Diagnostic Fragmentations of Animal and Fungal Sterols/Stanols Obtained by APCI–Tandem Mass Spectrometry: A Route Towards Unknown Free Sterol Identification
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Standard Solutions Preparation
2.3. Extraction of Free Sterols from Baker’s Yeast
2.4. RPLC-APCI-MSn Instrumentation and Operating Conditions
3. Results and Discussion
3.1. RPLC-APCI(+)-FTMS Analysis of Standard Sterols/Stanols: Chromatographic Considerations
3.2. Fragmentation of Δ7-Sterols with Saturated and Unbranched Side Chain: Lathosterol
3.3. Fragmentation of Stanols with Saturated and Unbranched Side Chains: Coprostanol and Cholestanol
3.4. Fragmentation of Δ5- and Δ8-Sterols with a Double Bond at C24–C25: Desmosterol, Zymosterol and Lanosterol
3.5. Fragmentation of Δ5,7-Sterols with a Double Bond at C22–C23: Ergosterol
3.6. Fragmentation of Δ5-Sterols with a Double Bond at C24–C24′ (Methylene Group at C24): Chalinasterol
3.7. Identification of Sterols in Baker’s Yeast Based on Chromatographic and Tandem MS Data
3.8. Correlation Between Specific Product Ions and Structural Features of Major Animal, Fungal and Vegetal Sterols
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACN | ACetoNitrile |
AGC | Automatic Gain Control |
APCI | Atmospheric Pressure Chemical Ionization |
CID | Collisionally Induced Dissociation |
DIA | Direct Infusion Analysis |
EIC | Extracted Ion Current |
ESI | ElectroSpray Ionization |
EtOH | Ethanol |
FA | Formic Acid |
FTMS | Fourier-Transform Mass Spectrometry |
GC-EI-MS | Gas Chromatography—Electron Ionization—Mass spectrometry |
HCD | Higher-Collisional-energy Dissociation |
HPLC | High-Performance Liquid Chromatography |
HRMS | High-Resolution Mass Spectrometry |
HRMS/MS | High-Resolution Tandem Mass Spectrometry |
IUPAC | International Union of Pure and Applied Chemistry |
MSn | Multistage Mass Spectrometry |
NCE | Normalized Collisional Energy |
RF | Radio Frequency |
RPLC | Reversed-Phase Liquid Chromatography |
SC | Side Chain |
SMT | Sterol Methyl-Trasferase |
References
- Hannich, J.T.; Umebayashi, K.; Riezman, H. Distribution and functions of sterols and sphingolipids. Cold Spring Harb. Perspect. Biol. 2011, 3, a004762. [Google Scholar] [CrossRef]
- Dufourc, E.J. Sterols and membrane dynamics. J. Chem. Biol. 2008, 1, 63–77. [Google Scholar] [CrossRef]
- Piironen, V.; Lindsay, D.G.; Miettinen, T.A.; Toivo, J.; Lampi, A.M. Plant sterols: Biosynthesis, biological function and their importance to human nutrition. J. Sci. Food Agric. 2000, 80, 939–966. [Google Scholar] [CrossRef]
- Jordá, T.; Puig, S. Regulation of ergosterol biosynthesis in saccharomyces cerevisiae. Genes 2020, 11, 795. [Google Scholar] [CrossRef] [PubMed]
- Nes, W.D. Biosynthesis of cholesterol and other sterols. Chem. Rev. 2011, 111, 6423–6451. [Google Scholar] [CrossRef] [PubMed]
- Ačimovič, J.; Rozman, D. Steroidal triterpenes of cholesterol synthesis. Molecules 2013, 18, 4002–4017. [Google Scholar] [CrossRef]
- Cerqueira, N.M.F.S.A.; Oliveira, E.F.; Gesto, D.S.; Santos-Martins, D.; Moreira, C.; Moorthy, H.N.; Ramos, M.J.; Fenrandes, P.A. Cholesterol Biosynthesis: A Mechanistic Overview. Biochemistry 2016, 55, 5483–5506. [Google Scholar] [CrossRef]
- Evtyugin, D.D.; Evtuguin, D.V.; Casal, S.; Domingues, M.R. Advances and Challenges in Plant Sterol Research: Fundamentals, Analysis, Applications and Production. Molecules 2023, 28, 6526. [Google Scholar] [CrossRef]
- IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). The nomenclature of steroids. Recommendations 1989. Eur. J. Biochem. 1989, 186, 429–458. [Google Scholar] [CrossRef]
- Valitova, J.N.; Sulkarnayeva, A.G.; Minibayeva, F.V. Plant sterols: Diversity, biosynthesis, and physiological functions. Biochemistry 2016, 81, 819–834. [Google Scholar] [CrossRef]
- Moreau, R.A.; Nyström, L.; Whitaker, B.D.; Winkler-Maser, J.K.; Baer, D.J.; Gebauer, S.H.; Hicks, K.B. Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog. Lipid Res. 2018, 70, 35–61. [Google Scholar] [CrossRef]
- Skubic, C.; Rozman, D. Rozman, D., Gebhardt, R., Eds.; Sterols from the Post-Lanosterol Part of Cholesterol Synthesis: Novel Signaling Players. In Mammalian Sterols. Novel Biological Roles of Cholesterol Synthesis Intermediates, Oxysterols and Bile Acids; Springer Nature: Cham, Switzerland, 2020; pp. 1–22. [Google Scholar] [CrossRef]
- Alcazar-Fuoli, L.; Mellado, E. Ergosterol biosynthesis in Aspergillus fumigatus: Its relevance as an antifungal target and role in antifungal drug resistance. Front. Microbiol. 2012, 3, 439. [Google Scholar] [CrossRef] [PubMed]
- Skrede, S.; Bjorkhem, I.; Buchmann, M.S.; Hopen, G.; Fausa, O. A novel pathway for biosynthesis of cholestanol with 7α-hydroxylated C27-steroids as intermediates, and its importance for the accumulation of cholestanol in cerebrotendinous xanthomatosis. J. Clin. Investig. 1985, 75, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Björkhem, I.; Karlmar, K.E. Biosynthesis of cholestanol: Conversion of cholesterol into 4-cholesten-3-one by rat liver microsomes. Biochim. Biophys. Acta. Lipids Lipid Metab. 1974, 337, 129–131. [Google Scholar] [CrossRef] [PubMed]
- Björkhem, I.; Gustafsson, J. Mechanism of Microbial Transformation of Cholesterol into Coprostanol. Eur. J. Biochem. 1971, 21, 428–432. [Google Scholar] [CrossRef]
- Juste, C.; Gérard, P. Cholesterol-to-coprostanol conversion by the gut microbiota: What we know, suspect, and ignore. Microorganisms 2021, 9, 1881. [Google Scholar] [CrossRef]
- Nakajima, N.; Fujioka, S.; Tanaka, T.; Takatsuto, S.; Yoshida, S. Biosynthesis of cholestanol in higher plants. Phytochemistry 2002, 60, 275–279. [Google Scholar] [CrossRef]
- Nes, W.R.; Sekula, B.C.; Nes, W.D.; Adler, J.H. The functional importance of structural features of ergosterol in yeast. J. Biol. Chem. 1978, 253, 6218–6225. [Google Scholar] [CrossRef]
- Sonawane, P.D.; Pollier, J.; Panda, S.; Szymanski, J.; Massalha, H.; Yona, M.; Unger, T.; Malitsky, S.; Arendt, P.; Pauwels, L.; et al. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nat. Plants 2016, 3, 16205. [Google Scholar] [CrossRef]
- Idler, D.R.; Fagerlund, U.H.M. Marine Sterols. I. Isolation of 24-Methylenecholesterol from Molluscs. J. Am. Chem. Soc. 1955, 77, 4142–4144. [Google Scholar] [CrossRef]
- Hakim, M.M.; Patel, I.C. A review on phytoconstituents of marine brown algae. Futur. J. Pharm. Sci. 2020, 6, 129. [Google Scholar] [CrossRef]
- Sohn, S.I.; Rathinapriya, P.; Balaji, S.; Balan, D.J.; Swetha, T.K.; Durgadevi, R.; Alagulakshmi, S.; Singaraj, P.; Pandian, S. Phytosterols in seaweeds: An overview on biosynthesis to biomedical applications. Int. J. Mol. Sci. 2021, 22, 12691. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Machado, D.I.; López-Hernández, J.; Paseiro-Losada, P.; López-Cervantes, J. An HPLC method for the quantification of sterols in edible seaweeds. Biomed. Chromatogr. 2004, 18, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Schlag, S.; Huang, Y.; Vetter, W. GC/EI-MS method for the determination of phytosterols in vegetable oils. Anal. Bioanal. Chem. 2022, 414, 1061–1071. [Google Scholar] [CrossRef]
- Parkinson, D.R.; Warren, J.M.; Pawliszyn, J. Analysis of ergosterol for the detection of mold in soils by automated on-fiber derivatization headspace extraction-SPME-GC/MS. Anal. Chim. Acta 2010, 661, 181–187. [Google Scholar] [CrossRef]
- Saraiva, D.; Semedo, R.; Castilho, M.d.C.; Silva, J.M.; Ramos, F. Selection of the derivatization reagent—The case of human blood cholesterol, its precursors and phytosterols GC-MS analyses. J. Chromatogr. B 2011, 879, 3806–3811. [Google Scholar] [CrossRef]
- Ahmida, H.S.M.; Bertucci, P.; Franzò, L.; Massoud, R.; Cortese, C.; Lala, A.; Federici, G. Simultaneous determination of plasmatic phytosterols and cholesterol precursors using gas chromatography-mass spectrometry (GC-MS) with selective ion monitoring (SIM). J. Chromatogr. B 2006, 842, 43–47. [Google Scholar] [CrossRef]
- Ačimovič, J.; Lövgren-Sandblom, A.; Monostory, K.; Rozman, D.; Golicnik, M.; Lütjohann, D.; Björkhem, I. Combined gas chromatographic/mass spectrometric analysis of cholesterol precursors and plant sterols in cultured cells. J. Chromatogr. B 2009, 877, 2081–2086. [Google Scholar] [CrossRef]
- Kunz, S.; Matysik, S. A comprehensive method to determine sterol species in human faeces by GC-triple quadrupole MS. J. Steroid Biochem. Mol. Biol. 2019, 190, 99–103. [Google Scholar] [CrossRef]
- Skubic, C.; Vovk, I.; Rozman, D.; Križman, M. Simplified LC-MS method for analysis of sterols in biological samples. Molecules 2020, 25, 4116. [Google Scholar] [CrossRef]
- Baila-Rueda, L.; Cenarro, A.; Cofán, M.; Orera, I.; Barcelo-Batllori, S.; Pocovì, M.; Ros, E.; Civeira, F.; Nerin, C.; Domeno, C. Simultaneous determination of oxysterols, phytosterols and cholesterol precursors by high performance liquid chromatography tandem mass spectrometry in human serum. Anal. Methods 2013, 5, 2249–2257. [Google Scholar] [CrossRef]
- Honda, A.; Yamashita, K.; Miyazaki, H.; Shirai, M.; Ikegami, T.; Xu, G.; Numazawa, M.; Hara, T.; Matsuzaki, Y. Highly sensitive analysis of sterol profiles in human serum by LC-ESI-MS/MS. J. Lipid Res. 2008, 49, 2063–2073. [Google Scholar] [CrossRef] [PubMed]
- Honda, A.; Miyazaki, T.; Ikegami, T.; Iwamoto, J.; Yamashita, K.; Numazawa, M.; Matsuzaki, Y. Highly sensitive and specific analysis of sterol profiles in biological samples by HPLC-ESI-MS/MS. J. Steroid Biochem. Mol. Biol. 2010, 121, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Xu, X.; Tang, Z.; Guo, Y.; Fei, D.; Yan, N.; Hu, F. Analysis of 14 terpenoids and sterols and variety discrimination of Codonopsis Radix using ultra-high-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry. J. Sep. Sci. 2023, 46, 2200835. [Google Scholar] [CrossRef]
- Mendiara, I.; Domeño, C.; Nerín, C. Development of a fast sample treatment for the analysis of free and bonded sterols in human serum by LC-MS. J. Sep. Sci. 2012, 35, 3308–3316. [Google Scholar] [CrossRef]
- McDonald, J.G.; Smith, D.D.; Stiles, A.R.; Russell, D.W. A comprehensive method for extraction and quantitative analysis of sterols and secosteroids from human plasma. J. Lipid Res. 2012, 53, 1399–1409. [Google Scholar] [CrossRef]
- Schött, H.F.; Krautbauer, S.; Höring, M.; Liebisch, G.; Matysik, S. A Validated, Fast Method for Quantification of Sterols and Gut Microbiome Derived 5α/β-Stanols in Human Feces by Isotope Dilution LC-High-Resolution MS. Anal. Chem. 2018, 90, 8487–8494. [Google Scholar] [CrossRef]
- van der Ham, M.; Gerrits, J.; Prinsen, B.; van Hasselt, P.; Fuchs, S.; Jans, J.; Willems, A.; de Sain-van der Velden, M.G.M. UPLC-Orbitrap-HRMS application for analysis of plasma sterols. Anal. Chim. Acta 2024, 1296, 342347. [Google Scholar] [CrossRef]
- Toh, T.H.; Prior, B.A.; Van Der Merwe, M.J. Quantification of plasma membrane ergosterol of Saccharomyces cerevisiae by direct-injection atmospheric pressure chemical ionization/tandem mass spectrometry. Anal. Biochem. 2001, 288, 44–51. [Google Scholar] [CrossRef]
- Birk, J.J.; Dippold, M.; Wiesenberg, G.L.B.; Glaser, B. Combined quantification of faecal sterols, stanols, stanones and bile acids in soils and terrestrial sediments by gas chromatography-mass spectrometry. J. Chromatogr. A 2012, 1242, 1–10. [Google Scholar] [CrossRef]
- Feng, M.; Jin, Y.; Yang, S.; Joachim, A.M.; Ning, Y.; Mori-Quiroz, L.M.; Fromm, J.; Perera, C.; Zhang, K.; Werbovetz, K.A.; et al. Sterol profiling of Leishmania parasites using a new HPLC-tandem mass spectrometry-based method and antifungal azoles as chemical probes reveals a key intermediate sterol that supports a branched ergosterol biosynthetic pathway. Int. J. Parasitol. Drugs Drug Resist. 2022, 20, 27–42. [Google Scholar] [CrossRef]
- Jäpelt, R.B.; Silvestro, D.; Smedsgaard, J.; Jensen, P.E.; Jakobsen, J. LC-MS/MS with atmospheric pressure chemical ionisation to study the effect of UV treatment on the formation of vitamin D3 and sterols in plants. Food Chem. 2011, 129, 217–225. [Google Scholar] [CrossRef]
- Castellaneta, A.; Losito, I.; Leoni, B.; Renna, M.; Mininni, C.; Santamaria, P.; Calvano, C.D.; Cataldi, T.R.I.; Liebisch, G.; Matysik, S. A targeted GC-MS/MS approach for the determination of eight sterols in microgreen and mature plant material. J. Steroid Biochem. Mol. Biol. 2023, 232, 106361. [Google Scholar] [CrossRef]
- Wewer, V.; Dombrink, I.; Vom Dorp, K.; Dörmann, P. Quantification of sterol lipids in plants by quadrupole time-of-flight mass spectrometry. J. Lipid Res. 2011, 52, 1039–1054. [Google Scholar] [CrossRef]
- Qiu, J.; Li, T.; Zhu, Z.-J. Multi-dimensional characterization and identification of sterols in untargeted LC-MS analysis using all ion fragmentation technology. Anal. Chim. Acta 2021, 1142, 108–117. [Google Scholar] [CrossRef] [PubMed]
- Gachumi, G.; Demelenne, A.; Poudel, A.; Bashi, Z.D.; El-Aneed, A. Novel Fast Chromatography-Tandem Mass Spectrometric Quantitative Approach for the Determination of Plant-Extracted Phytosterols and Tocopherols. Molecules 2021, 26, 1402. [Google Scholar] [CrossRef] [PubMed]
- Peterka, O.; Kadyrbekova, Y.; Jirásko, R.; Lásko, Z.; Melichar, B.; Holčapek, M. Novel Charge-Switch Derivatization Method Using 3-(Chlorosulfonyl)benzoic Acid for Sensitive RP-UHPLC/MS/MS Analysis of Acylglycerols, Sterols, and Prenols. Anal. Chem. 2025, 97, 7157–7164. [Google Scholar] [CrossRef] [PubMed]
- Cinquepalmi, V.; Losito, I.; Castellaneta, A.; Calvano, C.D.; Cataldi, T.R.I. APCI-Multistage Mass Spectrometry Following Liquid Chromatography for Selected 4-Desmethyl-Sterols and Their Deuterium-Labelled Analogues Unveils Characteristic Fragmentation Routes for Cholesterol and Phytosterols Identification. Rapid Commun. Mass. Spectr. 2025, 39, e10039. [Google Scholar] [CrossRef]
- Losito, I.; Facchini, L.; Valentini, A.; Cataldi, T.R.I.; Palmisano, F. Fatty acidomics: Evaluation of the effects of thermal treatments on commercial mussels through an extended characterization of their free fatty acids by liquid chromatography—Fourier transform mass spectrometry. Food Chem. 2018, 255, 309–322. [Google Scholar] [CrossRef]
- Münger, L.H.; Boulos, S.; Nyström, L. UPLC-MS/MS based identification of dietary steryl glucosides by investigation of corresponding free sterols. Front. Chem. 2018, 6, 342. [Google Scholar] [CrossRef]
- Mo, S.; Dong, L.; Hurst, W.J.; Van Breemen, R.B. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography-tandem mass spectrometry. Lipids 2013, 48, 949–956. [Google Scholar] [CrossRef]
- Souza, C.M.; Schwabe, T.M.E.; Pichler, H.; Ploier, B.; Leitner, E.; Guan, X.L.; Wenk, M.R.; Riezman, I.; Riezman, H. A Stable Yeast Strain Efficiently Producing Cholesterol Instead of Ergosterol Is Functional for Tryptophan Uptake, but Not Weak Organic Acid Resistance. Metab. Eng. 2011, 13, 555–569. [Google Scholar] [CrossRef]
Cluster | Exact m/z Values | Intensity Relationships | Type of Product Ion and Related Structural Features | |||
---|---|---|---|---|---|---|
Side Chain- Related Ion | A/B or C/D Rings Ion | Cholesterol- Like Ion | Stigmasterol- Like Ion | |||
B | 69.0699 | 69.0699 >> 71.0855 | Δ24(24′), Δ24(25) Δ22(23), Δ5,22(23) | Δ7 and stanols | ||
71.0855 | 71.0855 > 69.0699 | Δ5 with saturated SC | ||||
C | 81.0699 | 81.0699 > 83.0855 | Δ5 with saturated SC Δ24(24′), Δ24(25), and stanols | |||
83.0855 | 83.0855 > 81.0699 | Δ22(23) alkylated at C24 | ||||
83.0855 > 50% | Δ7 | |||||
D | 95.0855 | 95.0855 > 80% | Δ7 and stanols | |||
F | 121.1012 | 121.1012 > 123.1168 | Δ5,22(23), Δ5 and Δ7 with ethylene group at C24, and Δ8,24(25) | |||
123.1168 | 123.1168 > 121.1012 | Δ5 and Δ7 with saturated SC, stanols, Δ5,24(25), Δ5 with methylene group at C24 | ||||
125.1325 | 125.1325 > 123.1168 | Δ5,7,22(23) methylated at C24 | ||||
G | 133.1012 | 133.1012 > 135.1168 | Δ5,7 | |||
H | 145.1012 | 145.1012 > 147.1168 | Δ5,7 | |||
147.1168 | 147.1168 >> 149.1325 | Δ5 | ||||
149.1325 | 149.1325 >> 147.1168 | Δ7, Δ8 and stanols | ||||
I | 159.1168 | 159.1168 > 161.1325 | Δ5,7 | |||
161.1325 | 161.1325 >> 163.1481 | Δ5 and Δ7 | ||||
163.1481 | 163.1481 > 161.1325 | Δ8 and stanols | ||||
J | 173.1324 | 173.1324 > 175.1481 | Δ22(23) | |||
175.1481 | 175.1481 >> 173.1324 | Δ24(24′), Δ24(25) and sterols with saturated SC | ||||
177.1638 | 177.1638 > 175.1481 | stanols | ||||
K | 185.1325 | 185.1325 > 187.1481 | Δ5,7,22(23) | |||
187.1481 | 187.1481 > 189.1638 | Δ22(23) | ||||
189.1638 | 189.1638 > 187.1481 | Δ24(25), sterols with saturated SC and stanols | ||||
191.1794 | 191.1794 >> 189.1638 | 4,4-dimethyl-Δ8,24(25) | ||||
L | 199.1481 | 199.1481 > 201.1638 | Δ5,7,22(23) | |||
201.1638 | 201.1638 > 203.1794 | Δ22(23) | ||||
203.1794 | 203.1794 ≥ 205.1951 | 4,4-dimethyl-Δ8,24(25) | ||||
M | 213.1638 | 213.1638 > 215.1790 | Δ5,7 | |||
217.1951 | 217.1951 > 215.1790 | 4,4-dimethyl-Δ8 and stanols | ||||
N | 227.1794 | 227.1794 > 229.1946 | Δ22(23) | |||
229.1946 | 229.1946 > 227.1794 | Δ5 and Δ7 with saturated SC, Δ24(24′) and Δ24(25) | ||||
231.2107 | 231.2107 > 229.1946 | 4,4-dimethyl-Δ8,24(25) and stanols | ||||
O | 239.1794 | 239.1794 > 241.1951 | Δ5,7,22(23) | |||
241.1951 | 241.1951 > 243.2107 | Δ22(23) and Δ24(24′) with ethylene group at C24 | ||||
243.2107 | 243.2107 > 241.1951 | sterols with saturated SC, stanols, Δ24(24′) with methylene group at C24 and Δ24(25) | ||||
247.2420 | 247.2420 > 243.2107 | stanols | ||||
P | 253.1951 | 253.1951 > 255.2103 | Δ5,7,22(23) | |||
255.2103 | 255.2103 ≥ 257.2269 | Δ22(23) and Δ24(24′) with ethylene group at C24 | ||||
257.2269 | 257.2269 > 259.2426 | sterols with saturated SC alkylated at C24, Δ7 with saturated unbranched SC | Δ24(25) | |||
259.2426 | 259.2426 > 257.2269 | Δ5 with saturated unbranched SC | ||||
261.2577 | 261.2577 > 259.2426 | stanols | ||||
R | 281.2264 | 281.2264 > 283.2420 | Δ5,7,22(23) | |||
283.2420 | 283.2420 > 285.2577 | Δ22(23) and Δ24(24′) | ||||
285.2577 | 285.2577 > 283.2420 | Δ24(25) | ||||
287.2733 | 287.2733 > 283.2420 | sterols with saturated SC | ||||
289.2890 | 289.2890 > 287.2733 | stanols | ||||
S | 295.2420 | 295.2420 > 297.2577 | Δ5,7,22(23) | |||
297.2577 | 297.2577 > 299.2739 | Δ24(24′) and Δ24(25) | ||||
299.2733 | 299.2739 > 297.2577 | Δ5-with saturated and unbranched SC. 4,4-dimethyl-Δ8,24(25) | ||||
301.2890 | 301.2890 > 299.2733 | Δ7-and stanols | ||||
T | 309.2577 | 309.2577 > 311.2733 | Δ5,7,22(23) | |||
311.2733 | 311.2733 > 313.2890 | Δ5,22(23), Δ5,24(24′) and Δ24(25) | ||||
315.3046 | 315.3046 > 313.2890 | Δ5 with ethyl group at C24, stanols |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cinquepalmi, V.; Losito, I.; Castellaneta, A.; Calvano, C.D.; Cataldi, T.R.I. Diagnostic Fragmentations of Animal and Fungal Sterols/Stanols Obtained by APCI–Tandem Mass Spectrometry: A Route Towards Unknown Free Sterol Identification. Metabolites 2025, 15, 674. https://doi.org/10.3390/metabo15100674
Cinquepalmi V, Losito I, Castellaneta A, Calvano CD, Cataldi TRI. Diagnostic Fragmentations of Animal and Fungal Sterols/Stanols Obtained by APCI–Tandem Mass Spectrometry: A Route Towards Unknown Free Sterol Identification. Metabolites. 2025; 15(10):674. https://doi.org/10.3390/metabo15100674
Chicago/Turabian StyleCinquepalmi, Valeria, Ilario Losito, Andrea Castellaneta, Cosima Damiana Calvano, and Tommaso R. I. Cataldi. 2025. "Diagnostic Fragmentations of Animal and Fungal Sterols/Stanols Obtained by APCI–Tandem Mass Spectrometry: A Route Towards Unknown Free Sterol Identification" Metabolites 15, no. 10: 674. https://doi.org/10.3390/metabo15100674
APA StyleCinquepalmi, V., Losito, I., Castellaneta, A., Calvano, C. D., & Cataldi, T. R. I. (2025). Diagnostic Fragmentations of Animal and Fungal Sterols/Stanols Obtained by APCI–Tandem Mass Spectrometry: A Route Towards Unknown Free Sterol Identification. Metabolites, 15(10), 674. https://doi.org/10.3390/metabo15100674