Development of an Alternative Protocol to Study Muscle Fatigue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Electromyography Analyses
2.3. Metabolite Analyses
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fitzgerald, R.F.; Stalder, K.J.; Matthews, J.O.; Schultz Kaster, C.M.; Johnson, A.K. Factors associated with fatigued, injured, and dead pig frequency during transport and lairage at a commercial abattoir. J. Anim. Sci. 2009, 87, 1156–1166. [Google Scholar] [CrossRef] [PubMed]
- Ritter, M.J.; Ellis, M.; Berry, N.L.; Curtis, S.E.; Anil, L.; Berg, E.; Benjamin, M.; Butler, D.; Dewey, C.; Driessen, B.; et al. Transport losses in market weight pigs: I. A review of definitions, incidence, and economic impact. Prof. Anim. Sci. 2009, 25, 404–414. [Google Scholar] [CrossRef]
- Anderson, D.B.; Ivers, D.J.; Benjamin, M.E.; Gonyou, H.W.; Jones, D.J.; Miller, K.D.; McGuffey, R.K.; Armstrong, T.A.; Mowrey, D.H.; Richardson, L.F.; et al. Physiological responses of market hogs to different handling practices. In Proceedings of the American Association of Swine Veterinarians, Proceedings, 33rd Annual Meeting, Kansas City, MO, USA, 2–5 March 2002; pp. 399–400. [Google Scholar]
- Doonan, G.; Benard, G.; Cormier, N. Swine veterinarians are a vital resource for minimizing the incidence of stressed pigs during transport. Can. Vet. J. 2014, 55, 491–493. [Google Scholar] [PubMed]
- Ritter, M.J.; Yoder, C.L.; Jones, C.L.; Carr, S.N.; Calvo-Lorenzo, M.S. Transport losses in market weight pigs: II. US incidence and economic impact. Transl. Anim. Sci. 2020, 4, 1103–1112. [Google Scholar] [CrossRef]
- Morris, B.K.; Davis, R.B.; Brokesh, E.; Flippo, D.K.; Houser, T.A.; Najar-Villarreal, F.; Turner, K.K.; Williams, J.G.; Stelzleni, A.M.; Gonzalez, J.M. Measurement of the three-axis vibration, temperature, and relative humidity profiles of commercial transport trailers for pigs. J. Anim. Sci. 2021, 99, skab027. [Google Scholar] [CrossRef] [PubMed]
- Enoka, R.M.; Duchateau, J. Muscle fatigue: What, why and how it influences muscle function. J. Physiol. 2008, 586, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Enoka, R.M.; Stuart., D.G. Neurobiology of muscle fatigue. J. Appl. Physiol. 1992, 72, 1631–1648. [Google Scholar] [CrossRef]
- Lorist, M.M.; Kernell, D.; Meijman, T.F.; Zijdewind, I. Motor fatigue and cognitive task performance in humans. J. Physiol. 2022, 545, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Zumbaugh, M.D.; Johnson, S.E.; Shi, T.H.; Gerrard, D.E. Molecular and biochemical regulation of skeletal muscle metabolism. J. Anim. Sci. 2022, 100, skac035. [Google Scholar] [CrossRef] [PubMed]
- Duboc, D.E.; Muffat-Joly, M.A.; Renault, G.; Degeorges, M.I.; Toussaint, M.A.; Pocidalo, J.J. In situ NADH laser fluorimetry of rat fast-and slow-twitch muscles during tetanus. J. Appl. Physiol. 1988, 64, 2692–2695. [Google Scholar] [CrossRef]
- Cantó, C.; Houtkooper, R.H.; Pirinen, E.; Youn, D.Y.; Oosterveer, M.H.; Cen, Y.; Fernandez-Marcos, P.J.; Yamamoto, H.; Andreux, P.A.; Cettour-Rose, P.; et al. The NAD+ precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab. 2012, 15, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Al-Mulla, M.R.; Sepulveda, F.; Colley, M. An autonomous wearable system for predicting and detecting localised muscle fatigue. Sensors 2011, 11, 1542–1557. [Google Scholar] [CrossRef]
- Bartuzi, P.; Roman-Liu, D.; Tokarski, T. A study of the influence of muscle type and muscle force level on individual frequency bands of the EMG power spectrum. Int. J. Occup. Saf. Ergon. 2007, 13, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Soares, F.A.; Carvalho JL, A.; Miosso, C.J.; de Andrade, M.M.; da Rocha, A.F. Motor unit action potential conduction velocity estimated from surface electromyographic signals using image processing techniques. Biomed. Eng. Online 2015, 14, 84. [Google Scholar] [CrossRef] [PubMed]
- Noel, J.A.; Broxterman, R.M.; McCoy, G.M.; Craig, J.C.; Phelps, K.J.; Burnett, D.D.; Vaughn, M.A.; Barstow, T.J.; O’Quinn, T.G.; Woodworth, J.C.; et al. Use of electromyography to detect muscle exhaustion in finishing barrows fed ractopamine HCl. J. Anim. Sci. 2016, 94, 2344–2356. [Google Scholar] [CrossRef] [PubMed]
- Eijsbouts, X.H.; Hopman, M.T.; Skinner, J.S. Effect of electrical stimulation of leg muscles on physiological responses during arm-cranking exercise in healthy men. Eur. J. Appl. Physiol. Occup. Physiol. 1997, 75, 177–181. [Google Scholar] [CrossRef]
- Banerjee, P.; Clark, A.; Witte, K.; Crowe, L.; Caulfield, B. Electrical stimulation of unloaded muscles causes cardiovascular exercise by increasing oxygen demand. Eur. J. Cardiovasc. Prev. Rehabil. 2005, 12, 503–508. [Google Scholar] [CrossRef]
- Kemmler, W.; Von Stengel, S.; Schwarz, J.; Mayhew, J.L. Effect of whole-body electromyostimulation on energy expenditure during exercise. J. Strength Cond. Res. 2012, 26, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Downey, R.J.; Cheng, T.H.; Bellman, M.J.; Dixon, W.E. Switched tracking control of the lower limb during asynchronous neuromuscular electrical stimulation: Theory and experiments. IEEE Trans. Cybern. 2016, 47, 1251–1262. [Google Scholar] [CrossRef] [PubMed]
- De Luca, C.J.; Gilmore, L.D.; Kuznetsov, M.; Roy, S.H. Filtering the surface EMG signal: Movement artifact and baseline noise contamination. J. Biomech. 2010, 43, 1573–1579. [Google Scholar] [CrossRef] [PubMed]
- Alcocer, H.M.; Gonzalez, J.M. Effects of Vitamin B3 Dose on Market Barrow Fatigue Onset and Gait. Master Thesis, Degree Granting Institution, University of Georgia, Department of Animal and Dairy Science, Athens, GA, USA, 2022. Available online: https://research.ebsco.com/linkprocessor/plink?id=9505b0fb-5e2d-3f5f-b7ed-04a9ea73bce3 (accessed on 10 November 2024).
- Hennesy, H.M.; Gravely, M.E.; Alambarrio, D.A.; Brannen, S.R.; McDonald, J.J.; Devane, S.A.; Turner, K.K.; Stelzleni, A.M.; O’Quinn, T.G.; Gonzalez, J.M. Ability of Nicotinamide Riboside to Prevent Muscle Fatigue of Barrows Subjected to a Performance Test. Metabolites 2024, 14, 424. [Google Scholar] [CrossRef]
- Williams, J.M. Electromyography in the horse: A useful technology? J. Equine Vet. Sci. 2018, 60, 43–58. [Google Scholar] [CrossRef]
- Blumenfeld, H. Cellular and network mechanisms of spike-wave seizures. Epilepsia 2005, 46, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Hsu, M.J.; Wei, S.H.; Chang, Y.J. Effect of neuromuscular electrical muscle stimulation on energy expenditure in healthy adults. Sensors 2011, 11, 1932–1942. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.A.; Bigland-Ritchie, B.; Edwards, R.H.T. Excitation frequency and muscle fatigue: Mechanical responses during voluntary and stimulated contractions. Exp. Neurol. 1979, 64, 401–413. [Google Scholar] [CrossRef] [PubMed]
- Cockram, M.S.; Murphy, E.; Ringrose, S.; Wemelsfelder, F.; Miedema, H.M.; Sandercock, D.A. Behavioural and physiological measures following treadmill exercise as potential indicators to evaluate fatigue in sheep. Animal 2012, 6, 1491–1502. [Google Scholar] [CrossRef] [PubMed]
- Hagg, G.M. Interpretation of EMG spectral alterations and alteration indexes at sustained contraction. J. Appl. Physiol. 1992, 73, 1211–1217. [Google Scholar] [CrossRef]
- Racinais, S.; Bishop, D.; Denis, R.; Lattier, G.; Mendez-Villaneuva, A.; Perrey, S. Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling. Med. Sci. Sports Exerc. 2007, 39, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, D.N.; Elis, M.; Bertol, T.M.; Miller, K.D. Effects of handling intensity and live weight on blood acid-base status in finishing pigs. J. Anim. Sci. 2004, 82, 2405–2409. [Google Scholar] [CrossRef] [PubMed]
- Kortianou, E.A.; Papafilippou, E.K.; Karagkounis, A. Respiratory, cardiac and metabolic responses during electrical muscle stimulation in quadriceps muscle versus comparable voluntary muscle contractions. Scand. J. Clin. Lab. Investig. 2021, 81, 12–17. [Google Scholar] [CrossRef] [PubMed]
- England, E.M.; Matarneh, S.K.; Mitacek, R.M.; Abraham, A.; Ramanathan, R.; Wicks, J.C.; Shi, H.; Scheffler, T.L.; Oliver, E.M.; Helm, E.T.; et al. Presence of oxygen and mitochondria in skeletal muscle early postmortem. Meat Sci. 2018, 139, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, S.S.; England, E.M. Postmortem glycolysis and glycogenolysis: Insights from species comparisons. Meat Sci. 2018, 144, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Hellsten-Westing, Y.; Sollevi, A.; Sjödin, B. Plasma accumulation of hypoxanthine, uric acid and creatine kinase following exhausting runs of differing durations in man. Eur. J. Appl. Physiol. Occup. Physiol. 1991, 62, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Muroya, S.; Oe, M.; Nakajima, I.; Ojima, K.; Chikuni, K. CE-TOF MS-based metabolomic profiling revealed characteristic metabolic pathways in postmortem porcine fast and slow type muscles. Meat Sci. 2014, 98, 726–735. [Google Scholar] [CrossRef]
- Bogan, K.L.; Brenner, C. Nicotinic acid, nicotinamide, and nicotinamide riboside: A molecular evaluation of NAD+ precursor vitamins in human nutrition. Annu. Rev. Nutr. 2008, 28, 115–130. [Google Scholar] [CrossRef]
- Mayevsky, A.; Rogatsky, G.G. Mitochondrial function in vivo evaluated by NADH fluorescence: From animal models to human studies. Am. J. Physiol.-Cell Physiol. 2007, 292, C615–C640. [Google Scholar] [CrossRef]
- Jöbsis, F.F.; Stainsby, W.N. Oxidation of NADH during contractions of circulated mammalian skeletal muscle. Respir. Physiol. 1968, 4, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, B.R.; Graham, T.E.; Barclay, J.K. Hyperoxia, mitochondrial redox state, and lactate metabolism of in situ canine muscle. Am. J. Physiol.-Cell Physiol. 1987, 253, C263–C268. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, A.E.; Lamont, I.L. Biochemistry changes that occur after death: Potential markers for determining post-mortem interval. PLoS ONE 2013, 8, e82011. [Google Scholar] [CrossRef] [PubMed]
- Ohmura, H.; Mukai, K.; Takahashi, Y.; Takahashi, T. Metabolomic analysis of skeletal muscle before and after strenuous exercise to fatigue. Sci. Rep. 2021, 11, 11261. [Google Scholar] [CrossRef] [PubMed]
Treatment 1 | p-Value 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Control | Stimulated | SEM | |||||||
Muscle 3 | Pre | Post | Pre | Post | TRT | Muscle | Period | Interactions | |
Bicep femoris, m/z | |||||||||
ADP | 1171.84 | 979.66 | 1094.07 | 1151.48 | 182.84 | 0.84 | 0.55 | 0.06 | ≥0.21 |
NADH | 858.68 | 1289.03 | 1231.12 | 1395.19 | 539.20 | 0.36 | 0.62 | 0.31 | ≥0.34 |
Semitendinosus, m/z | |||||||||
ADP | 1276.36 | 1020.67 | 1357.12 | 976.57 | 162.08 | 0.84 | 0.55 | 0.06 | ≥0.21 |
NADH | 813.99 | 686.34 | 926.84 | 1734.59 | 471.44 | 0.36 | 0.62 | 0.31 | ≥0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alambarrio, D.A.; Morris, B.K.; Davis, R.B.; Grabarczyk, E.B.; Turner, K.K.; Gonzalez, J.M. Development of an Alternative Protocol to Study Muscle Fatigue. Metabolites 2025, 15, 54. https://doi.org/10.3390/metabo15010054
Alambarrio DA, Morris BK, Davis RB, Grabarczyk EB, Turner KK, Gonzalez JM. Development of an Alternative Protocol to Study Muscle Fatigue. Metabolites. 2025; 15(1):54. https://doi.org/10.3390/metabo15010054
Chicago/Turabian StyleAlambarrio, Daniela A., Benjamin K. Morris, R. Benjamin Davis, Emily B. Grabarczyk, Kari K. Turner, and John M. Gonzalez. 2025. "Development of an Alternative Protocol to Study Muscle Fatigue" Metabolites 15, no. 1: 54. https://doi.org/10.3390/metabo15010054
APA StyleAlambarrio, D. A., Morris, B. K., Davis, R. B., Grabarczyk, E. B., Turner, K. K., & Gonzalez, J. M. (2025). Development of an Alternative Protocol to Study Muscle Fatigue. Metabolites, 15(1), 54. https://doi.org/10.3390/metabo15010054