Osmolytes vs. Anabolic Reserves: Contrasting Gonadal Metabolomes in Two Sympatric Mediterranean Sea Urchins
Abstract
1. Introduction
2. Experimental Design and Procedure
2.1. Sample Collection
2.2. Tissue Preparation
2.3. Chemicals
2.4. HR-MAS NMR Spectroscopy
2.5. Data Processing and Statistical Analysis
2.6. Pathway Enrichment and Topology Analysis
2.7. Ethical Considerations
3. Results
3.1. HR-MAS Spectral Analysis
3.2. PLS-LDA Model
3.3. SPA Variable Selection
3.4. Selected Metabolites and Boxplots
3.5. Pathway Analysis of Discriminatory Metabolites
4. Discussion
4.1. Core Metabolic Contrasts
4.2. Secondary Metabolites and Microbial Mediation
4.3. Integrative Ecological and Evolutionary Context
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonaviri, C.; Vega Fernández, T.; Fanelli, G.; Badalamenti, F.; Gianguzza, P. Leading role of the sea urchin Arbacia lixula in maintaining the barren state in southwestern mediterranean. Mar. Biol. 2011, 158, 2505–2513. [Google Scholar] [CrossRef]
- Wangensteen, O.S.; Turon, X.; García-Cisneros, A.; Recasens, M.; Romero, J.; Palacín, C. A wolf in sheep’s clothing: Carnivory in dominant sea urchins in the mediterranean. Mar. Ecol. Prog. Ser. 2011, 441, 117–128. [Google Scholar] [CrossRef]
- Rocha, F.; Rocha, A.C.; Baião, L.F.; Gadelha, J.; Camacho, C.; Carvalho, M.L.; Arenas, F.; Oliveira, A.; Maia, M.R.G.; Cabrita, A.R. Seasonal effect in nutritional quality and safety of the wild sea urchin Paracentrotus lividus harvested in the european atlantic shores. Food Chem. 2019, 282, 84–94. [Google Scholar] [CrossRef]
- Montero-Torreiro, M.F.; Garcia-Martinez, P. Seasonal changes in the biochemical composition of body components of the sea urchin, Paracentrotus lividus, in lorbé (galicia, north-western spain). J. Mar. Biol. Assoc. United Kingd. 2003, 83, 575–581. [Google Scholar] [CrossRef]
- Arafa, S.; Chouaibi, M.; Sadok, S.; El Abed, A. The influence of season on the gonad index and biochemical composition of the sea urchin Paracentrotus lividus from the golf of tunis. Sci. World J. 2012, 2012, 815935. [Google Scholar] [CrossRef]
- Ouréns, R.; Fernández, L.; Freire, J. Geographic, population, and seasonal patterns in the reproductive parameters of the sea urchin Paracentrotus lividus. Mar. Biol. 2011, 158, 793–804. [Google Scholar] [CrossRef]
- Foo, S.A.; Munari, M.; Gambi, M.C.; Byrne, M. Acclimation to low ph does not affect the thermal tolerance of Arbacia lixula progeny. Biol. Lett. 2022, 18, 20220087. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Vilert, R.; Arranz, V.; Martín-Huete, M.; Hernández, J.C.; González-Delgado, S.; Pérez-Portela, R. Effect of ocean acidification on the oxygen consumption of the sea urchins Paracentrotus lividus (lamarck, 1816) and Arbacia lixula (linnaeus, 1758) living in co2 natural gradients. Front. Mar. Sci. 2025, 12, 1500646. [Google Scholar] [CrossRef]
- Gianguzza, P.; Visconti, G.; Gianguzza, F.; Vizzini, S.; Sarà, G.; Dupont, S. Temperature modulates the response of the thermophilous sea urchin Arbacia lixula early life stages to co2-driven acidification. Mar. Environ. Res. 2014, 93, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Portela, R.; Leiva, C. Sex-specific transcriptomic differences in the immune cells of a key atlantic-mediterranean sea urchin. Front. Mar. Sci. 2022, 9, 908387. [Google Scholar] [CrossRef]
- Luparello, C.; Ragona, D.; Asaro, D.M.L.; Lazzara, V.; Affranchi, F.; Arizza, V.; Vazzana, M. Cell-free coelomic fluid extracts of the sea urchin Arbacia lixula impair mitochondrial potential and cell cycle distribution and stimulate reactive oxygen species production and autophagic activity in triple-negative mda-mb231 breast cancer cells. J. Mar. Sci. Eng. 2020, 8, 261. [Google Scholar] [CrossRef]
- Pei, J.; Zhou, Y.; Chen, S.; Yu, K.; Qin, Z.; Zhang, R.; Wang, Y. Chemical diversity of scleractinian corals revealed by untargeted metabolomics and molecular networking. Acta. Oceanol. Sin. 2023, 42, 127–135. [Google Scholar] [CrossRef]
- Pei, J.; Chen, S.; Yu, K.; Hu, J.; Wang, Y.; Zhang, J.; Qin, Z.; Zhang, R.; Kuo, T.-H.; Chung, H.-H.; et al. Metabolomics Characterization of Scleractinia Corals with Different Life-History Strategies: A Case Study about Pocillopora meandrina and Seriatopora hystrix in the South China Sea. Metabolites 2022, 12, 1079. [Google Scholar] [CrossRef] [PubMed]
- Bundy, J.G.; Davey, M.P.; Viant, M.R. Environmental metabolomics: A critical review and future perspectives. Metabolomics 2009, 5, 3–21. [Google Scholar] [CrossRef]
- Bayona, L.M.; de Voogd, N.J.; Choi, Y.H. Metabolomics on the study of marine organisms. Metabolomics 2022, 18, 17. [Google Scholar] [CrossRef]
- Beckonert, O.; Coen, M.; Keun, H.C.; Wang, Y.; Ebbels, T.M.D.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. High-resolution magic-angle-spinning nmr spectroscopy for metabolic profiling of intact tissues. Nat. Protoc. 2010, 5, 1019–1032. [Google Scholar] [CrossRef]
- Villa, P.; Castejon, D.; Herraiz, M.; Herrera, A. H-1-hrmas nmr study of cold smoked atlantic salmon salmo salar) treated with e-beam. Magn. Reson. Chem. 2013, 51, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Castejón, D.; Villa, P.; Calvo, M.M.; Santa-María, G.; Herraiz, M.; Herrera, A. 1h-hrmas nmr study of smoked atlantic salmon (salmo salar). Magn. Reson. Chem. 2010, 48, 693–703. [Google Scholar] [CrossRef]
- Aru, V. Application of nmr-Based Metabolomics Techniques to Biological Systems: A Case Study on Bivalves. PhD Thesis. 2016. Available online: https://hdl.handle.net/11584/266762 (accessed on 7 December 2025).
- Lardon, I.; Eyckmans, M.; Vu, T.; Laukens, K.; De Boeck, G.; Dommisse, R. H-1-nmr study of the metabolome of a moderately hypoxia-tolerant fish, the common carp (Cyprinus carpio). Metabolomics 2013, 9, 1216–1227. [Google Scholar] [CrossRef]
- Rocha, F.; Peres, H.; Diogo, P.; Ozório, R.; Valente, L.M.P. The effect of sex, season and gametogenic cycle on gonad yield, biochemical composition and quality traits of Paracentrotus lividus along the north atlantic coast of portugal. Sci. Rep. 2019, 9, 2994. [Google Scholar] [CrossRef]
- Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta. 2009, 648, 77–84. Available online: http://www.ncbi.nlm.nih.gov/pubmed/19616692 (accessed on 7 December 2025). [CrossRef]
- Wang, Q.; Li, H.-D.; Xu, Q.-S.; Liang, Y.-Z. Noise incorporated subwindow permutation analysis for informative gene selection using support vector machines. Analyst 2011, 136, 1456–1463. [Google Scholar] [CrossRef]
- Yun, Y.H.; Liang, F.; Deng, B.C.; Lai, G.B.; Goncalves, C.M.V.; Lu, H.M.; Yan, J.; Huang, X.; Yi, L.Z.; Liang, Y.Z. Informative metabolites identification by variable importance analysis based on random variable combination. Metabolomics 2015, 11, 1539–1551. [Google Scholar] [CrossRef]
- Martinez, I.; Standal, I.; Axelson, D.; Finstad, B.; Aursand, M. Identification of the farm origin of salmon by fatty acid and hr c-13 nmr profiling. Food Chem. 2009, 116, 766–773. [Google Scholar] [CrossRef]
- Lindon, J.; Nicholson, J.; Holmes, E. Hr-mas nmr spectroscopy for metabolomics and lipidomics: Applications in fisheries science. Molecules 2021, 26, 931. [Google Scholar] [CrossRef]
- Heude, C.; Lemasson, E.; Elbayed, K.; Piotto, M. Rapid assessment of fish freshness and quality by h-1 hr-mas nmr spectroscopy. Food Anal. Methods 2015, 8, 907–915. [Google Scholar] [CrossRef]
- Huxtable, R.J. Physiological actions of taurine. Physiol. Rev. 1992, 72, 101–163. [Google Scholar] [CrossRef] [PubMed]
- Podbielski, I.; Schmittmann, L.; Sanders, T.; Melzner, F. Acclimation of marine invertebrate osmolyte systems to low salinity: A systematic review & meta-analysis. Front. Mar. Sci. 2022, 9, 934378. [Google Scholar] [CrossRef]
- Yancey, P.H. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J. Exp. Biol. 2005, 208, 2819–2830. [Google Scholar] [CrossRef]
- Gustafson, T.; Hjelte, M.B. The amino acid metabolism of the developing sea urchin egg. Exp. Cell Res. 1951, 2, 474–491. [Google Scholar] [CrossRef]
- Martínez-Pita, I.; García, F.J.; Pita, M.-L. The effect of seasonality on gonad fatty acids of the sea urchins Paracentrotus lividus and Arbacia lixula (echinodermata: Echinoidea). J. Shellfish. Res. 2010, 29, 517–525. [Google Scholar] [CrossRef]
- Benevenga, N.J.; Blemings, K.P. Unique aspects of lysine nutrition and metabolism. J. Nutr. 2007, 137, 1610S–1615S. [Google Scholar] [CrossRef]
- Benatti, C.; Rivi, V.; Alboni, S.; Grilli, A.; Castellano, S.; Pani, L.; Brunello, N.; Blom, J.M.C.; Bicciato, S.; Tascedda, F. Identification and characterization of the kynurenine pathway in the pond snail lymnaea stagnalis. Sci. Rep. 2022, 12, 15617. [Google Scholar] [CrossRef]
- Huang, Z.; Aweya, J.J.; Zhu, C.; Tran, N.T.; Hong, Y.; Li, S.; Yao, D.; Zhang, Y. Modulation of crustacean innate immune response by amino acids and their metabolites: Inferences from other species. Front. Immunol. 2020, 11, 574721. [Google Scholar] [CrossRef] [PubMed]
- Jamshed, L.; Debnath, A.; Jamshed, S.; Wish, J.V.; Raine, J.C.; Tomy, G.T.; Thomas, P.J.; Holloway, A.C. An emerging cross-species marker for organismal health: Tryptophan-kynurenine pathway. Int. J. Mol. Sci. 2022, 23, 6300. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Y.; Wang, W.; Dong, X.; Liu, Y. Diverse physiological roles of kynurenine pathway metabolites: Updated implications for health and disease. Metabolites 2025, 15, 210. [Google Scholar] [CrossRef]
- Feng, Y.; Bowden, B.F.; Kapoor, V. Screening marine natural products for selective inhibitors of key kynurenine pathway enzymes. Redox Rep. 2000, 5, 95–97. [Google Scholar] [CrossRef]
- Sun, J.; Mausz, M.A.; Chen, Y.; Giovannoni, S.J. Microbial trimethylamine metabolism in marine environments. Environ. Microbiol. 2019, 21, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S. Malonate metabolism: Biochemistry, molecular biology, physiology, and industrial application. J. Biochem. Mol. Biol. 2002, 35, 443–451. [Google Scholar] [CrossRef]
- Forny, P.; Bonilla, X.; Lamparter, D.; Shao, W.; Plessl, T.; Frei, C.; Bingisser, A.; Goetze, S.; van Drogen, A.; Harshman, K. Integrated multi-omics reveals anaplerotic rewiring in methylmalonyl-coa mutase deficiency. Nat. Metab. 2023, 5, 80–95. [Google Scholar] [CrossRef]
- Torres, J.P.; Lin, Z.; Winter, J.M.; Krug, P.J.; Schmidt, E.W. Animal biosynthesis of complex polyketides in a photosynthetic partnership. Nat. Commun. 2020, 11, 2882. [Google Scholar] [CrossRef]
- Lee, M.-C.; Park, J.C.; Lee, J.-S. Effects of environmental stressors on lipid metabolism in aquatic invertebrates. Aquat. Toxicol. 2018, 200, 83–92. [Google Scholar] [CrossRef]
- Ghonimy, A.; Greco, L.S.L.; Li, J.; Wade, N.M. An hypothesis on crustacean pigmentation metabolism: L-carnitine and nuclear hormone receptors as limiting factors. Crustaceana 2023, 96, 939–956. [Google Scholar] [CrossRef]
- Ellington, W.R. Evolution and physiological roles of phosphagen systems. Annu. Rev. Physiol. 2001, 63, 289–325. [Google Scholar] [CrossRef] [PubMed]
- Haider, F.; Falfushynska, H.I.; Timm, S.; Sokolova, I.M. Effects of hypoxia and reoxygenation on intermediary metabolite homeostasis of marine bivalves mytilus edulis and crassostrea gigas. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2020, 242, 110657. [Google Scholar] [CrossRef]
- Berg, G.M.; Jørgensen, N.O.G. Purine and pyrimidine metabolism by estuarine bacteria. Aquat. Microb. Ecol. 2006, 42, 215–226. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhuang, G.C.; Mao, S.H.; Liu, J.; Li, X.J.; Liu, Q.; Song, G.D.; Zhang, H.H.; Chen, Z.; Montgomery, A. Methanol concentrations and biological methanol consumption in the northwest pacific ocean. Geophys. Res. Lett. 2023, 50, e2022GL101605. [Google Scholar] [CrossRef]
- Esposito, R.; Federico, S.; Glaviano, F.; Somma, E.; Zupo, V.; Costantini, M. Bioactive compounds from marine sponges and algae: Effects on cancer cell metabolome and chemical structures. Int. J. Mol. Sci. 2022, 23, 10680. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Wei, J.; Hu, Y.; Pi, D.; Jiang, M.; Lang, T. Caffeine synthesis and its mechanism and application by microbial degradation, a review. Foods 2023, 12, 2721. [Google Scholar] [CrossRef] [PubMed]
- Pinna, S.; Pais, A.; Campus, P.; Sechi, N.; Ceccherelli, G. Habitat preferences of the sea urchin Paracentrotus lividus. Mar. Ecol. Prog. Ser. 2012, 445, 173–180. [Google Scholar] [CrossRef]
- Pérez-Portela, R.; Wangensteen, O.S.; Garcia-Cisneros, A.; Valero-Jiménez, C.; Palacín, C.; Turon, X. Spatio-temporal patterns of genetic variation in Arbacia lixula, a thermophilous sea urchin in expansion in the mediterranean. Heredity 2019, 122, 244–259. [Google Scholar] [CrossRef]
- Arranz, V.; Schmütsch-Molina, L.; Fernandez Vilert, R.; Hernández, J.C.; Pérez-Portela, R. Sea urchin holobionts: Microbiome variation across species, compartments and locations in Paracentrotus lividus and Arbacia lixula. Front. Mar. Sci. 2025, 12, 1615711. [Google Scholar] [CrossRef]
- Rodríguez-Barreras, R.; Dominicci-Maura, A.; Tosado-Rodríguez, E.L.; Godoy-Vitorino, F. The epibiotic microbiota of wild caribbean sea urchin spines is species specific. Microorganisms 2023, 11, 391. [Google Scholar] [CrossRef]
- Baldassarre, L.; Ying, H.; Reitzel, A.; Fraune, S. Microbiota mediated plasticity promotes thermal adaptation in nematostella vectensis. bioRxiv 2021, 2021-10. [Google Scholar] [CrossRef] [PubMed]
- Lessios, H.A.; Lockhart, S.; Collin, R.; Sotil, G.; Sanchez-Jerez, P.; Zigler, K.S.; Perez, A.F.; Garrido, M.J.; Geyer, L.B.; Bernardi, G. Phylogeography and bindin evolution in arbacia, a sea urchin genus with an unusual distribution. Mol. Ecol. 2012, 21, 130–144. [Google Scholar] [CrossRef] [PubMed]
- De Giorgi, C.; Lanave, C.; Musci, M.D.; Saccone, C. Mitochondrial dna in the sea urchin Arbacia lixula: Evolutionary inferences from nucleotide sequence analysis. Mol. Biol. Evol. 1991, 8, 515–529. [Google Scholar] [PubMed][Green Version]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbonell-Garzón, E.; Ibanco-Cañete, R.; Sanchez-Jerez, P.; Egea, F.C.M. Osmolytes vs. Anabolic Reserves: Contrasting Gonadal Metabolomes in Two Sympatric Mediterranean Sea Urchins. Metabolites 2025, 15, 787. https://doi.org/10.3390/metabo15120787
Carbonell-Garzón E, Ibanco-Cañete R, Sanchez-Jerez P, Egea FCM. Osmolytes vs. Anabolic Reserves: Contrasting Gonadal Metabolomes in Two Sympatric Mediterranean Sea Urchins. Metabolites. 2025; 15(12):787. https://doi.org/10.3390/metabo15120787
Chicago/Turabian StyleCarbonell-Garzón, Estela, Ricardo Ibanco-Cañete, Pablo Sanchez-Jerez, and Frutos C. Marhuenda Egea. 2025. "Osmolytes vs. Anabolic Reserves: Contrasting Gonadal Metabolomes in Two Sympatric Mediterranean Sea Urchins" Metabolites 15, no. 12: 787. https://doi.org/10.3390/metabo15120787
APA StyleCarbonell-Garzón, E., Ibanco-Cañete, R., Sanchez-Jerez, P., & Egea, F. C. M. (2025). Osmolytes vs. Anabolic Reserves: Contrasting Gonadal Metabolomes in Two Sympatric Mediterranean Sea Urchins. Metabolites, 15(12), 787. https://doi.org/10.3390/metabo15120787

