Association of Initial Muscle Fitness with Weight Loss and Metabolically Healthy Status in Children and Adolescents with Obesity: A Retrospective Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Database
2.2. Diet and Exercise Protocol
2.3. Data Collection
2.4. Definition of High-MF and Low-MF
2.5. Definition of MHO and MUO
2.6. Statistical Analyses
3. Results
3.1. Basic Characteristics of the Two Groups
3.2. Distribution of Indicators Related to Metabolically Healthy Status in the Low MF and High MF Groups before and after Intervention
3.3. Distribution of Indicators Related to Metabolically Healthy Status in the Low MF and High MF Groups among Different Sex before and after Intervention
3.4. Changes of Anthropometry and Blood Indicators in Low MF and High MF Groups before and after Intervention
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jebeile, H.; Kelly, A.S.; O’Malley, G.; Baur, L.A. Obesity in children and adolescents: Epidemiology, causes, assessment, and management. Lancet Diabetes Endocrinol. 2022, 10, 351–365. [Google Scholar] [CrossRef] [PubMed]
- The 2020 report on nutrition and chronic diseases status of Chinese residents. Acta Nutr. Sin. 2020, 42, 521.
- Chung, S.T.; Krenek, A.; Magge, S.N. Childhood obesity and cardiovascular disease risk. Curr. Atheroscler. Rep. 2023, 25, 405–415. [Google Scholar] [CrossRef]
- Duque, A.P.; Rodrigues Junior, L.F.; Mediano, M.F.F.; Tibiriça, E.; De Lorenzo, A. Emerging concepts in metabolically healthy obesity. Am. J. Cardiovasc. Dis. 2020, 10, 48–61. [Google Scholar] [PubMed]
- Blüher, M. Metabolically Healthy Obesity. Endocr. Rev. 2020, 41, bnaa004. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wang, K.; Tian, Q.; Zhang, J.; Qi, L.; Chen, T. Effect of diet and exercise-induced weight loss among metabolically healthy and metabolically unhealthy obese children and adolescents. Int. J. Environ. Res. Public Health 2022, 19, 6120. [Google Scholar] [CrossRef]
- Abiri, B.; Valizadeh, M.; Amini, S.; Kelishadi, R.; Hosseinpanah, F. Risk factors, cutoff points, and definition of metabolically healthy/unhealthy obesity in children and adolescents: A scoping review of the literature. Obes. Rev. 2023, 24, e13548. [Google Scholar] [CrossRef]
- Artero, E.G.; España-Romero, V.; Jiménez-Pavón, D.; Martinez-Gómez, D.; Warnberg, J.; Gómez-Martínez, S.; González-Gross, M.; Vanhelst, J.; Kafatos, A.; Molnar, D.; et al. Muscular fitness, fatness and inflammatory biomarkers in adolescents. Pediatr. Obes. 2014, 9, 391–400. [Google Scholar] [CrossRef]
- Artero, E.G.; Lee, D.-C.; Lavie, C.J.; España-Romero, V.; Sui, X.; Church, T.S.; Blair, S.N.P. Effects of muscular strength on cardiovascular risk factors and prognosis. J. Cardiopulm. Rehabil. Prev. 2012, 32, 351–358. [Google Scholar] [CrossRef]
- Silventoinen, K.; Magnusson, P.K.; Tynelius, P.; Batty, G.D.; Rasmussen, F. Association of body size and muscle strength with incidence of coronary heart disease and cerebrovascular diseases: A population-based cohort study of one million Swedish men. Int. J. Epidemiol. 2009, 38, 110–118. [Google Scholar] [CrossRef]
- Pilli, N.M.; Kybartas, T.J.; Lagally, K.M.; Laurson, K.R. Low muscular strength, weight status, and metabolic syndrome in adolescents: National health and nutrition examination survey 2011–2014. Pediatr. Exerc. Sci. 2021, 33, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Kuo, K.; Zhang, Y.R.; Chen, S.D.; He, X.Y.; Huang, S.Y.; Wu, B.S.; Deng, Y.T.; Yang, L.; Ou, Y.N.; Guo, Y.; et al. Associations of grip strength, walking pace, and the risk of incident dementia: A prospective cohort study of 340212 participants. Alzheimers Dement. 2023, 19, 1415–1427. [Google Scholar] [CrossRef] [PubMed]
- Steene-Johannessen, J.; Anderssen, S.A.; Kolle, E.; Andersen, L.B. Low muscle fitness is associated with metabolic risk in youth. Med. Sci. Sports Exerc. 2009, 41, 1361–1367. [Google Scholar] [CrossRef] [PubMed]
- Pratt, J.; De Vito, G.; Narici, M.; Segurado, R.; Dolan, J.; Conroy, J.; Boreham, C. Grip strength performance from 9431 participants of the GenoFit study: Normative data and associated factors. GeroScience 2021, 43, 2533–2546. [Google Scholar] [CrossRef]
- Celis-Morales, C.A.; Welsh, P.; Lyall, D.M.; Steell, L.; Petermann, F.; Anderson, J.; Iliodromiti, S.; Sillars, A.; Graham, N.; Mackay, D.F.; et al. Associations of grip strength with cardiovascular, respiratory, and cancer outcomes and all cause mortality: Prospective cohort study of half a million UK Biobank participants. BMJ 2018, 361, k1651. [Google Scholar] [CrossRef]
- Celik, O.; Yildiz, B.O. Obesity and physical exercise. Minerva Endocrinol. 2021, 42, 131–144. [Google Scholar] [CrossRef]
- Wang, R.; Chen, P.J.; Chen, W.H. Diet and exercise improve neutrophil to lymphocyte ratio in overweight adolescents. Int. J. Sports Med. 2011, 32, 982–986. [Google Scholar]
- Genoni, G.; Menegon, V.; Monzani, A.; Archero, F.; Tagliaferri, F.; Mancioppi, V.; Peri, C.; Bellone, S.; Prodam, F. Healthy lifestyle intervention and weight loss improve cardiovascular dysfunction in Children with obesity. Nutrients 2021, 13, 1301. [Google Scholar] [CrossRef]
- Wang, S.S.; Lay, S.; Yu, H.N.; Shen, S.R. Dietary guidelines for Chinese residents (2016): Comments and comparisons. J. Zhejiang Univ. Sci. B 2016, 17, 649–656. [Google Scholar] [CrossRef]
- Lai, A.; Chen, W.; Helm, K. Effects of visfatin gene polymorphism RS4730153 on exercise-induced weight loss of obese children and adolescents of Han Chinese. Int. J. Biol. Sci. 2013, 9, 16–21. [Google Scholar] [CrossRef]
- Swain, D.P. Energy cost calculations for exercise prescription: An update. Sports Med. 2000, 30, 17–22. [Google Scholar] [CrossRef]
- Yang, Q.; Huang, G.; Tian, Q.; Liu, W.; Sun, X.; Li, N.; Sun, S.; Zhou, T.; Wu, N.; Wei, Y.; et al. “Living High-Training Low” improved weight loss and glucagon-like peptide-1 level in a 4-week weight loss program in adolescents with obesity: A pilot study. Medicine 2018, 97, e9943. [Google Scholar] [CrossRef]
- Ji, L.; Yin, X.; Wu, H.P.; Yang, X.F.; Liu, Y. An Exploratory study on the physical health evaluation standards of Chinese children and adolescents under the background of “integration of sports and education”. China Sport Sci. 2021, 41, 42–54. [Google Scholar]
- National Health Commission. Reference of Screening for Elevated Blood Pressure among Children and Adolescents Aged 7~18 Years; National Health Commission: Beijing, China, 2018. [Google Scholar]
- National Health Commission. High Waist Circumference Screening Threshold among Children and Adolescents Aged 7~18 Years; National Health Commission: Beijing, China, 2018. [Google Scholar]
- Ramírez-Vélez, R.; Meneses-Echavez, J.F.; González-Ruíz, K.; Correa, J.E. Muscular fitness and cardiometabolic risk factors among Colombian young adults. Nutr. Hosp. 2014, 30, 769–775. [Google Scholar]
- van Vliet-Ostaptchouk, J.V.; Nuotio, M.-L.; Slagter, S.N.; Doiron, D.; Fischer, K.; Foco, L.; Gaye, A.; Gögele, M.; Heier, M.; Hiekkalinna, T.; et al. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: A collaborative analysis of ten large cohort studies. BMC Endocr. Disord. 2014, 14, 9. [Google Scholar] [CrossRef]
- Rey-López, J.P.; de Rezende, L.F.; Pastor-Valero, M.; Tess, B.H. The prevalence of metabolically healthy obesity: A systematic review and critical evaluation of the definitions used. Obes. Rev. 2014, 15, 781–790. [Google Scholar] [CrossRef]
- Cherqaoui, R.; Kassim, T.A.; Kwagyan, J.; Freeman, C.; Nunlee-Bland, G.; Ketete, M.; Xu, S.; Randall, O.S. The metabolically healthy but obese phenotype in African Americans. J. Clin. Hypertens. 2012, 14, 92–96. [Google Scholar] [CrossRef]
- Genovesi, S.; Antolini, L.; Orlando, A.; Gilardini, L.; Bertoli, S.; Giussani, M.; Invitti, C.; Nava, E.; Battaglino, M.G.; Leone, A.; et al. Cardiovascular risk factors associated with the metabolically healthy obese (MHO) phenotype compared to the metabolically unhealthy obese (MUO) phenotype in children. Front. Endocrinol. 2020, 11, 27. [Google Scholar] [CrossRef]
- Chen, F.; Liu, J.; Yan, Y.; Mi, J.; China Child and Adolescent Cardiovascular Health (CCACH) Study Group. Abnormal metabolic phenotypes among urban chinese children: Epidemiology and the impact of DXA-Measured body composition. Obesity 2019, 27, 837–844. [Google Scholar] [CrossRef]
- Dundar, I.; Akinci, A. Prevalence and predictive clinical characteristics of metabolically healthy obesity in obese children and adolescents. Cureus 2023, 15, e35935. [Google Scholar] [CrossRef]
- Cai, S.; Dang, J.; Zhong, P.; Ma, N.; Liu, Y.; Shi, D.; Zou, Z.; Dong, Y.; Ma, J.; Song, Y. Sex differences in metabolically healthy and metabolically unhealthy obesity among Chinese children and adolescents. Front. Endocrinol. 2022, 13, 980332. [Google Scholar]
- Reinehr, T.; Wolters, B.; Knop, C.; Lass, N.; Holl, R.W. Strong effect of pubertal status on metabolic health in obese children: A longitudinal study. J. Clin. Endocrinol. Metab. 2015, 100, 301–308. [Google Scholar] [CrossRef]
- Santos, H.O.; Lavie, C.J. Weight loss and its influence on high-density lipoprotein cholesterol (HDL-C) concentrations: A noble clinical hesitation. Clin. Nutr. ESPEN 2021, 42, 90–92. [Google Scholar] [CrossRef] [PubMed]
- Kakaraparthi, L.; Gadhavi, B.; Kakaraparthi, V.N.; Reddy, R.S.; Tedla, J.S.; Samuel, P.S. Handgrip strength and its correlation with anthropometric determinants and hand dimensions in children aged 6–12 years: A cross-sectional study. Work 2023, 74, 711–721. [Google Scholar] [CrossRef]
- Confortin, S.C.; Aristizábal, L.Y.G.; Bragança, M.L.B.M.; Cavalcante, L.C.; Alves, J.D.d.A.; Batista, R.F.L.; Simões, V.M.F.; Viola, P.C.d.A.F.; Barbosa, A.R.; Silva, A.A.M.D. Are Fat Mass and Lean Mass Associated with Grip Strength in Adolescents? Nutrients 2022, 14, 3259. [Google Scholar] [CrossRef]
- Agostinis-Sobrinho, C.; Ruiz, J.R.; Moreira, C.; Lopes, L.; Ramírez-Vélez, R.; García-Hermoso, A.; Mota, J.; Santos, R. Changes in muscular fitness and its association with blood pressure in adolescents. Eur. J. Pediatr. 2018, 177, 1101–1109. [Google Scholar] [CrossRef]
- Dong, B.; Wang, Z.; Arnold, L.; Song, Y.; Wang, H.J.; Ma, J. The association between blood pressure and grip strength in adolescents: Does body mass index matter? Hypertens. Res. 2016, 39, 919–925. [Google Scholar] [CrossRef]
- Zhang, R.; Li, C.; Liu, T.; Zheng, L.; Li, S. Handgrip strength and blood pressure in children and adolescents: Evidence from NHANES 2011 to 2014. Am. J. Hypertens. 2018, 31, 792–796. [Google Scholar] [CrossRef]
- Neu, C.M.; Rauch, F.; Rittweger, J.; Manz, F.; Schoenau, E. Influence of puberty on muscle development at the forearm. Am. J. Physiol. Endocrinol. Metab. 2002, 283, E103–E107. [Google Scholar] [CrossRef]
- Wen, J.; Wang, J.; Xu, Q.; Wei, Y.; Zhang, L.; Ou, J.; Hong, Q.; Ji, C.; Chi, X.; Tong, M. Hand anthropometry and its relation to grip/pinch strength in children aged 5 to 13 years. J. Int. Med. Res. 2020, 48, 300060520970768. [Google Scholar] [CrossRef]
- Gerken, A.L.H.; Rohr-Kräutle, K.-K.; Weiss, C.; Seyfried, S.; Reissfelder, C.; Vassilev, G.; Otto, M. Handgrip strength and phase angle predict outcome after bariatric surgery. Obes. Surg. 2021, 31, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Otto, M.; Kautt, S.; Kremer, M.; Kienle, P.; Post, S.; Hasenberg, T. Handgrip strength as a predictor for post bariatric body composition. Obes. Surg. 2014, 24, 2082–2088. [Google Scholar] [CrossRef] [PubMed]
Variable | Low MF | High MF | Total | p Value |
---|---|---|---|---|
N (%) | 188 (66.7%) | 94 (33.3%) | 282 (100%) | / |
Age (y) | 12.3 ± 2.3 | 13.5 ± 2.1 | 12.9 ± 2.3 | 0.074 |
Sex (M/F) | 100/88 | 51/43 | 151/131 | 0.866 |
Height (cm) | 161.6 ± 11.1 | 164 ± 10.5 | 162.4 ± 11 | 0.049 |
BW (kg) | 80.4 ± 20 | 84.2 ± 18 | 81.7 ± 19.4 | 0.073 |
BMI (kg/m2) | 30.3 ± 4.5 | 31 ± 4.3 | 30.5 ± 4.5 | 0.208 |
BFR (%) | 40.4 ± 5.2 | 39.6 ± 5.2 | 40.1 ± 5.2 | 0.213 |
CC (cm) | 98.3 ± 11 | 100.1 ± 9.6 | 98.9 ± 10.6 | 0.261 |
WC (cm) | 96.6 ± 11.8 | 98.9 ± 10.4 | 97.4 ± 11.4 | 0.122 |
HC (cm) | 105.1 ± 10.6 | 107.4 ± 9.4 | 105.8 ± 10.3 | 0.142 |
WHR | 0.92 ± 0.07 | 0.92 ± 0.06 | 0.92 ± 0.07 | 0.903 |
HDL-C (mmol/L) | 1.2 ± 0.2 | 1.2 ± 0.2 | 1.2 ± 0.2 | 0.122 |
LDL-C (mmol/L) | 2.7 ± 0.7 | 2.8 ± 0.7 | 2.8 ± 0.7 | 0.310 |
TG (mmol/L) | 1 ± 0.5 | 1 ± 0.4 | 1 ± 0.5 | 0.615 |
TC (mmol/L) | 4.4 ± 0.9 | 4.5 ± 0.9 | 4.4 ± 0.9 | 0.351 |
SBP (mmHg) | 117.5 ± 15.3 | 120.7 ± 15 | 118.6 ± 15.3 | 0.103 |
DBP (mmHg) | 72.1 ± 12.9 | 74.6 ± 15.5 | 72.9 ± 13.9 | 0.216 |
FBG (mmol/L) | 4.6 ± 0.4 | 4.6 ± 0.4 | 4.6 ± 0.4 | 0.515 |
Variable | Low MF (n = 188) | High MF (n = 94) | ||||||
---|---|---|---|---|---|---|---|---|
MHO | MUO | MHO | MUO | |||||
Before (%) | After (%) | Before (%) | After (%) | Before (%) | After (%) | Before (%) | After (%) | |
N | 76 (40.4) | 47 (25) | 112 (59.6) | 72 (38.3) | 26 (27.7) | 17 (18.1) | 68 (72.3) * | 49 (52.1) |
BMI > 95th percentile 1 | 76 (40.4) | 68 (36.2) | 112 (59.6) | 100 (53.2) | 26 (27.7) | 26 (27.7) | 68 (72.3) | 64 (68.1) |
HDL-C ≤ 1.03 mmol/L | 0 (0) | 24 (12.8) | 45 (23.9) | 60 (31.9) | 0 (0) | 5 (5.3) | 31 (33) | 42 (44.7) ## |
TG > 1.7 mmol/L | 0 (0) | 0 (0) | 16 (8.5) | 2 (1.1) | 0 (0) | 0 (0) | 6 (6.4) | 0 (0) |
SBP > 90th percentile 1 | 0 (0) | 5 (2.7) | 70 (37.2) | 21 (11.2) | 0 (0) | 2 (2.1) | 47 (50) | 15 (16) |
DBP > 90th percentile 1 | 0 (0) | 3 (1.6) | 54 (28.7) | 23 (12.2) | 0 (0) | 3 (3.2) | 34 (36.2) | 9 (9.6) |
FBG > 5.6 mmol/L | 0 (0) | 1 (0.5) | 2 (1.1) | 0 (0) | 0 (0) | 0 (0) | 1 (1.1) | 0 (0) |
Variable | Low MF (n = 188) | High MF (n = 94) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Males | Females | Total | Males | Females | Total | |||||||
Before (%) | After (%) | Before (%) | After (%) | Before (%) | After (%) | Before (%) | After (%) | Before (%) | After (%) | Before (%) | After (%) | |
BMI > 95th percentile 1 | 100 (53.2) | 91 (48.4) | 88 (46.8) | 77 (41) | 188 (100) | 168 (89.4) | 51 (54.3) | 48 (51.1) | 43 (45.7) | 42 (44.7) | 94 (100) | 90 (95.7) |
HDL-C ≤ 1.03 mmol/L | 30 (16) | 55 (29.3) | 15 (8) | 29 (15.4) | 45 (23.9) | 84 (44.7) | 18 (19.1) | 30 (31.9) | 13 (13.8) | 17 (18.1) | 31 (33) | 47 (50) |
TG > 1.7 mmol/L | 11 (5.9) | 1 (0.5) | 5 (2.7) | 1 (0.5) | 16 (8.5) | 2 (1.1) | 3 (3.2) | 0 (0) | 3 (3.2) | 0 (0) | 6 (6.4) | 0 (0) |
SBP > 90th percentile 1 | 42 (22.3) | 16 (8.5) | 28 (14.9) | 10 (5.3) | 70 (37.2) | 26 (13.8) | 25 (26.6) | 3 (3.2) | 22 (23.4) | 14 (14.9) | 47 (50) | 17 (18.1) |
DBP > 90th percentile 1 | 29 (15.4) | 18 (9.6) | 25 (13.3) | 8 (4.3) | 54 (28.7) | 26 (13.8) | 15 (16) | 5 (5.3) | 19 (20.2) | 7 (7.4) | 34 (36.2) | 12 (12.8) |
FBG > 5.6 mmol/L | 1 (0.5) | 0 (0) | 1 (0.5) | 1 (0.5) | 2 (1.1) | 1 (0.5) | 1 (1.1) | 0 (0) | 0 (0) | 0 (0) | 1 (1.1) | 0 (0) |
Variable | Low MF | High MF | ||||||
---|---|---|---|---|---|---|---|---|
Males (n = 100) | Females (n = 88) | Males (n = 51) | Females (n = 43) | |||||
Before | After | Before | After | Before | After | Before | After | |
BFR (%) | 39.9 ± 5.2 | 35.3 ± 5.6 ΔΔ | 41 ± 5.2 | 36.7 ± 6.4 ΔΔ | 38 ± 5.6 * | 32.7 ± 6.5 ΔΔ | 41.5 ± 4 ## | 37.1 ± 5.4 ΔΔ |
BW (kg) | 86.4 ± 21.4 | 78 ± 19.3 ΔΔ | 73.6 ± 15.9 ## | 67.1 ± 15 ΔΔ§§ | 85.7 ± 18.4 | 77.3 ± 16.8 ΔΔ | 82.4 ± 17.7 ** | 75.1 ± 16.4 ΔΔ§ |
BMI (kg/m2) | 31.6 ± 4.4 | 28.4 ± 4.1 ΔΔ | 28.9 ± 4.3 ## | 26.3 ± 4 ΔΔ§§ | 30.7 ± 4 | 27.6 ± 3.6 ΔΔ | 31.4 ± 4.7 ** | 28.5 ± 4.4 ΔΔ |
Grip strength (kg) | 25.2 ± 9 | 26.9 ± 9.4 ΔΔ | 20.6 ± 5.2 ## | 21.5 ± 6 ΔΔ§ | 32.5 ± 10.7 ** | 31.3 ± 11.2 ΔϮ | 28.1 ± 7.2 ** | 28 ± 7.5 |
Grip strength index | 0.29 ± 0.07 | 0.34 ± 0.07 ΔΔ | 0.28 ± 0.05 | 0.32 ± 0.07 ΔΔ§ | 0.38 ± 0.08 ** | 0.4 ± 0.09 ΔΔ | 0.34 ± 0.05 **# | 0.37 ± 0.07 ΔΔ |
CC (cm) | 101 ± 10.6 | 93.5 ± 9.6 ΔΔ | 95.4 ± 10.7 ## | 88.9 ± 9.9 ΔΔ | 99.8 ± 9.4 | 91.9 ± 9.5 ΔΔ | 100.5 ± 9.9 * | 94.1 ± 9.2 ΔΔ |
WC (cm) | 101.2 ± 11.3 | 91.9 ± 10.8 ΔΔ | 91.5 ± 10.2 ## | 83.1 ± 9.8 ΔΔ | 100.4 ± 9.6 | 88.5 ± 9.7 ΔΔϮϮ | 97 ± 11 ** | 87.4 ± 10.6 ΔΔ |
HC (cm) | 106.2 ± 10.6 | 100.5 ± 10.2 ΔΔ | 103.7 ± 10.6 | 98 ± 10.2 ΔΔ | 106.2 ± 9.2 | 99.1 ± 9 ΔΔϮ | 108.7 ± 9.6 * | 102.7 ± 9.6 ΔΔ |
WHR (cm) | 0.95 ± 0.05 | 0.91 ± 0.06 ΔΔ | 0.88 ± 0.07 ## | 0.85 ± 0.07 ΔΔ§ | 0.95 ± 0.05 | 0.89 ± 0.05 ΔΔϮ | 0.89 ± 0.06 ## | 0.85 ± 0.06 ΔΔ |
SBP (mmHg) | 121.8 ± 15.6 | 110.6 ± 13.2 ΔΔ | 112.5 ± 13.4 ## | 103.9 ± 10.8 ΔΔ | 122.1 ± 16.1 | 109.3 ± 10.7 ΔΔ | 119.1 ± 13.7 * | 110.7 ± 15.7 ΔΔ |
DBP (mmHg) | 73.3 ± 14.8 | 65.9 ± 10.9 ΔΔ | 70.7 ± 10.4 | 62.8 ± 10.3 ΔΔ | 74.5 ± 16.8 | 63.9 ± 12 ΔΔ | 74.7 ± 14 | 65.2 ± 12 ΔΔ |
RHR (beats/min) | 92.2 ± 12 | 81.8 ± 12.9 ΔΔ | 90.5 ± 13.2 | 80.7 ± 12.1 ΔΔ | 91.6 ± 13.2 | 78.3 ± 9.9 ΔΔ | 92.7 ± 13.5 | 85.7 ± 15 ΔΔ§§ |
FBG (mmol/L) | 4.6 ± 0.4 | 4.5 ± 0.3 | 4.6 ± 0.5 | 4.4 ± 0.5 ΔΔ | 4.6 ± 0.4 | 4.4 ± 0.4 ΔΔ | 4.6 ± 0.3 | 4.5 ± 0.3 |
TG (mmol/L) | 1 ± 0.6 | 0.7 ± 0.3 ΔΔ | 0.9 ± 0.5 | 0.8 ± 0.3 ΔΔ | 1 ± 0.5 | 0.7 ± 0.2 ΔΔϮ | 0.9 ± 0.4 | 0.8 ± 0.2 Δ§§ |
TC (mmol/L) | 4.5 ± 1 | 3.5 ± 0.6 ΔΔ | 4.4 ± 0.8 | 3.6 ± 0.7 ΔΔ§§ | 4.7 ± 0.9 | 3.3 ± 0.4 ΔΔϮϮ | 4.4 ± 0.8 | 3.7 ± 0.6 ΔΔ§§ |
HDL-C (mmol/L) | 1.2 ± 0.3 | 1.1 ± 0.2 ΔΔ | 1.2 ± 0.2 | 1.2 ± 0.2 ΔΔ§§ | 1.2 ± 0.3 | 1 ± 0.2 ΔΔ | 1.2 ± 0.2 | 1.1 ± 0.3 Δ§§ |
LDL-C (mmol/L) | 2.8 ± 0.7 | 2 ± 0.5 ΔΔ | 2.7 ± 0.7 | 2 ± 0.5 ΔΔ§ | 2.9 ± 0.7 | 1.9 ± 0.4 ΔΔϮ | 2.7 ± 0.6 | 2.1 ± 0.5 ΔΔ§§ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shang, W.; Kong, J.; Zhang, M.; Chen, T.; Zhao, L.; Wang, K.; Yang, Q. Association of Initial Muscle Fitness with Weight Loss and Metabolically Healthy Status in Children and Adolescents with Obesity: A Retrospective Study. Metabolites 2024, 14, 468. https://doi.org/10.3390/metabo14090468
Shang W, Kong J, Zhang M, Chen T, Zhao L, Wang K, Yang Q. Association of Initial Muscle Fitness with Weight Loss and Metabolically Healthy Status in Children and Adolescents with Obesity: A Retrospective Study. Metabolites. 2024; 14(9):468. https://doi.org/10.3390/metabo14090468
Chicago/Turabian StyleShang, Wenya, Jiaqi Kong, Mengxue Zhang, Tao Chen, Linlin Zhao, Kun Wang, and Qin Yang. 2024. "Association of Initial Muscle Fitness with Weight Loss and Metabolically Healthy Status in Children and Adolescents with Obesity: A Retrospective Study" Metabolites 14, no. 9: 468. https://doi.org/10.3390/metabo14090468
APA StyleShang, W., Kong, J., Zhang, M., Chen, T., Zhao, L., Wang, K., & Yang, Q. (2024). Association of Initial Muscle Fitness with Weight Loss and Metabolically Healthy Status in Children and Adolescents with Obesity: A Retrospective Study. Metabolites, 14(9), 468. https://doi.org/10.3390/metabo14090468