New Frontier in Cancer Immunotherapy: Sexual Dimorphism of Immune Response
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Epidemiologic Data
4.2. Mechanistic Studies
4.2.1. Immune Development

4.2.2. Sensitivity to Treatment
4.2.3. Risk of Metastasis and Recurrence
4.3. Metabolomic Biomarkers in Sex-Specific Immunotherapy Response
4.4. Ongoing Clinical Trials
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hiam-Galvez, K.J.; Allen, B.M.; Spitzer, M.H. Systemic immunity in cancer. Nat. Rev. Cancer 2021, 21, 345–359. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, H.; Hagerling, C.; Werb, Z. Roles of the immune system in cancer: From tumor initiation to metastatic progression. Genes Dev. 2018, 32, 1267–1284. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.L.; Flanagan, K.L. Sex differences in immune responses. Nat. Rev. Immunol. 2016, 16, 626–638. [Google Scholar] [CrossRef] [PubMed]
- Davey, R.A.; Grossmann, M. Androgen Receptor Structure, Function and Biology: From Bench to Bedside. Clin. Biochem. Rev. 2016, 37, 3–15. [Google Scholar]
- Gubbels Bupp, M.R.; Jorgensen, T.N. Androgen-Induced Immunosuppression. Front. Immunol. 2018, 9, 794. [Google Scholar] [CrossRef]
- Fearon, K.C. Cancer cachexia: Developing multimodal therapy for a multidimensional problem. Eur. J. Cancer 2008, 44, 1124–1132. [Google Scholar] [CrossRef]
- Dev, R.; Bruera, E.; Del Fabbro, E. When and when not to use testosterone for palliation in cancer care. Curr. Oncol. Rep. 2014, 16, 378. [Google Scholar] [CrossRef]
- Burney, B.O.; Hayes, T.G.; Smiechowska, J.; Cardwell, G.; Papusha, V.; Bhargava, P.; Konda, B.; Auchus, R.J.; Garcia, J.M. Low testosterone levels and increased inflammatory markers in patients with cancer and relationship with cachexia. J. Clin. Endocrinol. Metab. 2012, 97, E700–E709. [Google Scholar] [CrossRef]
- Wright, T.J.; Dillon, E.L.; Durham, W.J.; Chamberlain, A.; Randolph, K.M.; Danesi, C.; Horstman, A.M.; Gilkison, C.R.; Willis, M.; Richardson, G.; et al. A randomized trial of adjunct testosterone for cancer-related muscle loss in men and women. J. Cachexia Sarcopenia Muscle 2018, 9, 482–496. [Google Scholar] [CrossRef]
- Izumi, K.; Iwamoto, H.; Yaegashi, H.; Nohara, T.; Shigehara, K.; Kadono, Y.; Nanjo, S.; Yamada, T.; Ohtsubo, K.; Yano, S.; et al. Androgen replacement therapy for cancer-related symptoms in male: Result of prospective randomized trial (ARTFORM study). J. Cachexia Sarcopenia Muscle 2021, 12, 831–842. [Google Scholar] [CrossRef]
- Rubtsova, K.; Marrack, P.; Rubtsov, A.V. Sexual dimorphism in autoimmunity. J. Clin. Investig. 2015, 125, 2187–2193. [Google Scholar] [CrossRef]
- Wang, S.; Cowley, L.A.; Liu, X.S. Sex Differences in Cancer Immunotherapy Efficacy, Biomarkers, and Therapeutic Strategy. Molecules 2019, 24, 3214. [Google Scholar] [CrossRef]
- Fischinger, S.; Boudreau, C.M.; Butler, A.L.; Streeck, H.; Alter, G. Sex differences in vaccine-induced humoral immunity. Semin. Immunopathol. 2019, 41, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Manuel, R.S.J.; Liang, Y. Sexual dimorphism in immunometabolism and autoimmunity: Impact on personalized medicine. Autoimmun. Rev. 2021, 20, 102775. [Google Scholar] [CrossRef] [PubMed]
- Soloff, A.C.; Udoh, H.M.; Bardawil, C.E.; Zhao, X.; Stabile, L.P. Sexual Dimorphism in Immunity and Metabolism: Unraveling the Impact on Response to Cancer Immunotherapy. J. Cancer Immunol. 2024, 7, 30–38. [Google Scholar] [CrossRef]
- Lee, G.H.; Lee, H.Y.; Zhao, L.; Rashid, M.M.U.; Kim, M.K.; Jeong, Y.B.; Chae, H.J.; Shin, Y.S. The Role of Reactive Oxygen Species, Inflammation, and Endoplasmic Reticulum Stress Response in the Finasteride Protective Effect against Benign Prostate Hyperplasia. World J. Men’s Health 2024, 42, 600–609. [Google Scholar] [CrossRef]
- Kim, J.W.; Kim, H.A.; Suh, C.H.; Jung, J.Y. Sex hormones affect the pathogenesis and clinical characteristics of systemic lupus erythematosus. Front. Med. 2022, 9, 906475. [Google Scholar] [CrossRef]
- Huldani, H.; Malviya, J.; Rodrigues, P.; Hjazi, A.; Deorari, M.M.; Al-Hetty, H.; Qasim, Q.A.; Alasheqi, M.Q.; Ihsan, A. Discovering the strength of immunometabolism in cancer therapy: Employing metabolic pathways to enhance immune responses. Cell Biochem. Funct. 2024, 42, e3934. [Google Scholar] [CrossRef]
- Ganjoo, S.; Gupta, P.; Corbali, H.I.; Nanez, S.; Riad, T.S.; Duong, L.K.; Barsoumian, H.B.; Masrorpour, F.; Jiang, H.; Welsh, J.W.; et al. The role of tumor metabolism in modulating T-Cell activity and in optimizing immunotherapy. Front. Immunol. 2023, 14, 1172931. [Google Scholar] [CrossRef]
- Li, X.; Wenes, M.; Romero, P.; Huang, S.C.; Fendt, S.M.; Ho, P.C. Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nat. Rev. Clin. Oncol. 2019, 16, 425–441. [Google Scholar] [CrossRef]
- Cook, M.B.; McGlynn, K.A.; Devesa, S.S.; Freedman, N.D.; Anderson, W.F. Sex disparities in cancer mortality and survival. Cancer Epidemiol. Biomark. Prev. 2011, 20, 1629–1637. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed]
- Mervic, L. Time course and pattern of metastasis of cutaneous melanoma differ between men and women. PLoS ONE 2012, 7, e32955. [Google Scholar] [CrossRef] [PubMed]
- Rampen, F. Malignant melanoma: Sex differences in survival after evidence of distant metastasis. Br. J. Cancer 1980, 42, 52–57. [Google Scholar] [CrossRef]
- Zhu, Y.; Shao, X.; Wang, X.; Liu, L.; Liang, H. Sex disparities in cancer. Cancer Lett. 2019, 466, 35–38. [Google Scholar] [CrossRef]
- Conforti, F.; Pala, L.; Bagnardi, V.; De Pas, T.; Martinetti, M.; Viale, G.; Gelber, R.D.; Goldhirsch, A. Cancer immunotherapy efficacy and patients’ sex: A systematic review and meta-analysis. Lancet Oncol. 2018, 19, 737–746. [Google Scholar] [CrossRef]
- Conforti, F.; Pala, L.; Pagan, E.; Corti, C.; Bagnardi, V.; Queirolo, P.; Catania, C.; De Pas, T.; Giaccone, G. Sex-based differences in response to anti-PD-1 or PD-L1 treatment in patients with non-small-cell lung cancer expressing high PD-L1 levels. A systematic review and meta-analysis of randomized clinical trials. ESMO Open 2021, 6, 100251. [Google Scholar] [CrossRef]
- Graham, J.; Abdel-Rahman, O.; Choueiri, T.K.; Heng, D.Y.C. Re: Fabio Conforti, Laura Pala, Vincenzo Bagnardi, et al. Cancer Immunotherapy Efficacy and Patients’ Sex: A Systematic Review and Meta-analysis. Lancet Oncol 2018; 19: 737–46: Outcomes of Metastatic Renal Cell Carcinoma by Gender: Contrasting Results from the International mRCC Database Consortium. Eur. Urol. 2018, 74, e139–e140. [Google Scholar] [CrossRef]
- Lai, J.; Kuang, X.; Fu, Y.; Li, J. Association between sex and efficacy of immune checkpoint inhibitors: A systematic review and meta-analysis. Immunotherapy 2024, 16, 481–495. [Google Scholar] [CrossRef]
- Suay, G.; Garcia-Cañaveras, J.C.; Aparisi, F.; Lahoz, A.; Juan-Vidal, O. Sex Differences in the Efficacy of Immune Checkpoint Inhibitors in Neoadjuvant Therapy of Non-Small Cell Lung Cancer: A Meta-Analysis. Cancers 2023, 15, 4433. [Google Scholar] [CrossRef]
- Wang, C.; Qiao, W.; Jiang, Y.; Zhu, M.; Shao, J.; Ren, P.; Liu, D.; Li, W. Effect of sex on the efficacy of patients receiving immune checkpoint inhibitors in advanced non-small cell lung cancer. Cancer Med. 2019, 8, 4023–4031. [Google Scholar] [CrossRef] [PubMed]
- Triggianese, P.; Novelli, L.; Galdiero, M.R.; Chimenti, M.S.; Conigliaro, P.; Perricone, R.; Perricone, C.; Gerli, R. Immune checkpoint inhibitors-induced autoimmunity: The impact of gender. Autoimmun. Rev. 2020, 19, 102590. [Google Scholar] [CrossRef] [PubMed]
- Wallis, C.J.D.; Butaney, M.; Satkunasivam, R.; Freedland, S.J.; Patel, S.P.; Hamid, O.; Pal, S.K.; Klaassen, Z. Association of Patient Sex With Efficacy of Immune Checkpoint Inhibitors and Overall Survival in Advanced Cancers: A Systematic Review and Meta-analysis. JAMA Oncol. 2019, 5, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Taneja, V. Sex Hormones Determine Immune Response. Front. Immunol. 2018, 9, 1931. [Google Scholar] [CrossRef] [PubMed]
- Cutolo, M.; Capellino, S.; Sulli, A.; Serioli, B.; Secchi, M.E.; Villaggio, B.; Straub, R.H. Estrogens and autoimmune diseases. Ann. N. Y. Acad. Sci. 2006, 1089, 538–547. [Google Scholar] [CrossRef]
- Grimaldi, C.M.; Jeganathan, V.; Diamond, B. Hormonal regulation of B cell development: 17 beta-estradiol impairs negative selection of high-affinity DNA-reactive B cells at more than one developmental checkpoint. J. Immunol. 2006, 176, 2703–2710. [Google Scholar] [CrossRef]
- Robeva, R.; Tanev, D.; Andonova, S.; Kirilov, G.; Savov, A.; Stoycheva, M.; Tomova, A.; Kumanov, P.; Rashkov, R.; Kolarov, Z. Androgen receptor (CAG)n polymorphism and androgen levels in women with systemic lupus erythematosus and healthy controls. Rheumatol. Int. 2013, 33, 2031–2038. [Google Scholar] [CrossRef]
- Furman, D.; Hejblum, B.P.; Simon, N.; Jojic, V.; Dekker, C.L.; Thiébaut, R.; Tibshirani, R.J.; Davis, M.M. Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc. Natl. Acad. Sci. USA 2014, 111, 869–874. [Google Scholar] [CrossRef]
- Gleicher, N.; Barad, D.H. Gender as risk factor for autoimmune diseases. J. Autoimmun. 2007, 28, 1–6. [Google Scholar] [CrossRef]
- Beagley, K.W.; Gockel, C.M. Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone. FEMS Immunol. Med. Microbiol. 2003, 38, 13–22. [Google Scholar] [CrossRef]
- Roden, A.C.; Moser, M.T.; Tri, S.D.; Mercader, M.; Kuntz, S.M.; Dong, H.; Hurwitz, A.A.; McKean, D.J.; Celis, E.; Leibovich, B.C.; et al. Augmentation of T cell levels and responses induced by androgen deprivation. J. Immunol. 2004, 173, 6098–6108. [Google Scholar] [CrossRef]
- Jiang, G.; Shi, L.; Zheng, X.; Zhang, X.; Wu, K.; Liu, B.; Yan, P.; Liang, X.; Yu, T.; Wang, Y.; et al. Androgen receptor affects the response to immune checkpoint therapy by suppressing PD-L1 in hepatocellular carcinoma. Aging 2020, 12, 11466–11484. [Google Scholar] [CrossRef]
- Yang, L.; Huang, F.; Mei, J.; Wang, X.; Zhang, Q.; Wang, H.; Xi, M.; You, Z. Posttranscriptional Control of PD-L1 Expression by 17β-Estradiol via PI3K/Akt Signaling Pathway in ERα-Positive Cancer Cell Lines. Int. J. Gynecol. Cancer 2017, 27, 196–205. [Google Scholar] [CrossRef]
- Obradovic, A.Z.; Dallos, M.C.; Zahurak, M.L.; Partin, A.W.; Schaeffer, E.M.; Ross, A.E.; Allaf, M.E.; Nirschl, T.R.; Liu, D.; Chapman, C.G.; et al. T-Cell Infiltration and Adaptive Treg Resistance in Response to Androgen Deprivation With or Without Vaccination in Localized Prostate Cancer. Clin. Cancer Res. 2020, 26, 3182–3192. [Google Scholar] [CrossRef]
- Yuan, B.; Clark, C.A.; Wu, B.; Yang, J.; Drerup, J.M.; Li, T.; Jin, V.X.; Hu, Y.; Curiel, T.J.; Li, R. Estrogen receptor beta signaling in CD8(+) T cells boosts T cell receptor activation and antitumor immunity through a phosphotyrosine switch. J. Immunother. Cancer 2021, 9, e001932. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, B.; Byemerwa, J.; Shepherd, J.; Haines, C.N.; Baldi, R.; Gong, W.; Liu, W.; Mukherjee, D.; Artham, S.; Lim, F.; et al. Inhibition of estrogen signaling in myeloid cells increases tumor immunity in melanoma. J. Clin. Investig. 2021, 131, e151347. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jiang, G.; Jing, N.; Liu, X.; Zhuang, H.; Zeng, W.; Liang, W.; Liu, Z. Downregulating testosterone levels enhance immunotherapy efficiency. Oncoimmunology 2021, 10, 1981570. [Google Scholar] [CrossRef] [PubMed]
- Bilani, N.; Elson, L.; Liang, H.; Elimimian, E.B.; Arteta-Bulos, R.; Nahleh, Z. Prognostic and Predictive Value of Circulating and Disseminated Tumor Cells in Breast Cancer: A National Cancer Database (NCDB) Analysis. Technol. Cancer Res. Treat. 2020, 19, 1533033820980107. [Google Scholar] [CrossRef]
- Zhang, X.H.; Wang, Q.; Gerald, W.; Hudis, C.A.; Norton, L.; Smid, M.; Foekens, J.A.; Massagué, J. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 2009, 16, 67–78. [Google Scholar] [CrossRef]
- Dong, X.; Xue, H.; Mo, F.; Lin, Y.Y.; Lin, D.; Wong, N.K.Y.; Sun, Y.; Wilkinson, S.; Ku, A.T.; Hao, J.; et al. Modeling Androgen Deprivation Therapy-Induced Prostate Cancer Dormancy and Its Clinical Implications. Mol. Cancer Res. 2022, 20, 782–793. [Google Scholar] [CrossRef]
- Yu, N.; Aboud, O. The Lipidomic Signature of Glioblastoma: A Promising Frontier in Cancer Research. Cancers 2024, 16, 1089. [Google Scholar] [CrossRef]
- Hou, Y.; Caldwell, J.Z.K.; Lathia, J.D.; Leverenz, J.B.; Pieper, A.A.; Cummings, J.; Cheng, F. Microglial immunometabolism endophenotypes contribute to sex difference in Alzheimer’s disease. Alzheimer’s Dement. 2024, 20, 1334–1349. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Unno, T.; Kim, B.Y.; Park, M.S. Sex Differences in Gut Microbiota. World J. Men’s Health 2020, 38, 48–60. [Google Scholar] [CrossRef] [PubMed]
- Yoon, K.; Kim, N. Roles of Sex Hormones and Gender in the Gut Microbiota. J. Neurogastroenterol. Motil. 2021, 27, 314–325. [Google Scholar] [CrossRef]
- Gazzaniga, F.S.; Kasper, D.L. The gut microbiome and cancer response to immune checkpoint inhibitors. J. Clin. Investig. 2025, 135, e184321. [Google Scholar] [CrossRef] [PubMed]
- Perl, M.; Fante, M.A.; Herfeld, K.; Scherer, J.N.; Poeck, H.; Thiele Orberg, E. Microbiota-derived metabolites: Key modulators of cancer immunotherapies. Med 2025, 6, 100773. [Google Scholar] [CrossRef]
- Karimova, A.F.; Khalitova, A.R.; Suezov, R.; Markov, N.; Mukhamedshina, Y.; Rizvanov, A.A.; Huber, M.; Simon, H.U.; Brichkina, A. Immunometabolism of tumor-associated macrophages: A therapeutic perspective. Eur. J. Cancer 2025, 220, 115332. [Google Scholar] [CrossRef]
- Dussold, C.; Zilinger, K.; Turunen, J.; Heimberger, A.B.; Miska, J. Modulation of macrophage metabolism as an emerging immunotherapy strategy for cancer. J. Clin. Investig. 2024, 134, e175445. [Google Scholar] [CrossRef]
- Jalota, A.; Hershberger, C.E.; Patel, M.S.; Mian, A.; Faruqi, A.; Khademi, G.; Rotroff, D.M.; Hill, B.T.; Gupta, N. Host metabolome predicts the severity and onset of acute toxicities induced by CAR T-cell therapy. Blood Adv. 2023, 7, 4690–4700. [Google Scholar] [CrossRef]
- Gómez de Cedrón, M.; Moreno-Rubio, J.; De la, O.P.V.; Alvarez, B.; Villarino, M.; Sereno, M.; Gómez-Raposo, C.; Roa, S.; López Gómez, M.; Merino-Salvador, M.; et al. Randomized clinical trial in cancer patients shows immune metabolic effects exerted by formulated bioactive phenolic diterpenes with potential clinical benefits. Front. Immunol. 2025, 16, 1519978. [Google Scholar] [CrossRef]
- He, X.; Liu, X.; Zuo, F.; Shi, H.; Jing, J. Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. Semin. Cancer Biol. 2023, 88, 187–200. [Google Scholar] [CrossRef]
| Biomarker | Metabolic Pathway | Relevance to ICI Response | Reported Sex-Specific Associations |
|---|---|---|---|
| Kynurenine-to-tryptophan ratio (Kyn/Trp) | Tryptophan metabolism (IDO activity) | Elevated ratio indicates immunosuppression and poorer ICI response | IDO expression and inflammatory responses show sex differences |
| Arginine | Arginine metabolism | Depletion impairs T-cell proliferation and effector function | Sex differences in arginase activity suggested |
| Lipidomic signatures (fatty acid oxidation, cholesterol synthesis) | Lipid metabolism | Dysregulated lipid metabolism linked to T-cell dysfunction and resistance | Distinct lipidomic profiles observed between men and women in multiple cancers |
| Short-chain fatty acids (butyrate, propionate) | Microbiome-derived metabolites | Modulate systemic immunity and affect ICI efficacy | Gut microbiome composition and SCFA production differ by sex |
| Purine and pyrimidine intermediates | Nucleotide metabolism | Influence T-cell activation, proliferation, and dormancy | Potential sex-specific effects remain underexplored |
| Study ID | Phase | Intervention(s) | Sponsor | Status |
|---|---|---|---|---|
| Breast cancer | ||||
| NCT02221999 | Phase II | Paclitaxel + cisplatin ± goserelin/leuprolide or letrozole | RenJi Hospital | Active |
| NCT03280563 | Phase I/II | Tamoxifen/fulvestrant/exemestane + atezolizumab ± targeted therapies | Hoffmann-La Roche | Completed |
| NCT02971748 | Phase II | Tamoxifen/aromatase inhibitor/LHRH agonist (physician’s choice) + pembrolizumab | MD Anderson Cancer Center | Active |
| NCT02648477 | Phase II | Antiestrogen + pembrolizumab vs. doxorubicin + pembrolizumab | City of Hope | Completed |
| NCT02971761 | Phase II | Pembrolizumab + enobosarm (selective AR modulator) | City of Hope | Completed |
| NCT02997995 | Phase I | Exemestane + tremelimumab | UNICANCER | Completed |
| NCT02778685 | Phase II | Letrozole + pembrolizumab + palbociclib | City of Hope | Active |
| NCT02990845 | Phase I/II | Pembrolizumab + exemestane + leuprolide | National Taiwan University Hospital | Terminated |
| Endometrial cancer | ||||
| NCT04046185 | Phase I | Toripalimab + progesterone | Shanghai First Maternity & Infant Hospital | Unknown |
| Prostate cancer | ||||
| NCT04934722 | Phase III | Pembrolizumab + enzalutamide + ADT vs. placebo + enzalutamide + ADT | Merck Sharp & Dohme | Active |
| NCT04191096 | Phase III | Pembrolizumab + enzalutamide + ADT vs. placebo + enzalutamide + ADT | Merck Sharp & Dohme | Active |
| NCT02312557 | Phase II | Pembrolizumab + enzalutamide | OHSU Knight Cancer Institute | Active |
| NCT04631601 | Phase I/II | Acapatamab + enzalutamide vs. acapatamab + abiraterone vs. acapatamab + AMG404 vs. AMG404 | Amgen | Terminated |
| NCT01688492 | Phase I/II | Abiraterone + prednisone + ipilimumab | Memorial Sloan Kettering | Active |
| NCT02020070 | Phase II | Degarelix + ipilimumab | Memorial Sloan Kettering | Active |
| NCT00170157 | Phase II | Ipilimumab + leuprolide/goserelin + flutamide/bicalutamide | Mayo Clinic | Completed |
| NCT03016312 | Phase III | Enzalutamide ± atezolizumab | Hoffmann-La Roche | Completed |
| NCT02787005 | Phase II | Enzalutamide ± pembrolizumab | Merck Sharp & Dohme | Completed |
| NCT01867333 | Phase II | Enzalutamide ± PROSTVAC-F/V-TRICOM | National Cancer Institute | Completed |
| NCT01875250 | Phase II | Enzalutamide ± PROSTVAC-F/V-TRICOM | National Cancer Institute | Completed |
| NCT01696877 | Phase I/II | Degarelix ± cyclophosphamide + GVAX | Johns Hopkins | Completed |
| NCT03753243 | Phase II | Pembrolizumab + enzalutamide | Mark Garzotto | Unknown |
| NCT04946370 | Phase I/II | Pembrolizumab + enzalutamide/apalutamide ± 225Ac-J591 | Weill Cornell | Recruiting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilani, N.; Charbel, N.; Rizkallah, J.; Sater, S.; Kreidieh, F. New Frontier in Cancer Immunotherapy: Sexual Dimorphism of Immune Response. Metabolites 2025, 15, 686. https://doi.org/10.3390/metabo15110686
Bilani N, Charbel N, Rizkallah J, Sater S, Kreidieh F. New Frontier in Cancer Immunotherapy: Sexual Dimorphism of Immune Response. Metabolites. 2025; 15(11):686. https://doi.org/10.3390/metabo15110686
Chicago/Turabian StyleBilani, Nadeem, Nicole Charbel, Joe Rizkallah, Sam Sater, and Firas Kreidieh. 2025. "New Frontier in Cancer Immunotherapy: Sexual Dimorphism of Immune Response" Metabolites 15, no. 11: 686. https://doi.org/10.3390/metabo15110686
APA StyleBilani, N., Charbel, N., Rizkallah, J., Sater, S., & Kreidieh, F. (2025). New Frontier in Cancer Immunotherapy: Sexual Dimorphism of Immune Response. Metabolites, 15(11), 686. https://doi.org/10.3390/metabo15110686

