Altered Carnitine Metabolism in Ischemic and Non-Ischemic Cardiomyopathy: A Comparative Metabolomics Study Using LC–MS/MS
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Population
2.3. Sample Collection and Metabolite Analysis
2.4. Statistical Analysis
3. Results
3.1. Baseline Clinical Characteristics
3.2. Overview of Serum Carnitine Profiles
3.3. Distinction Between IC and NIC
3.4. Biological Implications
3.5. Post Hoc Comparisons
3.6. Multivariate Pattern Recognition
3.7. Differential Metabolite Significance
3.8. Diagnostic Potential of Key Metabolites
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Neubauer, S. The failing heart—An engine out of fuel. N. Engl. J. Med. 2007, 356, 1140–1151. [Google Scholar] [CrossRef]
- Lopaschuk, G.D.; Ussher, J.R.; Folmes, C.D.L.; Jaswal, J.S.; Stanley, W.C. Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 2010, 90, 207–258. [Google Scholar] [CrossRef]
- Doenst, T.; Nguyen, T.D.; Abel, E.D. Cardiac metabolism in heart failure: Implications beyond ATP production. Circ. Res. 2013, 113, 709–724. [Google Scholar] [CrossRef]
- Stanley, W.C.; Recchia, F.A.; Lopaschuk, G.D. Myocardial substrate metabolism in the normal and failing heart. Physiol. Rev. 2005, 85, 1093–1129. [Google Scholar] [CrossRef]
- Koves, T.R.; Ussher, J.R.; Noland, R.C.; Slentz, D.; Mosedale, M.; Ilkayeva, O.; Bain, J.; Stevens, R.; Dyck, J.R.B.; Newgard, C.B.; et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008, 7, 45–56. [Google Scholar] [CrossRef]
- Bedi, K.C., Jr.; Snyder, N.W.; Brandimarto, J.; Aziz, M.; Mesaros, C.; Worth, A.J.; Wang, L.L.; Javaheri, A.; Blair, I.A.; Margulies, K.B.; et al. Evidence for intramyocardial disruption of lipid metabolism and increased ketone utilization in advanced human heart failure. Circulation 2016, 133, 706–716. [Google Scholar] [CrossRef]
- Chokshi, A.; Drosatos, K.; Cheema, F.H.; Ji, R.; Khawaja, T.; Yu, S.; Kato, T.; Khan, R.; Takayama, H.; Knoll, R.; et al. Ventricular assist device implantation corrects myocardial lipotoxicity, reverses insulin resistance, and normalizes cardiac metabolism in patients with advanced heart failure. Circulation 2012, 125, 2844–2853. [Google Scholar] [CrossRef] [PubMed]
- Weitzel, L.B.; Ambardekar, A.V.; Brieke, A.; Cleveland, J.C.; Serkova, N.J.; Wischmeyer, P.E.; Lowes, B.D. Left ventricular assist device effects on metabolic substrates in the failing heart. PLoS ONE 2013, 8, e60292. [Google Scholar] [CrossRef] [PubMed]
- Gander, J.C.; Carrard, J.; Gallart-Ayala, H.; Borreggine, R.; Teav, T.; Infanger, D.; Colledge, F.; Streese, L.; Wagner, J.; Klenk, C.; et al. Metabolic impairment in coronary artery disease: Elevated serum acylcarnitines under the spotlights. Front. Cardiovasc. Med. 2021, 8, 792350. [Google Scholar] [CrossRef]
- Aitken-Buck, H.M.; Krause, J.; Zeller, T.; Jones, P.P.; Lamberts, P.R. Long-chain acylcarnitines and cardiac excitation–contraction coupling: Links to arrhythmias. Front. Physiol. 2020, 11, 577856. [Google Scholar] [CrossRef]
- Sun, Q.; Karwi , Q.G.; Wong, N.; Lopaschuk, G.D. Advances in myocardial energy metabolism: Metabolic remodelling in heart failure and beyond. Cardiovasc Res. 2024, 120, 1996–2016. [Google Scholar] [CrossRef]
- Bene, J.; Szabo , A.; Komlósi, K.; Melegh, B. Mass spectrometric analysis of L-carnitine and its esters: Potential biomarkers of disturbances in carnitine homeostasis. Curr. Mol. Med. 2020, 20, 336–354. [Google Scholar] [CrossRef]
- Wende, A.R.; Abel, E.D. Lipotoxicity in the heart. Biochim. Biophys. Acta 2010, 1801, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Chatham, J.C.; Young, M.E. Metabolic remodeling: Therapeutic implications. J. Mol. Cell Cardiol. 2012, 54, 83–92. [Google Scholar]
- Kankuri, E. Altered acylcarnitine metabolism and inflexible mitochondrial fuel utilization characterize the loss of neonatal myocardial regeneration capacity. Exp. Mol. Med. 2023, 55, 806–817. [Google Scholar] [CrossRef]
- Neves, L.S.; Saraiva , F.; Ferreira, R.; Leite-Moreira , A.; Barros, A.S.; Díaz, S.O. Metabolomics and cardiovascular risk in patients with heart failure: A systematic review and meta-analysis. Int. J. Mol. Sci. 2024, 25, 5693. [Google Scholar] [CrossRef]
- Müller, J.; Bertsch, T.; Volke, J.; Schmid , A.; Klingbeil, R.; Metodiev , Y.; Karaca, B.; Kim, S.H. Narrative review of metabolomics in cardiovascular disease. J. Thorac. Dis. 2021, 13, 2532–2550. [Google Scholar] [CrossRef]
- Demarquoy, J.; Le Borgne, F. Crosstalk between mitochondria and peroxisomes. World J. Biol. Chem. 2015, 6, 301–309. [Google Scholar] [CrossRef]
- Lango, R.; Smolenski, R.T.; Narkiewicz, M.; Suchorzewska, J.; Lysiak-Szydlowska, W. Influence of L-carnitine and its derivatives on myocardial metabolism and function in ischemic heart disease and during cardiopulmonary bypass. Cardiovasc. Res. 2001, 51, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Wende, A.R.; Brahma , M.K.; McGinnis , G.R.; Young, M.E. Metabolic origins of heart failure. JACC Basic Transl. Sci. 2017, 2, 297–310. [Google Scholar] [CrossRef]
- Schooneman, M.G.; Vaz, F.M.; Houten, S.M.; Soeters , M.R. Acylcarnitines & insulin resistance. Diabetes 2013, 62, 1–8. [Google Scholar] [CrossRef]
- Adams, S.H. Emerging role of acylcarnitines. PPAR Res. 2011, 2011, 1–8. [Google Scholar]
- Newgard, C.B.; An, J.; Bain, J.R.; Muehlbauer, M.J.; Stevens, R.D.; Lien, L.F.; Haqq, A.M.; Shah, S.H.; Arlotto, M.; Slentz, C.Z.; et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009, 9, 311–326. [Google Scholar] [CrossRef]
- Cheng, S.; Rhee, E.P.; Larson, M.G.; Lewis, G.D.; McCabe, E.L.; Shen, D.; Palma, M.J.; Roberts, L.D.; Dejam, A.; Souza, A.L.; et al. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation 2012, 125, 2222–2231. [Google Scholar]
- Aubert, G.; Martin, O.J.; Horton, J.L.; Lai, L.; Vega, R.B.; Leone, T.C.; Koves, T.; Gardell, S.J.; Kruger, M.; Hoppel, C.L.; et al. The failing heart uses ketone bodies as fuel. Circulation 2016, 133, 698–705. [Google Scholar] [CrossRef]
- Rashed, M.S.; Ozand, P.T.; Bucknall, M.P.; Little, D. Diagnosis of inborn errors of metabolism from blood spots by acylcarnitines and amino acids profiling using automated electrospray tandem mass spectrometry. Pediatr Res. 1995, 38, 324–331. [Google Scholar]
- Millington, D.S.; Kodo, N.; Norwood, D.L.; Roe, C.R. Tandem MS for acylcarnitines. Clin. Chem. 1990, 36, 1357–1362. [Google Scholar]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-DA basics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the AUC (ROC). Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef]
- Elliott, P.; Andersson, B.; Arbustini, E.; Bilinska, Z.; Cecchi, F.; Charron, P.; Dubourg, O.; Kuhl, U.; Maisch, B.; McKenna, W.J.; et al. Classification of the cardiomyopathies: A position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2008, 29, 270–276. [Google Scholar] [CrossRef]
- Ponikowski, P.; Voors, A.A.; Anker, S.D.; Bueno, H.; Cleland, J.G.F.; Coats, A.J.S.; Falk, V.; Gonzales-Juanatey, J.R.; Harjola, V.-P.; Jankowska, E.A.; et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200. [Google Scholar] [CrossRef] [PubMed]
- Yancy, C.W.; Jessup, M.; Bozkurt, B.; Butler, J.; Casey, D.E.; Drazner, M.H.; Fonarow, G.C.; Geraci, S.A.; Horwich, T.; Januzzi, J.L.; et al. ACCF/AHA guideline for the management of heart failure: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guideline. J. Am. Coll. Cardiol. 2013, 62, e147–e239. [Google Scholar] [CrossRef]
- Ussher, J.R.; Elmariah, S.; Gerszten, R.E.; Dyck, J.R.B. The emerging role of metabolomics in CVD. Can. J. Cardiol. 2016, 32, 1309–1317. [Google Scholar]
- Shah, S.H.; Sun, J.; Stevens , R.D.; Bain, J.R.; Muehlbauer, M.J.; Pieper , K.S.; Haynes , C.; Hauser, E.R.; Kraus, W.E.; Granger , C.B.; et al. Baseline metabolomic profiles predict cardiovascular events in patients at risk for coronary artery disease. Am. Heart J. 2012, 163, 844–850. [Google Scholar] [CrossRef]
- Karwi , Q.G.; Lopaschuk, G.D. Branched-chain amino acid metabolism in the failing heart. Cardiovasc. Drugs Ther 2023, 37, 413–420. [Google Scholar] [CrossRef]
- Ussher, J.R.; Jaswal, J.S.; Lopaschuk, G.D. BCAA metabolism in the heart. Circ. Res. 2016, 118, 1412–1428. [Google Scholar]
- Houten, S.M.; Wanders, R.J.A. Fatty acid oxidation disorders. J. Inherit. Metab. Dis. 2010, 33, 469–477. [Google Scholar] [CrossRef]
- Minkler, P.E.; Stoll, M.S.K.; Ingalls, S.T.; Kerner, J.; Hoppel, C.L. Validated method for the quantification of free and total carnitine, butyrobetaine, and acylcarnitines in biological samples. Anal. Chem 2015, 87, 8994–9001. [Google Scholar] [CrossRef]
- Luna , C.; Griffin , C.; Miller, M.J. A clinically validated method to separate and quantify underivatized acylcarnitines and carnitine metabolic intermediates using mixed-mode chromatography with tandem mass spectrometry. J. Chromatogr. A 2022, 1663, 462749. [Google Scholar] [CrossRef]
- Giesbertz, P.; Ecker, J.; Haag, A.; Spanier, B.; Daniel, H. An LC-MS/MS method to quantify acylcarnitine species including isomeric and odd-numbered forms in plasma and tissues. J. Lipid Res. 2015, 56, 2029–2039. [Google Scholar] [CrossRef]
- Meierhofer, D. Acylcarnitine profiling by low-resolution LC-MS. PLoS ONE 2019, 14, e0221342. [Google Scholar] [CrossRef] [PubMed]
- Abdulridha, J.S.; Mashkani, B.; Alaei, A.; Boskabadi, M.; Varasteh, A.; Keyfi, F. Determination of normal range of acylcarnitine in neonatal dried blood spots using LC-MS/MS. Rep. Biochem. Mol. Biol. 2024, 12, 522–529. [Google Scholar] [CrossRef] [PubMed]
- Naeem, M.; Leone, T.C.; Petucci, C.; Shoffler, C.; Kodihalli, R.C.; Hidalgo, T.; Tow-Keogh, C.; Mancuso, J.; Tzameli, I.; Bennett, D.; et al. Plasma metabolomics identifies signatures that distinguish heart failure with reduced and preserved ejection fraction. ESC Heart Fail. 2025, 12, 2803–2813. [Google Scholar] [CrossRef]
- Ruiz , M.; Labarthe, F.; Fortier , A.; Bouchard , B.; Legault, J.T.; Bolduc , V.; Rigal , O.; Chen, J.; Sihag , S.; Des Rosiers , C. Circulating acylcarnitine profile in human heart failure: A surrogate of fatty acid metabolic impairment in mitochondria and beyond. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H768–H781. [Google Scholar] [CrossRef]
Characteristics | IC (n = 40) | NIC (n = 40) | HC (n = 40) |
---|---|---|---|
Age (years) | 62.8 ± 9.4 | 60.7 ± 10.1 | 59.3 ± 8.7 |
Male sex, n (%) | 30 (75.0%) | 28 (70.0%) | 26 (65.0%) |
BMI (kg/m2) | 28.1 ± 3.9 | 27.5 ± 4.1 | 26.7 ± 3.8 |
EF (%) | 31.2 ± 7.6 | 33.8 ± 8.1 | 62.4 ± 5.2 |
NYHA class (I/II/III/IV) | 0/6/22/12 | 1/10/21/8 | — |
eGFR (mL/min/1.73 m2) | 72.5 ± 18.9 | 75.4 ± 17.3 | 88.6 ± 15.2 |
Hypertension, n (%) | 25 (62.5%) | 23 (57.5%) | 9 (22.5%) |
Diabetes mellitus, n (%) | 18 (45.0%) | 15 (37.5%) | 4 (10.0%) |
Dyslipidemia, n (%) | 22 (55.0%) | 21 (52.5%) | 7 (17.5%) |
Smoking, n (%) | 17 (42.5%) | 16 (40.0%) | 10 (25.0%) |
BB, n (%) | 38 (95.0%) | 36 (90.0%) | — |
ACEi/ARB/ARNI, n (%) | 35 (87.5%) | 33 (82.5%) | — |
MRA, n (%) | 29 (72.5%) | 27 (67.5%) | — |
SGLT2i, n (%) | 18 (45.0%) | 16 (40.0%) | — |
Statin, n (%) | 30 (75.0%) | 28 (70.0%) | — |
Characteristics | IC (n = 40) | NIC (n = 40) | HC (n = 40) |
Age (years) | 62.8 ± 9.4 | 60.7 ± 10.1 | 59.3 ± 8.7 |
Male sex, n (%) | 30 (75.0%) | 28 (70.0%) | 26 (65.0%) |
BMI (kg/m2) | 28.1 ± 3.9 | 27.5 ± 4.1 | 26.7 ± 3.8 |
EF (%) | 31.2 ± 7.6 | 33.8 ± 8.1 | 62.4 ± 5.2 |
NYHA class (I/II/III/IV) | 0/6/22/12 | 1/10/21/8 | — |
eGFR (mL/min/1.73 m2) | 72.5 ± 18.9 | 75.4 ± 17.3 | 88.6 ± 15.2 |
Hypertension, n (%) | 25 (62.5%) | 23 (57.5%) | 9 (22.5%) |
Diabetes mellitus, n (%) | 18 (45.0%) | 15 (37.5%) | 4 (10.0%) |
Dyslipidemia, n (%) | 22 (55.0%) | 21 (52.5%) | 7 (17.5%) |
Smoking, n (%) | 17 (42.5%) | 16 (40.0%) | 10 (25.0%) |
BB, n (%) | 38 (95.0%) | 36 (90.0%) | — |
ACEi/ARB/ARNI, n (%) | 35 (87.5%) | 33 (82.5%) | — |
Carnitine | IC (Mean ± SD) | NIC (Mean ± SD) | HC (Mean ± SD) | p | FDR (q) | Post Hoc | VIP | Adj.OR (p) | |
---|---|---|---|---|---|---|---|---|---|
C0 | 207.61 ± 75.21 ab | 217.46 ± 112.53 a | 204.99 ± 85.07 ab | ns | — | — | 1.05 | — | |
C2 | 4.23 ± 4.34 a | 5.41 ± 4.54 a | 9.05 ± 8.04 b | <0.05 | 0.021 | IC<C | 1.31 | 2.1 (0.03) | |
C3 | 0.58 ± 0.44 a | 0.84 ± 0.75 ab | 0.98 ± 0.68 b | <0.05 | 0.027 | IC<C | 1.25 | 1.6 (0.06) | |
C4 | 0.66 ± 0.49 | 0.89 ± 0.88 | 0.76 ± 0.52 | ns | — | — | 1.00 | — | |
C4DC | 0.04 ± 0.02 | 0.05 ± 0.03 | 0.06 ± 0.03 | ns | — | — | 1.02 | — | |
C5 | 0.55 ± 0.31 | 0.59 ± 0.34 | 0.53 ± 0.24 | ns | — | — | 1.01 | — | |
C5:1 | 0.05 ± 0.03 | 0.06 ± 0.06 | 0.06 ± 0.03 | ns | — | — | 0.95 | — | |
C5OH | 0.08 ± 0.04 | 0.11 ± 0.06 | 0.08 ± 0.04 | ns | — | — | 1.12 | — | |
C5DC | 0.27 ± 0.19 | 0.43 ± 0.50 | 0.58 ± 0.36 | ns | — | — | 1.08 | — | |
C6 | 0.14 ± 0.12 a | 0.22 ± 0.14 b | 0.23 ± 0.17 b | <0.05 | 0.041 | NIC>C | 1.18 | — | |
C6DC | 0.07 ± 0.05 a | 0.09 ± 0.08 b | 0.09 ± 0.05 b | <0.05 | 0.018 | NIC>C | 1.53 | 2.4 (0.02) | |
C8 | 0.33 ± 0.29 | 0.45 ± 0.30 | 0.59 ± 0.32 | ns | — | — | 1.09 | — | |
C8:1 | 0.32 ± 0.33 | 0.52 ± 0.47 | 0.55 ± 0.57 | ns | — | — | 1.11 | — | |
C8DC | 0.02 ± 0.02 | 0.03 ± 0.03 | 0.04 ± 0.03 | ns | — | — | 0.93 | — | |
C10 | 0.49 ± 0.46 | 0.60 ± 0.38 | 0.94 ± 0.56 | ns | — | — | 1.15 | — | |
C10:1 | 0.26 ± 0.19 | 0.40 ± 0.26 | 0.67 ± 0.43 | ns | — | — | 1.20 | — | |
C10DC | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 | ns | — | — | 0.97 | — | |
C12 | 0.13 ± 0.11 a | 0.14 ± 0.08 ab | 0.20 ± 0.11 b | <0.05 | 0.033 | IC<C | 1.42 | 1.8 (0.04) | |
C14 | 0.08 ± 0.06 | 0.09 ± 0.05 | 0.11 ± 0.07 | ns | — | — | 1.05 | — | |
C14:1 | 0.05 ± 0.04 | 0.08 ± 0.06 | 0.14 ± 0.08 | ns | — | — | 1.28 | — | |
C14:2 | 0.01 ± 0.01 | 0.03 ± 0.02 | 0.04 ± 0.02 | ns | — | — | 1.31 | — | |
C16 | 0.24 ± 0.11 a | 0.27 ± 0.11 ab | 0.33 ± 0.19 b | <0.05 | 0.029 | IC<C | 1.35 | 1.9 (0.04) | |
C16:1 | 0.03 ± 0.02 | 0.05 ± 0.03 | 0.09 ± 0.05 | ns | — | — | 1.26 | — | |
C18 | 0.10 ± 0.05 | 0.12 ± 0.07 | 0.14 ± 0.08 | ns | — | — | 1.04 | — | |
C18:1 | 0.08 ± 0.08 | 0.16 ± 0.12 | 0.21 ± 0.13 | ns | — | — | 1.19 | — | |
C18:2 | 0.04 ± 0.03 | 0.08 ± 0.05 | 0.10 ± 0.06 | ns | — | — | 1.16 | — | |
C18:1OH | 0.03 ± 0.02 | 0.02 ± 0.01 | 0.04 ± 0.02 | ns | — | — | 1.22 | — |
Carnitin | F-Value | p -Value | −log10(p) | FDR | Post Hoc Tests |
---|---|---|---|---|---|
C12 | 3.5426 | <0.005 a | 1.4938 | 0.26948 | IC-C |
C3 | 3.4308 | <0.005 a | 1.4479 | 0.26948 | IC-C |
C2 | 3.2019 | <0.005 a | 1.3538 | 0.26948 | IC-C |
C16 | 3.0958 | <0.005 a | 1.3101 | 0.26948 | IC-C |
C6DC | 3.0758 | <0.005 a | 1.3019 | 0.26948 | NIC-C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behram Kandemir, Y.; Güntekin, Ü.; Tosun, V.; Koyuncu, İ.; Yüksekdağ, Ö. Altered Carnitine Metabolism in Ischemic and Non-Ischemic Cardiomyopathy: A Comparative Metabolomics Study Using LC–MS/MS. Metabolites 2025, 15, 685. https://doi.org/10.3390/metabo15110685
Behram Kandemir Y, Güntekin Ü, Tosun V, Koyuncu İ, Yüksekdağ Ö. Altered Carnitine Metabolism in Ischemic and Non-Ischemic Cardiomyopathy: A Comparative Metabolomics Study Using LC–MS/MS. Metabolites. 2025; 15(11):685. https://doi.org/10.3390/metabo15110685
Chicago/Turabian StyleBehram Kandemir, Yasemin, Ünal Güntekin, Veysel Tosun, İsmail Koyuncu, and Özgür Yüksekdağ. 2025. "Altered Carnitine Metabolism in Ischemic and Non-Ischemic Cardiomyopathy: A Comparative Metabolomics Study Using LC–MS/MS" Metabolites 15, no. 11: 685. https://doi.org/10.3390/metabo15110685
APA StyleBehram Kandemir, Y., Güntekin, Ü., Tosun, V., Koyuncu, İ., & Yüksekdağ, Ö. (2025). Altered Carnitine Metabolism in Ischemic and Non-Ischemic Cardiomyopathy: A Comparative Metabolomics Study Using LC–MS/MS. Metabolites, 15(11), 685. https://doi.org/10.3390/metabo15110685