tract. J. Anim. Physiol. Anim. Nutr. 2009, 93, 113–121. [Google Scholar] [CrossRef]
- Hooda, S.; Vester Boler, B.M.; Kerr, K.R.; Dowd, S.E.; Swanson, K.S. The gut microbiome of kittens is affected by dietary protein: Carbohydrate ratio and associated with blood metabolite and hormone concentrations. Br. J. Nutr. 2013, 109, 1637–1646. [Google Scholar] [CrossRef]
- Badri, D.V.; Jackson, M.I.; Jewell, D.E. Dietary Protein and Carbohydrate Levels Affect the Gut Microbiota and Clinical Assessment in Healthy Adult Cats. J. Nutr. 2021, 151, 3637–3650. [Google Scholar] [CrossRef] [PubMed]
- Paßlack, N.; Thies, L.V.; Vahjen, W.; Zentek, J. Effects of the Protein Concentration and Quality in a Canned Diet on the Fecal Microbiota of Healthy Adult Cats. Metabolites 2022, 12, 105. [Google Scholar] [CrossRef]
- Kilburn-Kappeler, L.R.; Doerksen, T.; Lu, A.; Palinski, R.M.; Lu, N.; Aldrich, C.G. Evaluation of corn fermented protein on the fecal microbiome of cats. J. Anim. Sci. 2024, 102, skae268. [Google Scholar] [CrossRef]
- Pilla, R.; Suchodolski, J.S. The Gut Microbiome of Dogs and Cats, and the Influence of Diet. Vet. Clin. N. Am. Small Anim. Pract. 2021, 51, 605–621. [Google Scholar] [CrossRef]
- Jackson, M.I.; Waldy, C.; Jewell, D.E. Dietary resistant starch preserved through mild extrusion of grain alters fecal microbiome metabolism of dietary macronutrients while increasing immunoglobulin A in the cat. PLoS ONE 2020, 15, e0241037. [Google Scholar] [CrossRef]
- Lee, A.H.; Jha, A.R.; Do, S.; Scarsella, E.; Shmalberg, J.; Schauwecker, A.; Steelman, A.J.; Honaker, R.W.; Swanson, K.S. Dietary enrichment of resistant starches or fibers differentially alter the feline fecal microbiome and metabolite profile. Anim. Microbiome 2022, 4, 61. [Google Scholar] [CrossRef]
- Mo, R.; Zhang, M.; Wang, H.; Liu, T.; Zhang, G.; Wu, Y. Short-term changes in dietary fat levels and starch sources affect weight management, glucose and lipid metabolism, and gut microbiota in adult cats. J. Anim. Sci. 2023, 101, skad276. [Google Scholar] [CrossRef]
- Zhang, S.; Ren, Y.; Huang, Y.; Wang, Y.; Dang, H.; Shan, T. Effects of five carbohydrate sources on cat diet digestibility, postprandial glucose, insulin response, and gut microbiomes. J. Anim. Sci. 2023, 101, skad049. [Google Scholar] [CrossRef] [PubMed]
- Chadaideh, K.S.; Carmody, R.N. Host-microbial interactions in the metabolism of different dietary fats. Cell Metab. 2021, 33, 857–872. [Google Scholar] [PubMed]
- Fu, Y.; Wang, Y.; Gao, H.; Li, D.H.; Jiang, R.R.; Ge, L.; Tong, C.; Xu, K. Associations Among Dietary Omega-3 Polyunsaturated Fatty Acids, the Gut Microbiota, and Intestinal Immunity. Mediat. Inflamm. 2021, 2021, 8879227. [Google Scholar] [CrossRef]
- Lemons, J.M.S.; Liu, L. Chewing the Fat with Microbes: Lipid Crosstalk in the Gut. Nutrients 2022, 14, 573. [Google Scholar] [CrossRef]
- Arjomand Fard, N.; Bording-Jorgensen, M.; Wine, E. A Potential Role for Gut Microbes in Mediating Effects of Omega-3 Fatty Acids in Inflammatory Bowel Diseases: A Comprehensive Review. Curr. Microbiol. 2023, 80, 363. [Google Scholar] [CrossRef]
- Jamar, G.; Pellegrini Pisani, L. Inflammatory crosstalk between saturated fatty acids and gut microbiota–white adipose tissue axis. Eur. J. Nutr. 2023, 62, 1077–1091. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, L.; Chen, C.; Li, P.; Lu, B. The gut microbiota-artery axis: A bridge between dietary lipids and atherosclerosis? Progr. Lipid Res. 2023, 89, 101209. [Google Scholar] [CrossRef]
- Schauf, S.; de la Fuente, G.; Newbold, C.J.; Salas-Mani, A.; Torre, C.; Abecia, L.; Castrillo, C. Effect of dietary fat to starch content on fecal microbiota composition and activity in dogs. J. Anim. Sci. 2018, 96, 3684–3698. [Google Scholar] [CrossRef]
- Kilburn, L.R.; Koester, L.R.; Schmitz-Esser, S.; Serão, N.V.L.; Rossoni Serão, M.C. High-Fat Diets Led to OTU-Level Shifts in Fecal Samples of Healthy Adult Dogs. Front. Microbiol. 2020, 11, 564160. [Google Scholar] [CrossRef]
- Phimister, F.D.; Anderson, R.C.; Thomas, D.G.; Farquhar, M.J.; Maclean, P.; Jauregui, R.; Young, W.; Butowski, C.F.; Bermingham, E.N. Using meta-analysis to understand the impacts of dietary protein and fat content on the composition of fecal microbiota of domestic dogs (Canis lupus familiaris): A pilot study. Microbiologyopen 2024, 13, e1404. [Google Scholar] [CrossRef]
- Paßlack, N.; Müller, S.F.; Büttner, K.; Zentek, J. Effects of the Dietary Fat Concentration and Fatty Acid Pattern on the Urine Composition, Apparent Nutrient Digestibility, and Selected Blood Values of Healthy Adult Cats. Metabolites 2024, 14, 605. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Dogs and Cats; The National Academies Press: Washington, DC, USA, 2006.
- Paßlack, N.; Vahjen, W.; Zentek, J. Dietary inulin affects the intestinal microbiota in sows and their suckling piglets. BMC Vet. Res. 2015, 11, 51. [Google Scholar] [CrossRef]
- Paßlack, N.; Zentek, J.; Larsen, J.A.; Westropp, J.L.; Fascetti, A.J. Impact of hyperlipidaemia on intermediary metabolism, faecal microbial metabolites and urinary characteristics of lipoprotein lipase deficient vs. normal cats. J. Anim. Physiol. Anim. Nutr. 2018, 102, e139–e146. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, P.; Parfrey, L.W.; Yarza, P.; Gerken, J.; Pruesse, E.; Quast, C.; Schweer, T.; Peplies, J.; Ludwig, W.; Glöckner, F.O. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 2014, 42, D643–D648. [Google Scholar] [CrossRef]
- Paßlack, N.; Kohn, B.; Vahjen, W.; Zentek, J. Effects of dietary cellobiose on the intestinal microbiota and excretion of nitrogen metabolites in healthy adult dogs. J. Anim. Physiol. Anim. Nutr. 2021, 105, 569–578. [Google Scholar] [CrossRef]
- Devkota, S.; Wang, Y.; Much, M.W.; Leone, V.; Fehlner-Peach, H.; Nadimpalli, A.; Antonopoulos, D.A.; Jabri, B.; Chang, E.B. Dietary-fat induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 2012, 487, 104–108. [Google Scholar] [CrossRef]
- Patterson, E.; Od, R.M.; Murphy, E.F.; Wall, R.; Nilaweera, K.; Fitzgerald, G.F.; Cotter, P.D.; Ross, R.P.; Stanton, C. Impact of dietary fatty acids on metabolic activity and host intestinal microbiota composition in C57BL/6J mice. Br. J. Nutr. 2014, 111, 1905–1917. [Google Scholar] [CrossRef]
- Wolters, M.; Ahrens, J.; Romaní-Pérez, M.; Watkins, C.; Sanz, Y.; Benítez-Páez, A.; Stanton, C.; Günther, K. Dietary fat, the gut microbiota, and metabolic health—A systematic review conducted within the MyNewGut project. Clin. Nutr. 2019, 38, 2504–2520. [Google Scholar] [CrossRef]
- Wijekoon, M.P.A.; Parrish, C.C.; Mansour, A. Reprint of Effect of dietary substitution of fish oil with flaxseed or sunflower oil on muscle fatty acid composition in juvenile steelhead trout (Oncorhynchus mykiss) reared at varying temperatures. Aquaculture 2015, 447, 108–115. [Google Scholar]
- Guinane, C.M.; Cotter, P.D. Role of the gut microbiota in health and chronic gastrointestinal disease: Understanding a hidden metabolic organ. Therap. Adv. Gastroenterol. 2013, 6, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Kaliannan, K.; Wang, B.; Li, X.Y.; Kim, K.J.; Kang, J.X. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Sci. Rep. 2015, 5, 11276. [Google Scholar] [CrossRef]
- Cao, W.; Wang, C.; Chin, Y.; Chen, X.; Gao, Y.; Yuan, S.; Xue, C.; Wang, Y.; Tang, Q. DHA-phospholipids (DHA-PL) and EPA-phospholipids (EPA-PL) prevent intestinal dysfunction induced by chronic stress. Food Funct. 2019, 10, 277–288. [Google Scholar] [CrossRef]
- Mujico, J.R.; Baccan, G.C.; Gheorghe, A.; Díaz, L.E.; Marcos, A. Changes in gut microbiota due to supplemented fatty acids in diet-induced obese mice. Br. J. Nutr. 2013, 110, 711–720. [Google Scholar] [CrossRef]
- Robertson, R.C.; Seira Oriach, C.; Murphy, K.; Moloney, G.M.; Cryan, J.F.; Dinan, T.G.; Paul Ross, R.; Stanton, C. Omega-3 polyunsaturated fatty acids critically regulate behaviour and gut microbiota development in adolescence and adulthood. Brain Behav. Immun. 2017, 59, 21–37. [Google Scholar] [CrossRef]
- Hacquard, S.; Garrido-Oter, R.; González, A.; Spaepen, S.; Ackermann, G.; Lebeis, S.; McHardy, A.C.; Dangl, J.L.; Knight, R.; Ley, R.; et al. Microbiota and Host Nutrition Across Plant and Animal Kingdoms. Cell Host Microbe 2015, 17, 603–616. [Google Scholar] [CrossRef]
- Fava, F.; Gitau, R.; Griffin, B.A.; Gibson, G.R.; Tuohy, K.M.; Lovegrove, J.A. The type and quantity of dietary fat and carbohydrate alter faecal microbiome and short-chain fatty acid excretion in a metabolic syndrome “at-risk” population. Int. J. Obes. 2013, 37, 216–223. [Google Scholar] [CrossRef]
- Bauer, J.E. Responses of dogs to dietary omega-3 fatty acids. J. Am. Vet. Med. Assoc. 2007, 231, 1657–1661. [Google Scholar] [CrossRef]
- Vineyard, K.R.; Warren, L.K.; Kivipelto, J. Effect of dietary omega-3 fatty acid source on plasma and red blood cell membrane composition and immune function in yearling horses. J. Anim. Sci. 2010, 88, 248–257. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Svahn, S.L.; Johansson, M.E. Effects of Omega-3 Fatty Acids on Immune Cells. Int. J. Mol. Sci. 2019, 20, 5028. [Google Scholar] [CrossRef]
- Bobeck, E.A. NUTRITION AND HEALTH: COMPANION ANIMAL APPLICATIONS: Functional nutrition in livestock and companion animals to modulate the immune response. J. Anim. Sci. 2020, 98, skaa035. [Google Scholar] [CrossRef] [PubMed]
- Fabjanowska, J.; Kowalczuk-Vasilev, E.; Klebaniuk, R.; Milewski, S.; Gümüş, H. N-3 Polyunsaturated Fatty Acids as a Nutritional Support of the Reproductive and Immune System of Cattle—A Review. Animals 2023, 13, 3589. [Google Scholar] [CrossRef] [PubMed]
- Joo Park, H.; Soon Park, J.; Hayek, M.G.; Reinhart, G.A.; Chew, B.P. Dietary fish oil and flaxseed oil suppress inflammation and immunity in cats. Vet. Immunol. Immunopathol. 2011, 141, 301–306. [Google Scholar] [CrossRef]
- Rutherfurd-Markwick, K.J.; Hendriks, W.H.; Morel, P.C.H.; Thomas, D.G. The potential for enhancement of immunity in cats by dietary supplementation. Vet. Immunol. Immunopathol. 2013, 152, 333–340. [Google Scholar] [CrossRef]
- Liang, S.; Kang, Y.; Zhao, Y.; Sun, J.; Wang, X.; Tao, H.; Wang, Z.; Wang, J.; Zhong, Y.; Han, B. Characterization and potential lipid-lowering effects of lactic acid bacteria isolated from cats. Front. Microbiol. 2024, 15, 1392864. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Jha, A.R.; Oba, P.M.; Yotis, S.M.; Shmalberg, J.; Honaker, R.W.; Swanson, K.S. Longitudinal fecal microbiome and metabolite data demonstrate rapid shifts and subsequent stabilization after an abrupt dietary change in healthy adult dogs. Anim. Microbiome 2022, 4, 46. [Google Scholar] [CrossRef]
Component | Analyzed |
---|---|
Dry matter (g/100 g) | 93.7 |
In g/100 g dry matter | |
Crude protein | 35.0 |
Crude fat | 9.07 |
Crude fiber | 2.24 |
Crude ash | 11.1 |
Calcium | 1.89 |
Phosphorus | 1.25 |
Sodium | 0.69 |
Potassium | 0.97 |
Magnesium | 0.11 |
In mg/100 g dry matter | |
Copper | 2.13 |
Zinc | 16.9 |
Iron | 80.6 |
Manganese | 4.90 |
Basal Diet | Basal Diet | Sunflower Oil | Fish Oil | Lard | |
---|---|---|---|---|---|
mg/kg Diet 2 | % of Total Fatty Acids 3 | ||||
Analyzed | |||||
Caprylic acid C 8:0 | <50.0 | <0.1 | <0.1 | <0.1 | <0.1 |
Capric acid C 10:0 | 111 | 0.2 | <0.1 | <0.1 | <0.1 |
Lauric acid C 12:0 | 466 | 0.7 | <0.1 | <0.1 | <0.1 |
Myristic acid C 14:0 | 478 | 0.7 | <0.1 | 4.5 | 1.5 |
Myristoleic acid C 14:1 | 78.6 | 0.1 | <0.1 | 0.1 | <0.1 |
Pentadecanoic acid C 15:0 | 70.6 | 0.1 | <0.1 | 0.3 | <0.1 |
Palmitic acid C 16:0 | 13,100 | 19.6 | 6.2 | 13.5 | 26.9 |
Hexadecanoic acid trans-isomers C 16:1 trans | <50.0 | <0.1 | <0.1 | <0.1 | <0.1 |
Palmitoleic acid C 16:1 | 2310 | 3.4 | 0.1 | 5.7 | 1.8 |
Hexadecadienoic acid C16:2 (n-4) | <50.0 | <0.1 | <0.1 | 0.7 | <0.1 |
Hexadecatrienoic acid C16:3 (n-3) | <50.0 | <0.1 | <0.1 | <0.1 | <0.1 |
Margaric acid C 17:0 | 178 | 0.3 | <0.1 | 0.4 | 0.3 |
Heptadecenoic acid C 17:1 | <50.0 | <0.1 | <0.1 | <0.1 | <0.1 |
Stearic acid C 18:0 | 4440 | 6.6 | 3.6 | 2.6 | 18.2 |
Octadecenoic acid trans-isomers C 18:1 trans | 236 | 0.4 | <0.1 | 1.2 | 0.1 |
Oleic acid C 18:1 | 23,500 | 35.1 | 28.0 | 12.3 | 36.9 |
Petroselinic acid C 18:1 | <50.0 | <0.1 | <0.1 | <0.1 | <0.1 |
cis-vaccenic acid C 18:1 | 1220 | 1.8 | 0.6 | 5.5 | 2.4 |
Octadecadienoic acid trans-isomers C 18:2 trans | 122 | 0.2 | <0.1 | 0.9 | <0.1 |
Linoleic acid C 18:2 (n-6) | 15,800 | 23.6 | 59.6 | 0.8 | 9.0 |
Octadecatrienoic acid trans-isomers C 18:3 trans | 58.8 | 0.1 | <0.1 | 0.2 | <0.1 |
alpha-linolenic acid C 18:3 (n-3) | 2900 | 4.3 | <0.1 | 0.7 | 0.8 |
gamma-linolenic acid C 18:3 (n-6) | 79.8 | 0.1 | <0.1 | 0.1 | <0.1 |
Stearidonic acid C 18:4 (n-3) | <0.1 | 3.5 | <0.1 | ||
Octadecatetraenoic acid C 18:4 (n-3) | <50.0 | <0.1 | |||
Arachidic acid C 20:0 | 282 | 0.4 | 0.3 | <0.1 | 0.2 |
Eicosenoic acid C 20:1 | 311 | 0.5 | 0.2 | 11.2 | 0.8 |
Eicosadienoic acid C 20:2 (n-6) | 98.3 | 0.1 | <0.1 | 0.2 | 0.4 |
Eicosatrienoic acid C 20:3 (n-3) | <50.0 | <0.1 | <0.1 | <0.1 | <0.1 |
Eicosatrienoic acid C 20:3 (n-6) | 94.0 | 0.1 | <0.1 | <0.1 | <0.1 |
Arachidonic acid C 20:4 (n-6) | 552 | 0.8 | <0.1 | 0.3 | 0.2 |
Eicosatetraenoic acid C20:4 (n-3) | <50.0 | <0.1 | <0.1 | 0.6 | <0.1 |
Eicosapentaenoic acid C 20:5 (n-3) | <50.0 | <0.1 | <0.1 | 13.9 | <0.1 |
Heneicosanoic acid C 21:0 | 57.6 | 0.1 | <0.1 | <0.1 | <0.1 |
Behenic acid C 22:0 | 174 | 0.3 | 0.8 | <0.1 | <0.1 |
Docosenoic acid trans-isomers C 22:1 trans | <50.0 | <0.1 | <0.1 | <0.1 | <0.1 |
Docosenoic acid C 22:1 | <50.0 | <0.1 | <0.1 | 0.7 | <0.1 |
Cetoleic acid C 22:1 | <50.0 | <0.1 | <0.1 | 10.4 | <0.1 |
Docosadienoic acid C 22:2 (n-6) | <50.0 | <0.1 | <0.1 | <0.1 | <0.1 |
Docosatrienoic acid C 22:3 | <50.0 | <0.1 | <0.1 | <0.1 | <0.1 |
Docosatetraenoic acid C 22:4 (n-6) | 131 | 0.2 | <0.1 | 0.2 | <0.1 |
Docosapentaenoic acid C 22:5 (n-3) | <50.0 | <0.1 | <0.1 | 0.9 | <0.1 |
Docosapentaenoic acid C 22:5 (n-6) | <50.0 | <0.1 | <0.1 | <0.1 | <0.1 |
Docosahexaenoic acid C 22:6 (n-3) | <50.0 | <0.1 | <0.1 | 7.3 | <0.1 |
Tricosanoic acid C 23:0 | <50.0 | <0.1 | <0.1 | <0.1 | <0.1 |
Lignoceric acid C 24:0 | 110 | 0.2 | 0.3 | <0.1 | <0.1 |
Nervonic acid C 24:1 | <50.0 | <0.1 | <0.1 | 1.1 | <0.1 |
Calculated | |||||
Sum saturated fatty acids | 19,500 | 29.1 | 11.2 | 21.3 | 47.1 |
Sum monounsaturated fatty acids | 27,700 | 41.3 | 28.9 | 48.2 | 42.0 |
Total sum fatty acids | 67,000 | ||||
Sum polyunsaturated fatty acids | 19,800 | 29.6 | 59.6 | 30.3 | 10.4 |
Sum trans fatty acids | 417 | 0.62 | <0.1 | 2.3 | 0.1 |
n-3 fatty acids | 2900 | 4.33 | <0.1 | 26.9 | 0.8 |
n-6 fatty acids | 16,800 | 25.1 | 59.6 | 1.6 | 9.6 |
n-9 fatty acids | 23,800 | 35.5 | 28.2 | 25.3 | 37.7 |
n-6:n-3 fatty acids ratio | 5.79:1 | 5.79:1 | >596:1 | 0.06:1 | 12:1 |
w/o | Sunflower Oil | Fish Oil | Lard | SEM | p Value for the Overall Treatment | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Sunflower Oil | Fish Oil | Lard | |||||||||
0.5 g | 1.0 g | 0.5 g | 1.0 g | 0.5 g | 1.0 g | ||||||
n = 9 | n = 10 | n = 10 | n = 10 | n = 10 | n = 9 | n = 8 | |||||
Per Feeding Period | |||||||||||
Feed intake (g/day) | 66.0 | 64.2 | 61.0 | 60.2 | 60.9 | 63.0 | 60.5 | 1.07 | 0.1348 | 0.0808 | 0.3153 |
Feed intake (g/kg BW/day) | 13.8 | 13.3 | 12.5 | 12.3 | 12.6 | 13.0 | 13.0 | 0.30 | 0.1226 | 0.0952 | 0.2218 |
BW (kg) | 4.92 | 4.97 | 4.96 | 4.97 | 4.97 | 4.92 | 4.73 | 0.10 | 0.9784 | 0.9885 | 0.4541 |
For the Collection Period | |||||||||||
Feed intake (g/day) | 63.6 | 60.6 | 59.4 | 58.0 | 54.8 | 61.0 | 57.5 | 1.30 | 0.2861 | 0.0675 | 0.1115 |
Feed intake (g/kg BW/day) | 13.2 | 12.6 | 12.2 | 11.9 | 11.4 | 12.6 | 12.3 | 0.35 | 0.2774 | 0.0733 | 0.1044 |
BW (kg) | 4.92 | 4.98 | 4.96 | 4.97 | 4.98 | 4.95 | 4.73 | 0.10 | 0.9697 | 0.8897 | 0.2511 |
w/o | Sunflower Oil | Fish Oil | Lard | SEM | p Value for the Overall Treatment 1 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.5 g | 1.0 g | 0.5 g | 1.0 g | 0.5 g | 1.0 g | Sunflower Oil | Fish Oil | Lard | |||
n = 9 | n = 10 | n = 10 | n = 10 | n = 10 | n = 9 | n = 8 | |||||
pH | 6.06 | 6.17 | 6.25 | 6.10 | 6.08 | 6.40 | 6.27 | 0.06 | 0.5126 | 0.9509 | 0.6658 |
µmol/g | |||||||||||
D-lactate | 0.15 | 0.11 | 0.14 | 1.00 | 0.15 | 0.16 | 0.19 | 0.10 | 0.4449 | 0.4254 | 0.8777 |
L-lactate | 0.03 | 0.01 | 0.03 | 0.86 | 0.01 | 0.02 | 0.02 | 0.11 | 0.1830 | 0.3508 | 0.6850 |
Ammonium | 41.1 | 36.2 | 39.6 | 35.6 | 38.9 | 45.4 | 36.5 | 1.45 | 0.3786 | 0.6614 | 0.0837 |
Acetic acid | 95.3 | 80.6 | 95.7 | 96.6 | 115 | 107 | 99.5 | 4.06 | 0.6865 | 0.1263 | 0.2844 |
Propionic acid | 31.6 | 30.4 | 38.9 | 36.2 | 44.2 | 43.3 | 38.5 | 2.36 | 0.5033 | 0.0603 | 0.0884 |
i-butyric acid | 3.45 ab | 2.95 | 2.99 | 2.78 | 3.26 | 2.80 a | 3.75 b | 0.13 | 0.4439 | 0.0431 | 0.0332 |
n-butyric acid | 25.8 | 18.2 | 25.7 | 25.4 | 35.5 | 31.5 | 19.6 | 2.24 | 0.3567 | 0.5706 | 0.1471 |
i-valeric acid | 5.84 | 5.16 | 5.18 | 5.30 | 5.51 | 4.62 | 5.95 | 0.21 | 0.5638 | 0.4563 | 0.1469 |
n-valeric acid | 11.9 | 10.6 | 14.5 | 13.8 | 14.4 | 15.6 | 12.2 | 0.66 | 0.2364 | 0.1754 | 0.0946 |
Total short-chain fatty acids | 174 | 148 | 183 | 180 | 218 | 204 | 179 | 8.11 | 0.6036 | 0.1149 | 0.1903 |
Mol.% | |||||||||||
Acetic acid | 56.0 | 54.6 | 52.3 | 54.3 | 52.8 | 53.1 | 55.7 | 0.74 | 0.5741 | 0.4877 | 0.3710 |
Propionic acid | 18.1 | 19.2 | 20.0 | 19.6 | 20.1 | 20.7 | 21.2 | 0.50 | 0.4622 | 0.1262 | 0.0952 |
i-butyric acid | 2.03 | 2.17 | 1.85 | 1.72 | 1.64 | 1.51 | 2.12 | 0.09 | 0.6649 | 0.3000 | 0.0437 |
n-butyric acid | 13.8 | 12.6 | 14.1 | 13.2 | 15.8 | 14.4 | 10.8 | 0.75 | 0.4999 | 0.5930 | 0.2236 |
i-valeric acid | 3.49 | 3.80 | 3.41 | 3.32 | 2.77 | 2.54 | 3.37 | 0.17 | 0.7996 | 0.2667 | 0.0951 |
n-valeric acid | 6.56 | 7.69 | 8.35 | 7.78 | 6.84 | 7.73 | 6.79 | 0.25 | 0.2201 | 0.3167 | 0.3259 |
w/o | Sunflower Oil | Fish Oil | Lard | SEM | p Value for the Overall Treatment | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.5 g | 1.0 g | 0.5 g | 1.0 g | 0.5 g | 1.0 g | Sunflower Oil | Fish Oil | Lard | |||
n = 9 | n = 10 | n = 10 | n = 10 | n = 10 | n = 9 | n = 8 | |||||
µmol/g | |||||||||||
Putrescine | 6.58 | 5.86 | 6.02 | 6.31 | 7.03 | 5.09 | 7.40 | 0.63 | 0.9210 | 0.9069 | 0.3303 |
Histamine | 0.61 | 0.75 | 0.70 | 1.03 | 0.86 | 0.63 | 0.99 | 0.08 | 0.8554 | 0.4619 | 0.1909 |
Cadaverine | 18.6 | 20.0 | 19.7 | 19.4 | 20.8 | 15.6 | 19.8 | 1.23 | 0.3662 | 0.6178 | 0.4321 |
Spermidine | 0.72 | 0.71 | 0.65 | 0.66 | 0.67 | 0.65 | 0.75 | 0.03 | 0.8433 | 0.7451 | 0.6383 |
Tyramine | 0.23 | 0.19 | 0.26 | 0.35 | 0.28 | 0.12 | 0.24 | 0.05 | 0.2044 | 0.7436 | 0.0659 |
Spermine | 0.06 | 0.04 | 0.04 | 0.05 | 0.05 | 0.04 | 0.05 | 0.00 | 0.3040 | 0.7056 | 0.1370 |
Total biogenic amines | 26.8 | 27.5 | 27.4 | 27.8 | 29.7 | 22.1 | 29.2 | 1.77 | 0.6904 | 0.5416 | 0.3770 |
w/o | Sunflower Oil | Fish Oil | Lard | SEM | p Value for the Overall Treatment | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.5 g | 1.0 g | 0.5 g | 1.0 g | 0.5 g | 1.0 g | Sunflower Oil | Fish Oil | Lard | |||
n = 9 | n = 10 | n = 10 | n = 10 | n = 10 | n = 9 | n = 8 | |||||
Richness | 112 | 112 | 109 | 113 | 111 | 110 | 120 | 2.49 | 0.8733 | 0.9515 | 0.3574 |
Shannon Index | 3.27 | 3.30 | 3.29 | 3.37 | 3.32 | 3.30 | 3.50 | 0.07 | 0.9460 | 0.8205 | 0.3555 |
Evenness | 0.69 | 0.70 | 0.70 | 0.71 | 0.70 | 0.70 | 0.73 | 0.01 | 0.8776 | 0.7896 | 0.4088 |
w/o | Sunflower Oil | Fish Oil | Lard | SEM | p Value for the Overall Treatment | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.5 g | 1.0 g | 0.5 g | 1.0 g | 0.5 g | 1.0 g | Sunflower Oil | Fish Oil | Lard | |||
Actinobacteria | 39.5 (n = 9) | 37.3 (n = 10) | 40.0 (n = 10) | 36.7 (n = 10) | 39.7 (n = 10) | 40.5 (n = 9) | 36.2 (n = 8) | 2.31 | 0.8099 | 0.3135 | 0.5409 |
Bacteroidetes | 13.0 (n = 9) | 15.4 (n = 10) | 13.8 (n = 10) | 14.3 (n = 10) | 14.9 (n = 10) | 13.1 (n = 8) | 13.3 (n = 8) | 1.27 | 0.8979 | 0.8116 | 0.9566 |
Epsilonbacteraeota | 0.09 (n = 6) | 0.07 (n = 6) | 0.15 (n = 5) | 0.10 (n = 8) | 0.09 (n = 6) | 0.07 (n = 5) | 0.11 (n = 7) | 0.01 | * | * | 0.1810 |
Firmicutes | 46.5 (n = 9) | 44.9 (n = 10) | 44.8 (n = 10) | 46.7 (n = 10) | 42.7 (n = 10) | 46.2 (n = 9) | 49.2 (n = 8) | 2.09 | 0.9987 | 0.5379 | 0.4870 |
Fusobacteria | 0.31 (n = 6) | 0.31 (n = 4) | 0.15 (n = 3) | 0.19 (n = 5) | 0.66 (n = 5) | 0.30 (n = 3) | 0.11 (n = 6) | 0.09 | * | * | * |
Proteobacteria | 0.89 (n = 7) | 2.07 (n = 10) | 1.18 (n = 10) | 2.42 (n = 9) | 2.45 (n = 9) | 1.66 (n = 8) | 1.04 (n = 8) | 0.38 | 0.6205 | 0.2217 | 0.6617 |
w/o | Sunflower Oil | Fish Oil | Lard | SEM | p Value for the Overall Treatment | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.5 g | 1.0 g | 0.5 g | 1.0 g | 0.5 g | 1.0 g | Sunflower Oil | Fish Oil | Lard | |||
Alloprevotella | 2.12 (n = 7) | 0.65 (n = 10) | 0.63 (n = 9) | 0.82 (n = 8) | 1.83 (n = 9) | 1.47 (n = 8) | 1.55 (n = 7) | 0.22 | 0.3876 | 0.3759 | 0.8157 |
Anaerobiospirillum | 0.21 (n = 6) | 0.22 (n = 8) | 0.20 (n = 5) | 0.16 (n = 8) | 1.71 (n = 6) | 0.46 (n = 6) | 0.13 (n = 8) | 0.19 | * | * | 0.3415 |
Bacteroides | 2.32 (n = 7) | 1.07 (n = 9) | 2.57 (n = 7) | 1.57 (n = 8) | 1.06 (n = 10) | 1.04 (n = 8) | 1.14 (n = 7) | 0.23 | 0.1658 | 0.4853 | 0.6377 |
Bifidobacterium | 20.3 (n = 9) | 22.1 (n = 10) | 21.1 (n = 10) | 17.2 (n = 10) | 23.0 (n = 10) | 22.4 (n = 9) | 17.2 (n = 8) | 1.95 | 0.9863 | 0.2322 | 0.2298 |
Blautia | 11.8 (n = 9) | 9.75 (n = 10) | 10.2 (n = 10) | 11.3 (n = 10) | 9.37 (n = 10) | 10.3 (n = 9) | 11.7 (n = 8) | 0.77 | 0.4971 | 0.3867 | 0.3822 |
Catenibacterium | 3.71 (n = 9) | 4.31 (n = 10) | 5.92 (n = 10) | 7.13 (n = 9) | 2.97 (n = 10) | 6.24 (n = 9) | 6.97 (n = 8) | 1.11 | 0.0734 | 0.4288 | 0.2163 |
Catenisphaera | 0.60 (n = 8) | 1.25 (n = 9) | 0.26 (n = 10) | 0.13 (n = 7) | 0.28 (n = 8) | 0.10 (n = 9) | 0.39 (n = 6) | 0.18 | 0.6360 | 0.2446 | 0.2450 |
Collinsella | 18.2 (n = 9) | 14.4 (n = 10) | 17.9 (n = 10) | 18.6 (n = 10) | 15.9 (n = 10) | 17.2 (n = 9) | 18.3 (n = 8) | 1.02 | 0.1793 | 0.6083 | 0.6267 |
Faecalibacterium | 0.60 (n = 8) | 0.52 (n = 8) | 0.41 (n = 9) | 0.44 (n = 10) | 0.48 (n = 10) | 0.29 (n = 6) | 0.26 (n = 8) | 0.07 | 0.5796 | 0.5601 | 0.4189 |
Helicobacter | 0.08 (n = 6) | 0.07 (n = 6) | 0.15 (n = 5) | 0.09 (n = 8) | 0.09 (n = 6) | 0.06 (n = 5) | 0.10 (n = 7) | 0.01 | * | * | 0.1160 |
Holdemanella | 6.86 (n = 9) | 5.56 (n = 10) | 7.28 (n = 10) | 6.35 (n = 10) | 5.21 (n = 10) | 7.14 (n = 9) | 4.29 (n = 8) | 0.87 | 0.3157 | 0.5714 | 0.3187 |
Lachnoclostridium | 2.90 (n = 9) | 2.55 (n = 10) | 2.58 (n = 10) | 2.40 (n = 10) | 2.71 (n = 10) | 2.28 (n = 9) | 3.00 (n = 8) | 0.20 | 0.4613 | 0.2644 | 0.2619 |
Lachnospiraceae NK4A136 group | 0.22 (n = 7) | 0.14 (n = 8) | 0.14 (n = 5) | 0.16 (n = 8) | 0.21 (n = 10) | 0.18 (n = 8) | 0.15 (n = 8) | 0.02 | * | 0.6150 | 0.8127 |
Libanicoccus | 0.27 (n = 8) | 0.20 (n = 8) | 0.30 (n = 9) | 0.28 (n = 10) | 0.38 (n = 8) | 0.24 (n = 8) | 0.22 (n = 8) | 0.03 | 0.1505 | 0.3261 | 0.8177 |
Megasphaera | 3.99 (n = 7) | 4.83 (n = 9) | 3.52 (n = 9) | 3.79 (n = 10) | 5.50 (n = 9) | 4.57 (n = 9) | 4.12 (n = 8) | 0.49 | 0.2721 | 0.4440 | 0.8564 |
Negativibacillus | 0.70 (n = 9) | 0.68 (n = 10) | 0.65 (n = 10) | 0.70 (n = 10) | 0.74 (n = 10) | 0.74 (n = 8) | 0.82 (n = 8) | 0.06 | 0.9934 | 0.9247 | 0.1571 |
Parabacteroides | 0.18 (n = 6) | 0.13 (n = 7) | 0.11 (n = 7) | 0.10 (n = 4) | 0.12 (n = 7) | 0.06 (n = 6) | 0.07 (n = 7) | 0.02 | * | * | 0.4080 |
Peptoclostridium | 3.77 (n = 9) | 4.04 (n = 10) | 3.99 (n = 10) | 4.22 (n = 10) | 2.97 (n = 10) | 3.43 (n = 9) | 4.78 (n = 8) | 0.32 | 0.9831 | 0.1320 | 0.0887 |
Peptococcus | 0.34 (n = 9) | 0.25 (n = 10) | 0.27 (n = 10) | 0.33 (n = 10) | 0.26 (n = 10) | 0.28 (n = 9) | 0.31 (n = 8) | 0.04 | 0.2825 | 0.7653 | 0.7575 |
Prevotella 9 | 9.33 (n = 9) | 13.6 (n = 10) | 11.2 (n = 10) | 13.6 (n = 9) | 12.0 (n = 10) | 10.4 (n = 8) | 10.8 (n = 8) | 1.20 | 0.7030 | 0.6922 | 0.9414 |
Ruminiclostridium 9 | 0.09 (n = 7) | 0.14 (n = 7) | 0.12 (n = 7) | 0.17 (n = 7) | 0.10 (n = 9) | 0.09 (n = 6) | 0.09 (n = 6) | 0.01 | 0.0558 | 0.1771 | * |
Ruminococcaceae UCG-004 | 0.10 (n = 7) | 0.11 (n = 7) | 0.13 (n = 7) | 0.10 (n = 6) | 0.10 (n = 7) | 0.08 (n = 7) | 0.16 (n = 4) | 0.01 | 0.5216 | * | 0.1034 |
Sellimonas | 0.77 (n = 9) | 0.70 (n = 10) | 0.73 (n = 10) | 0.83 (n = 10) | 0.78 (n = 10) | 0.81 (n = 9) | 0.62 (n = 8) | 0.05 | 0.5188 | 0.9174 | 0.4700 |
Slackia | 0.14 (n = 9) | 0.15 (n = 9) | 0.19 (n = 8) | 0.12 (n = 10) | 0.12 (n = 10) | 0.10 (n = 8) | 0.15 (n = 7) | 0.01 | 0.4383 | 0.6975 | 0.0994 |
Solobacterium | 1.37 (n = 9) | 1.81 (n = 10) | 1.16 (n = 10) | 1.46 (n = 10) | 1.44 (n = 10) | 1.24 (n = 9) | 0.94 (n = 8) | 0.16 | 0.3693 | 0.9485 | 0.0470 |
Subdoligranulum | 2.95 (n = 9) | 3.52 (n = 10) | 1.95 (n = 10) | 2.52 (n = 10) | 3.04 (n = 10) | 2.62 (n = 9) | 3.65 (n = 7) | 0.34 | 0.1791 | 0.8736 | 0.7029 |
unknown (Family Atopobiaceae) | 0.12 (n = 6) | 0.09 (n = 6) | 0.11 (n = 8) | 0.08 (n = 7) | 0.09 (n = 7) | 0.11 (n = 7) | 0.12 (n = 5) | 0.01 | * | * | 0.3230 |
unknown (Family Bifidobacteriaceae) | 0.20 (n = 7) | 0.19 (n = 9) | 0.23 (n = 9) | 0.18 (n = 8) | 0.24 (n = 8) | 0.25 (n = 8) | 0.21 (n = 5) | 0.02 | 0.4716 | 0.1101 | 0.0045 |
unknown (Family Eggerthellaceae) | 0.22 (n = 9) | 0.25 (n = 9) | 0.24 (n = 9) | 0.20 (n = 10) | 0.20 (n = 9) | 0.18 (n = 9) | 0.17 (n = 8) | 0.02 | 0.7036 | 0.9194 | 0.4209 |
unknown (Family Erysipelotrichaceae) | 0.15 (n = 8) | 0.16 (n = 6) | 0.19 (n = 7) | 0.20 (n = 7) | 0.11 (n = 8) | 0.20 (n = 7) | 0.14 (n = 7) | 0.02 | 0.0844 | 0.7029 | 0.9985 |
unknown (Family Family XIII) | 0.43 (n = 7) | 0.32 (n = 9) | 0.27 (n = 7) | 0.20 (n = 8) | 0.17 (n = 7) | 0.16 (n = 7) | 0.39 (n = 5) | 0.04 | 0.4242 | 0.0169 | 0.2041 |
unknown (Family Lachnospiraceae) | 3.59 (n = 9) | 2.85 (n = 10) | 2.97 (n = 10) | 2.82 (n = 10) | 2.75 (n = 10) | 2.77 (n = 9) | 3.40 (n = 8) | 0.24 | 0.1716 | 0.3801 | 0.4599 |
unknown (Family Ruminococcaceae) | 0.07 (n = 6) | 0.10 (n = 5) | 0.09 (n = 7) | 0.09 (n = 7) | 0.04 (n = 3) | 0.05 (n = 7) | 0.07 (n = 7) | 0.01 | * | * | 0.5895 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paßlack, N.; Büttner, K.; Vahjen, W.; Zentek, J. Impact of the Dietary Fat Concentration and Source on the Fecal Microbiota of Healthy Adult Cats. Metabolites 2025, 15, 215. https://doi.org/10.3390/metabo15040215
Paßlack N, Büttner K, Vahjen W, Zentek J. Impact of the Dietary Fat Concentration and Source on the Fecal Microbiota of Healthy Adult Cats. Metabolites. 2025; 15(4):215. https://doi.org/10.3390/metabo15040215
Chicago/Turabian StylePaßlack, Nadine, Kathrin Büttner, Wilfried Vahjen, and Jürgen Zentek. 2025. "Impact of the Dietary Fat Concentration and Source on the Fecal Microbiota of Healthy Adult Cats" Metabolites 15, no. 4: 215. https://doi.org/10.3390/metabo15040215
APA StylePaßlack, N., Büttner, K., Vahjen, W., & Zentek, J. (2025). Impact of the Dietary Fat Concentration and Source on the Fecal Microbiota of Healthy Adult Cats. Metabolites, 15(4), 215. https://doi.org/10.3390/metabo15040215