Impact of Varying Dietary Calcium Contents on the Gut Metabolomics of Yunnan Semi-Fine Wool Sheep (Ovis aries)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Station and Approval
2.2. Research Design and Husbandry Practices
2.3. Fecal Sample Collection and Metabolite Extraction
2.4. Bioinformatics and Statistical Analysis
3. Results
3.1. Fecal Metabolite Identification, Quantification, and Annotation
3.2. Metabolomic Profiling
3.3. Differential Metabolomic Profiling
3.4. Pairwise Comparison of Discriminated Metabolites
3.5. Metabolomic Analysis of Mutually Shared Discriminated Metabolites between Different Pairs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhong, R.; Fang, Y.; Zhou, D.; Sun, X.; Zhou, C.; He, Y. Pelleted total mixed ration improves growth performance of fattening lambs. Anim. Feed Sci. Technol. 2018, 242, 127–134. [Google Scholar] [CrossRef]
- Wilkens, M.; Muscher-Banse, A. Regulation of gastrointestinal and renal transport of calcium and phosphorus in ruminants. Anim. 2020, 14, s29–s43. [Google Scholar] [CrossRef] [PubMed]
- Radwinska, J.; Zarczynska, K. Effects of mineral deficiency on the health of young ruminants. J. Elem. 2014, 19, 915–928. [Google Scholar]
- Wilkens, M.R.; Nelson, C.D.; Hernandez, L.L.; McArt, J.A. Symposium review: Transition cow calcium homeostasis—Health effects of hypocalcemia and strategies for prevention. J. Dairy Sci. 2020, 103, 2909–2927. [Google Scholar] [CrossRef] [PubMed]
- Economides, S. Calcium metabolism in dairy sheep. J. Agric. Sci. 1984, 102, 601–608. [Google Scholar] [CrossRef]
- Rosol, T.J.; Capen, C.C. Calcium-regulating hormones and diseases of abnormal mineral (calcium, phosphorus, magnesium) metabolism. In Clinical Biochemistry of Domestic Animals; Elsevier: Amsterdam, The Netherlands, 1997; pp. 619–702. [Google Scholar]
- Gesellschaft für Ernährungsphysiologie. Ausschuss für Bedarfsnormen der Gesellschaft für Ernährungsphysiologie: Empfehlung zur Energie-und Nährstoffversorgung der Milchkühe und Aufzuchtrinder; Gesellschaft für Ernährungsphysiologie: Frankfurt am Main, Germany, 2001. [Google Scholar]
- Committee on Nutrient Requirements of Small Ruminants. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; China Legal Publishing House: Beijing, China, 2007. [Google Scholar]
- INRA. INRA Feeding System for Ruminants; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018. [Google Scholar]
- Böswald, L.; Dobenecker, B.; Clauss, M.; Kienzle, E. A comparative meta-analysis on the relationship of faecal calcium and phosphorus excretion in mammals. J. Anim. Physiol. Anim. Nutr. 2018, 102, 370–379. [Google Scholar] [CrossRef] [PubMed]
- Clauss, M.; Hummel, J. Getting it out of the (digestive) system: Hindgut fermenters and calcium. In Proceedings of the Comparative Nutrition Society, Liscomb Mills, Nova Scotia, 8–13 August 2008; pp. 30–36. [Google Scholar]
- Whiting, S.; Quamme, G. Effects of dietary calcium on renal calcium, magnesium and phosphate excretion by the rabbit. Miner. Electrolyte Metab. 1984, 10, 217–221. [Google Scholar] [PubMed]
- Vervuert, I.; Stanik, K.; Coenen, M. Effects of different levels of calcium and phosphorus intake on calcium homeostasis in exercising horses. Equine Vet. J. 2006, 38, 659–663. [Google Scholar] [CrossRef]
- Cheung, P.C.K. Dietary fibre content and composition of some edible fungi determined by two methods of analysis. J. Sci. Food Agric. 1997, 73, 255–260. [Google Scholar] [CrossRef]
- Van Soest, P.J. Development of a comprehensive system of feed analyses and its application to forages. J. Anim. Sci. 1967, 26, 119–128. [Google Scholar] [CrossRef]
- Ali, S.; Ni, X.; Khan, M.; Zhao, X.; Yang, H.; Danzeng, B.; Raja, I.H.; Quan, G. Effects of Dietary Protein Levels on Sheep Gut Metabolite Profiles during the Lactating Stage. Animals 2023, 14, 121. [Google Scholar] [CrossRef]
- Theobald, H.E. Dietary calcium and health. Nutr. Bull. 2005, 30, 237–277. [Google Scholar] [CrossRef]
- Freitag, J.R.B.; Wilkens, M.R.; Muscher-Banse, A.; Gerstner, K.; Schnepel, N.; Torgerson, P.R.; Liesegang, A. Effects of diets differing in dietary cation-anion difference and calcium concentration on calcium homeostasis in neutered male sheep. J. Dairy Sci. 2021, 104, 11537–11552. [Google Scholar] [CrossRef]
- Roca, M.; Alcoriza, M.I.; Garcia-Cañaveras, J.C.; Lahoz, A. Reviewing the metabolome coverage provided by LC-MS: Focus on sample preparation and chromatography—A tutorial. Anal. Chim. Acta 2021, 1147, 38–55. [Google Scholar] [CrossRef]
- Abdelrahman, M.; Wang, W.; Shaukat, A.; Kulyar, M.F.-e.-A.; Lv, H.; Abulaiti, A.; Yao, Z.; Ahmad, M.J.; Liang, A.; Yang, L. Nutritional modulation, gut, and omics crosstalk in ruminants. Animals 2022, 12, 997. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Du, M.; Zhang, C.; Wang, Y.; Lee, Y.; Zhang, G. Diet type impacts production performance of fattening lambs by manipulating the ruminal microbiota and metabolome. Front. Microbiol. 2022, 13, 824001. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Lin, L.; Hu, F.; Zhu, W.; Mao, S. Disruption of ruminal homeostasis by malnutrition involved in systemic ruminal microbiota-host interactions in a pregnant sheep model. Microbiome 2020, 8, 138. [Google Scholar] [CrossRef]
- Wang, B.; Luo, Y.; Su, R.; Yao, D.; Hou, Y.; Liu, C.; Du, R.; Jin, Y. Impact of feeding regimens on the composition of gut microbiota and metabolite profiles of plasma and feces from Mongolian sheep. J. Microbiol. 2020, 58, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wu, J.; Li, J.V.; Zhou, N.-Y.; Tang, H.; Wang, Y. Gut microbiota composition modifies fecal metabolic profiles in mice. J. Proteome Res. 2013, 12, 2987–2999. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cao, P.; Wang, L.; Zhao, Z.; Chen, Y.; Yang, Y. Bacterial community diversity associated with different levels of dietary nutrition in the rumen of sheep. Appl. Microbiol. Biotechnol. 2017, 101, 3717–3728. [Google Scholar]
- Grummer, R.R. Influence of prilled fat and calcium salt of palm oil fatty acids on ruminal fermentation and nutrient digestibility. J. Dairy Sci. 1988, 71, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, M.; Karim, S. Minerals requirement of small ruminants with special reference to their role in rumen fermentation—A review. Indian J. Small Rumin. 2008, 14, 1–47. [Google Scholar]
- Liu, Z.; Zhang, Y.; Zhou, Z.; Zong, Y.; Zheng, Y.; Liu, C.; Kong, N.; Gao, Q.; Wang, L.; Song, L. Metabolomic and transcriptomic profiling reveals the alteration of energy metabolism in oyster larvae during initial shell formation and under experimental ocean acidification. Sci. Rep. 2020, 10, 6111. [Google Scholar] [CrossRef] [PubMed]
- Coleman, D.N.; Lopreiato, V.; Alharthi, A.; Loor, J.J. Amino acids and the regulation of oxidative stress and immune function in dairy cattle. J. Anim. Sci. 2020, 98, S175–S193. [Google Scholar] [CrossRef]
- Miyajima, M. Amino acids: Key sources for immunometabolites and immunotransmitters. Int. Immunol. 2020, 32, 435–446. [Google Scholar] [CrossRef] [PubMed]
- Gérard, P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens 2013, 3, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.Y. Bile acid metabolism and signaling. Compr. Physiol. 2013, 3, 1191. [Google Scholar] [PubMed]
- Dossa, A.Y.; Escobar, O.; Golden, J.; Frey, M.R.; Ford, H.R.; Gayer, C.P. Bile acids regulate intestinal cell proliferation by modulating EGFR and FXR signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 310, G81–G92. [Google Scholar] [CrossRef]
- Liaset, B.; Hao, Q.; Jørgensen, H.; Hallenborg, P.; Du, Z.-Y.; Ma, T.; Marschall, H.-U.; Kruhøffer, M.; Li, R.; Li, Q. Nutritional regulation of bile acid metabolism is associated with improved pathological characteristics of the metabolic syndrome. J. Biol. Chem. 2011, 286, 28382–28395. [Google Scholar] [CrossRef]
- Mohanty, I.; Allaband, C.; Mannochio-Russo, H.; El Abiead, Y.; Hagey, L.R.; Knight, R.; Dorrestein, P.C. The changing metabolic landscape of bile acids–keys to metabolism and immune regulation. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 493–516. [Google Scholar] [CrossRef]
- Ditscheid, B.; Keller, S.; Jahreis, G. Cholesterol metabolism is affected by calcium phosphate supplementation in humans. J. Nutr. 2005, 135, 1678–1682. [Google Scholar] [CrossRef] [PubMed]
- Forsen, S.; Kordel, J. Calcium in biological systems. Bioinorg. Chem. 1994, 1, 107–166. [Google Scholar]
- Toselli, F.; Dodd, P.R.; Gillam, E.M. Emerging roles for brain drug-metabolizing cytochrome P450 enzymes in neuropsychiatric conditions and responses to drugs. Drug Metab. Rev. 2016, 48, 379–404. [Google Scholar] [CrossRef] [PubMed]
- Goff, J.P. Invited review: Mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. J. Dairy Sci. 2018, 101, 2763–2813. [Google Scholar] [CrossRef]
- Bennet, D.; Khorsandian, Y.; Pelusi, J.; Mirabella, A.; Pirrotte, P.; Zenhausern, F. Molecular and physical technologies for monitoring fluid and electrolyte imbalance: A focus on cancer population. Clin. Transl. Med. 2021, 11, e461. [Google Scholar] [CrossRef]
- Shkembi, B.; Huppertz, T. Calcium absorption from food products: Food matrix effects. Nutrients 2021, 14, 180. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Ali, S.; Lv, C.; Yang, H.; Zhao, X.; Ni, X.; Li, C.; Danzeng, B.; Wang, Y.; Quan, G. Dietary protein levels modulate the gut microbiome composition through fecal samples derived from lactating ewes. Front. Endocrinol. 2023, 14, 1194425. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Ali, S.; Hassan, M.F.; Bashir, M.A.; Ni, X.; Lv, C.; Yang, H.; Danzeng, B.; Quan, G. Effects of graded levels of dietary protein supplementation on milk yield, body weight gain, blood biochemical parameters, and gut microbiota in lactating ewes. Front. Vet. Sci. 2023, 10, 1223450. [Google Scholar]
- Appleton, G.; Owen, R.; Williamson, R. The effect of dietary calcium supplementation on intestinal lipid metabolism. J. Steroid Biochem. Mol. Biol. 1992, 42, 383–387. [Google Scholar]
List of Ingredients | Inclusions | ||
---|---|---|---|
Q_1 | Q_3 | Q_5 | |
Corn silage (%) | 12.60 | 27.00 | 30.00 |
Wheat straw (%) | 20.00 | 22.50 | 18.00 |
Corn grains (%) | 28.00 | 15.00 | 13.50 |
Cornstarch (%) | 12.60 | 16.60 | 14.90 |
Broad bean stalk powder (%) | 16.00 | 0.00 | 2.00 |
Soybean meal (%) | 9.15 | 10.00 | 10.20 |
Rapeseed meal (%) | 0.00 | 4.30 | 1.60 |
Wheat bran (%) | 0.00 | 2.50 | 6.95 |
Mineral and vitamin premix 1 (%) | 1.00 | 1.00 | 1.00 |
Calcium carbonate (%) | 0.00 | 0.50 | 1.35 |
Calcium hydrogen phosphate (%) | 0.00 | 0.10 | 0.00 |
Sodium dihydrogen phosphate (%) | 0.15 | 0.00 | 0.00 |
Salt (%) | 0.20 | 0.50 | 0.50 |
Baking soda (%) | 0.30 | 0.00 | 0.00 |
Nutrient contents | |||
ME 2 (MJ/kg) | 9.31 | 9.30 | 9.30 |
CP 3 (%) | 10.49 | 10.45 | 10.42 |
NDF 4 (%) | 34.12 | 34.47 | 34.31 |
ADF 5 (%) | 19.60 | 19.43 | 18.61 |
Ca (%) | 0.50 | 0.73 | 0.98 |
P (%) | 0.28 | 0.31 | 0.31 |
Superclass | Metabolite | p-Value | VIP | CV | Regulated |
---|---|---|---|---|---|
Alkaloids and derivatives | Gelsemine | 0.03 | 1.36 | 0.22 | down |
Lipids and lipid-like molecules | 3-Methyladipic acid | 0.00 | 1.22 | 0.01 | down |
Anhydrocinnzeylanol | 0.00 | 1.65 | 0.04 | down | |
Nucleosides, nucleotides, and analogues | Cyclic AMP | 0.00 | 1.55 | 0.05 | down |
Organic acids and derivatives | L-Phenylalanine | 0.00 | 2.74 | 0.24 | down |
Organic oxygen compounds | 7-Methylthioheptyl glucosinolate | 0.00 | 1.74 | 0.03 | down |
Methylbutanal | 0.01 | 1.35 | 0.02 | down | |
Organoheterocyclic compounds | Chrysanthemolactone | 0.00 | 1.57 | 0.43 | down |
Iressa | 0.00 | 1.46 | 0.22 | down | |
Unknown | 3-Hydroxybenzaldehyde | 0.00 | 1.86 | 0.03 | down |
Lipids and lipid-like molecules | Acylcarnitine 19:3 | 0.00 | 2.15 | 0.11 | up |
Androstenedione | 0.01 | 1.36 | 0.28 | up | |
Exemestane | 0.00 | 1.71 | 0.10 | up | |
Isopropyl tiglate | 0.03 | 1.40 | 0.04 | up | |
Oleamide | 0.01 | 1.31 | 0.16 | up | |
Ursocholic acid | 0.00 | 2.17 | 0.02 | up | |
Organoheterocyclic compounds | alpha-Methyl-2-furanacrolein | 0.01 | 1.23 | 0.33 | up |
Chlordiazepoxide | 0.00 | 1.68 | 0.09 | up | |
Phenylpropanoids and polyketides | 8-Carboxy-3-methylflavone | 0.00 | 1.67 | 0.21 | up |
Unknown | Irgarol | 0.01 | 1.54 | 0.19 | up |
Superclass | Metabolite | p-Value | VIP | CV | Regulated |
---|---|---|---|---|---|
Alkaloids and derivatives | 6-allyl-8b-Carboxy-ergoline | 0.00 | 1.84 | 0.24 | down |
Organic oxygen compounds | Erythrose | 0.00 | 2.15 | 0.04 | down |
Organoheterocyclic compounds | 1H-Indole-3-propanoic acid | 0.00 | 1.76 | 0.07 | down |
Piperidine | 0.00 | 1.78 | 0.26 | down | |
Thymine | 0.00 | 2.08 | 0.03 | down | |
Unknown | 2,2-Dimethylglutaric acid | 0.00 | 2.14 | 0.05 | down |
Allose | 0.00 | 2.16 | 0.05 | down | |
Cyproconazole | 0.01 | 1.80 | 0.12 | down | |
Alkaloids and derivatives | Baptifoline | 0.00 | 2.17 | 0.05 | up |
Benzenoids | Ginkgolic acid I | 0.00 | 1.73 | 0.25 | up |
Lipids and lipid-like molecules | 11′-Carboxy-gamma-chromanol | 0.00 | 1.99 | 0.11 | up |
12-Hydroxy-8,10-octadecadienoic acid | 0.00 | 1.74 | 0.09 | up | |
16-Hydroxyhexadecanoic acid | 0.00 | 1.36 | 0.04 | up | |
PGH3 | 0.00 | 2.02 | 0.08 | up | |
Prostaglandin A2 | 0.02 | 1.95 | 0.13 | up | |
Prostaglandin D3 | 0.02 | 1.82 | 0.17 | up | |
Sesquisabinene hydrate | 0.00 | 2.13 | 0.13 | up | |
Organic acids and derivatives | 5-Hydroxyindoleacetylglycine | 0.00 | 2.00 | 0.13 | up |
Phenylpropanoids and polyketides | 8-Carboxy-3-methylflavone | 0.00 | 2.30 | 0.21 | up |
Hydrocinnamic acid | 0.12 | 1.29 | 0.04 | up | |
Unknown | 17.alpha.-Dihydroequilin | 0.00 | 1.74 | 0.14 | up |
Artemisinin | 0.00 | 1.81 | 0.07 | up | |
Cardamomin | 0.00 | 2.20 | 0.15 | up | |
Diethyl sebacate | 0.07 | 1.76 | 0.04 | up | |
Pheophorbide a | 0.00 | 2.15 | 0.05 | up |
Superclass | Metabolite | p-Value | VIP | CV | Regulated |
---|---|---|---|---|---|
Alkaloids and derivatives | 10-alpha-methoxy-9,10-dihydrolysergol | 0.01 | 2.75 | 0.07 | down |
Hirsuteine | 0.00 | 1.63 | 0.14 | down | |
Benzenoids | 10-Gingerol | 0.01 | 1.78 | 0.08 | down |
Lipids and lipid-like molecules | Ecabet | 0.02 | 1.68 | 0.17 | down |
Organic acids and derivatives | 2-Oxopentanedioic acid | 0.00 | 1.88 | 0.08 | down |
Organoheterocyclic compounds | Eletriptan | 0.02 | 1.55 | 0.15 | down |
Norfloxacin | 0.00 | 2.22 | 0.10 | down | |
Sclareolide | 0.08 | 1.49 | 0.13 | down | |
Benzenoids | 4-Methylhippuric acid | 0.00 | 1.97 | 0.03 | up |
Lipids and lipid-like molecules | Acylcarnitine 11:0 | 0.02 | 1.59 | 0.20 | up |
Dodecanedioic acid | 0.00 | 1.96 | 0.13 | up | |
Tetradecanedioic acid | 0.01 | 1.56 | 0.15 | up | |
Traumatin | 0.00 | 2.12 | 0.04 | up | |
Organic acids and derivatives | N-Acetylproline | 0.00 | 1.77 | 0.08 | up |
Tiglylglycine | 0.00 | 2.02 | 0.08 | up | |
Unknown | Dimethyl sebacate | 0.00 | 1.87 | 0.07 | up |
Superclass | Metabolite | Q_1/Q_3 | Q_1/Q_5 | ||||||
---|---|---|---|---|---|---|---|---|---|
p-Value | VIP | CV | Regulated | p-Value | VIP | CV | Regulated | ||
Alkaloids and derivatives | Harman | 0.00 | 1.53 | 0.07 | up | 0.00 | 2.75 | 0.07 | up |
Benzenoids | 2-acetoxy-4-pentadecylbenzoic acid | 0.00 | 2.38 | 0.04 | up | 0.02 | 1.49 | 0.04 | up |
2-acetoxy-6-pentadecylbenzoic acid | 0.00 | 2.04 | 0.15 | up | 0.00 | 1.45 | 0.15 | up | |
2-Hydroxy-3-methoxy benzaldehyde | 0.02 | 2.24 | 0.06 | down | 0.02 | 2.67 | 0.06 | down | |
4-Methylhippuric acid | 0.00 | 3.75 | 0.03 | down | 0.00 | 2.26 | 0.03 | down | |
Ortho-Hydroxyphenylacetic acid | 0.00 | 2.25 | 0.09 | down | 0.00 | 1.71 | 0.09 | down | |
p-Cresol | 0.00 | 2.23 | 0.05 | down | 0.00 | 1.75 | 0.05 | down | |
Phenylacetic acid | 0.01 | 1.74 | 0.05 | up | 0.03 | 1.43 | 0.05 | up | |
p-Tolyl phenylacetate | 0.00 | 1.55 | 0.02 | up | 0.00 | 2.97 | 0.02 | up | |
Lipids and lipid-like molecules | 18-Hydroxyeicosatetraenoic acid | 0.00 | 2.39 | 0.10 | up | 0.00 | 2.14 | 0.10 | up |
Acetyl-DL-carnitine | 0.00 | 1.69 | 0.15 | down | 0.00 | 1.76 | 0.15 | down | |
Acylcarnitine 19:4 | 0.00 | 2.16 | 0.13 | up | 0.00 | 1.73 | 0.13 | up | |
Adipic acid | 0.39 | 1.77 | 0.02 | up | 0.09 | 1.78 | 0.02 | up | |
Cinobufagin | 0.00 | 1.67 | 0.12 | up | 0.02 | 2.19 | 0.12 | up | |
Ethyl icosapentate | 0.00 | 1.68 | 0.02 | up | 0.00 | 2.09 | 0.02 | up | |
Nucleosides, nucleotides/analogue | Deoxyinosine | 0.00 | 1.49 | 0.50 | down | 0.00 | 1.94 | 0.50 | down |
Organic acids and derivatives | Creatine | 0.00 | 2.57 | 0.03 | down | 0.00 | 2.63 | 0.03 | down |
o-Phenanthroline | 0.00 | 1.60 | 0.07 | up | 0.00 | 2.88 | 0.07 | up | |
Tyr-Leu | 0.00 | 1.96 | 0.06 | up | 0.00 | 2.15 | 0.06 | up | |
Organic oxygen compounds | Trehalose | 0.00 | 1.37 | 0.04 | down | 0.00 | 2.40 | 0.04 | down |
Organoheterocyclic compounds | Amlexanox | 0.00 | 1.54 | 0.05 | up | 0.00 | 3.01 | 0.05 | up |
Anileridine | 0.08 | 1.49 | 0.10 | up | 0.01 | 1.39 | 0.10 | up | |
Deoxydihydro-artemisinin | 0.00 | 1.45 | 0.03 | up | 0.00 | 2.27 | 0.03 | up | |
Pyrophaeophorbide a | 0.00 | 1.74 | 0.05 | up | 0.00 | 2.12 | 0.05 | up | |
Sempervirine | 0.00 | 1.51 | 0.07 | up | 0.00 | 2.19 | 0.07 | up | |
Phenylpropanoids and polyketides | alpha,beta-Dihydroresveratrol | 0.00 | 1.33 | 0.22 | up | 0.00 | 2.78 | 0.22 | up |
beta-Zearalenol | 0.00 | 1.48 | 0.03 | up | 0.00 | 2.10 | 0.03 | up | |
Gerberinol | 0.00 | 2.29 | 0.04 | down | 0.00 | 2.16 | 0.04 | down | |
Moracin G | 0.00 | 1.35 | 0.03 | up | 0.00 | 2.76 | 0.03 | up | |
Unknown | 2-Indolinone | 0.01 | 1.97 | 0.06 | up | 0.00 | 2.31 | 0.06 | up |
3’-Deoxyguanosine | 0.00 | 1.93 | 0.15 | down | 0.00 | 1.61 | 0.15 | down | |
4-Coumaroylcholine | 0.00 | 2.20 | 0.13 | down | 0.00 | 2.92 | 0.13 | down | |
S-Hydroprene | 0.01 | 1.69 | 0.33 | up | 0.09 | 1.41 | 0.33 | up | |
Xanthene-9-carboxylic acid | 0.00 | 1.47 | 0.01 | up | 0.00 | 2.79 | 0.01 | up |
Superclass | Metabolite | Q_1/Q_3 | Q_3/Q_5 | ||||||
---|---|---|---|---|---|---|---|---|---|
p-Value | VIP | CV | Regulated | p-Value | VIP | CV | Regulated | ||
Alkaloids and derivatives | Pilocarpine | 0.00 | 2.60 | 0.07 | up | 0.00 | 2.41 | 0.07 | down |
Benzenoids | 3-Ethylphenol | 0.01 | 1.58 | 0.07 | up | 0.02 | 1.40 | 0.07 | down |
3-Hydroxyanthranilic acid | 0.00 | 1.53 | 0.09 | up | 0.00 | 2.79 | 0.09 | down | |
3-Methylbenzaldehyde | 0.01 | 1.63 | 0.09 | up | 0.02 | 1.48 | 0.12 | down | |
Isohomovanillic acid | 0.00 | 1.51 | 0.27 | up | 0.00 | 2.17 | 0.27 | down | |
Lipids and lipid-like molecules | 12-Ketodeoxycholic acid | 0.00 | 2.49 | 0.11 | up | 0.00 | 1.55 | 0.07 | down |
20-Hydroxyarachidonic acid | 0.09 | 1.29 | 0.16 | up | 0.07 | 1.39 | 0.16 | down | |
2-Isopropylmalic acid | 0.00 | 1.86 | 0.24 | up | 0.00 | 2.00 | 0.24 | down | |
7C-aglycone | 0.01 | 2.01 | 0.43 | up | 0.07 | 1.76 | 0.43 | down | |
Acylcarnitine 22:1 | 0.00 | 1.73 | 0.25 | up | 0.00 | 1.57 | 0.25 | down | |
Deoxycholic acid | 0.00 | 2.18 | 0.10 | up | 0.00 | 2.20 | 0.06 | down | |
Ethylmalonic acid | 0.00 | 1.30 | 0.20 | up | 0.01 | 2.05 | 0.20 | down | |
Hyocholic acid | 0.00 | 2.46 | 0.28 | up | 0.00 | 1.88 | 0.28 | down | |
Pelargonic acid | 0.00 | 1.68 | 0.06 | up | 0.00 | 2.13 | 0.06 | down | |
Ricinoleic acid | 0.03 | 1.52 | 0.03 | up | 0.07 | 1.30 | 0.03 | down | |
Nucleosides, nucleotides, and analogs | Guanosine | 0.00 | 1.87 | 0.21 | down | 0.00 | 1.75 | 0.21 | up |
Inosine | 0.00 | 1.89 | 0.21 | down | 0.03 | 1.29 | 0.21 | up | |
Organoheterocyclic compounds | 2-Indolecarboxylic acid | 0.00 | 1.57 | 0.03 | down | 0.00 | 2.93 | 0.03 | up |
4-Hydroxyquinoline | 0.00 | 1.51 | 0.15 | up | 0.07 | 1.86 | 0.05 | up | |
Quinoline-2,6-diol | 0.00 | 1.45 | 0.06 | down | 0.00 | 2.83 | 0.06 | up | |
Phenylpropanoids | p-Coumaraldehyde | 0.01 | 1.56 | 0.05 | up | 0.02 | 1.60 | 0.05 | down |
Superclass | Metabolite | Q_1/Q_5 | Q_3/Q_5 | ||||||
---|---|---|---|---|---|---|---|---|---|
p-Value | VIP | CV | Regulated | p-Value | VIP | CV | Regulated | ||
Benzenoids | 2-Phenylethanaminium | 0.00 | 2.70 | 0.08 | up | 0.00 | 2.58 | 0.08 | up |
4-Methylcatechol | 0.00 | 2.66 | 0.02 | down | 0.07 | 1.44 | 0.02 | down | |
Styrene | 0.00 | 2.86 | 0.05 | up | 0.00 | 2.94 | 0.05 | up | |
Lipids and lipid-like molecules | (9S,10S)-9,10-dihydroxyoctadecanoate | 0.00 | 1.71 | 0.03 | down | 0.00 | 1.52 | 0.03 | down |
13’-Carboxy-alpha-tocotrienol | 0.00 | 1.50 | 0.03 | down | 0.00 | 2.52 | 0.03 | down | |
2-hydroxy stearate | 0.00 | 1.91 | 0.27 | down | 0.00 | 2.04 | 0.04 | up | |
Glycocholic acid | 0.00 | 1.90 | 0.06 | up | 0.00 | 2.65 | 0.06 | up | |
Organic acids and derivatives | (3-Phenylpropionate)glycine | 0.00 | 1.92 | 0.15 | down | 0.00 | 1.81 | 0.15 | up |
3-Hydroxyglutaric acid | 0.00 | 2.75 | 0.04 | down | 0.00 | 1.63 | 0.04 | down | |
Organic nitrogen compounds | Spermidine | 0.00 | 1.97 | 0.21 | up | 0.00 | 2.34 | 0.21 | up |
Organoheterocyclic compounds | Indole-3-propionic acid | 0.00 | 1.82 | 0.07 | down | 0.00 | 1.77 | 0.07 | down |
Isokessane | 0.01 | 1.56 | 0.06 | up | 0.00 | 2.51 | 0.06 | up | |
Koumine | 0.09 | 1.79 | 0.06 | up | 0.02 | 1.54 | 0.09 | up | |
Kynurenic acid | 0.00 | 1.76 | 0.04 | down | 0.00 | 2.02 | 0.03 | down | |
Phaeophorbide b | 0.00 | 2.46 | 0.08 | up | 0.00 | 1.52 | 0.08 | up | |
xi-2,3-Dihydro-3-methyl furan | 0.01 | 1.60 | 0.05 | down | 0.00 | 1.61 | 0.05 | down | |
Unknown | 13,14-Dihydro-15-keto prostaglandin A2 | 0.01 | 2.62 | 0.05 | up | 0.00 | 3.36 | 0.05 | up |
2,3-Dinorthromboxane B1 | 0.01 | 1.80 | 0.15 | down | 0.00 | 1.73 | 0.15 | down | |
2’-Hydroxy-2,3,5’-trimethoxychalcone | 0.00 | 2.49 | 0.02 | up | 0.00 | 1.73 | 0.02 | up | |
Flonicamid | 0.00 | 2.25 | 0.06 | up | 0.00 | 2.42 | 0.06 | up | |
Polygodial | 0.01 | 1.25 | 0.06 | down | 0.01 | 2.42 | 0.06 | down |
Superclass | Metabolite | Q_1/Q_3 | Q_1/Q_5 | Q_3/Q_5 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
p-Value | VIP | CV | Regulated | p-Value | VIP | CV | Regulated | p-Value | VIP | CV | Regulated | ||
Benzenoids | 1,1’-[1,12-Dodecanediylbis(oxy)]bisbenzene | 0.00 | 2.72 | 0.07 | up | 0.00 | 1.53 | 0.07 | up | 0.00 | 1.55 | 0.07 | down |
Benzidine | 0.00 | 2.91 | 0.03 | up | 0.00 | 1.71 | 0.03 | up | 0.00 | 1.58 | 0.03 | down | |
Citalopram | 0.00 | 2.52 | 0.10 | up | 0.00 | 1.38 | 0.10 | up | 0.01 | 1.47 | 0.10 | down | |
Lipids and lipid-like molecules | 6-Hydroxypentadecanedioic acid | 0.01 | 1.68 | 0.04 | up | 0.07 | 1.19 | 0.04 | down | 0.00 | 3.03 | 0.04 | down |
7alpha-hydroxy-3-oxochol-4-en-24-oic Acid | 0.00 | 2.78 | 0.08 | up | 0.01 | 1.96 | 0.04 | up | 0.01 | 1.85 | 0.13 | down | |
Nutriacholic acid | 0.00 | 2.73 | 0.03 | up | 0.00 | 1.66 | 0.05 | up | 0.00 | 1.17 | 0.05 | down | |
Organic acids and derivatives | N-Phenylacetylglutamic acid | 0.00 | 5.21 | 0.03 | down | 0.00 | 2.75 | 0.03 | down | 0.00 | 3.12 | 0.03 | up |
Phenylpropionate)glycine | 0.00 | 3.31 | 0.15 | down | 0.00 | 2.17 | 0.05 | down | 0.00 | 1.75 | 0.05 | up | |
Organoheterocyclic compounds | 5-Hydroxyindole-3-acetic acid | 0.00 | 2.10 | 0.19 | down | 0.00 | 2.47 | 0.19 | down | 0.00 | 3.04 | 0.05 | down |
Fentanyl | 0.00 | 2.03 | 0.02 | up | 0.00 | 1.88 | 0.10 | up | 0.00 | 1.95 | 0.02 | down | |
Indole-3-pyruvic acid | 0.00 | 3.77 | 0.05 | down | 0.00 | 2.01 | 0.05 | down | 0.00 | 2.24 | 0.05 | up | |
Quinaldic acid | 0.00 | 1.61 | 0.04 | up | 0.00 | 1.48 | 0.04 | down | 0.00 | 3.24 | 0.04 | down | |
Unknown | Carbazole | 0.00 | 2.76 | 0.08 | up | 0.00 | 1.44 | 0.08 | up | 0.00 | 1.67 | 0.08 | down |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.; Zhao, X.; Ni, X.; Ali, S.; Danzeng, B.; Yang, H.; Mushtaq, M.; Liang, J.; Xue, B.; Quan, G. Impact of Varying Dietary Calcium Contents on the Gut Metabolomics of Yunnan Semi-Fine Wool Sheep (Ovis aries). Metabolites 2024, 14, 381. https://doi.org/10.3390/metabo14070381
Khan M, Zhao X, Ni X, Ali S, Danzeng B, Yang H, Mushtaq M, Liang J, Xue B, Quan G. Impact of Varying Dietary Calcium Contents on the Gut Metabolomics of Yunnan Semi-Fine Wool Sheep (Ovis aries). Metabolites. 2024; 14(7):381. https://doi.org/10.3390/metabo14070381
Chicago/Turabian StyleKhan, Muhammad, Xiaoqi Zhao, Xiaojun Ni, Sikandar Ali, Baiji Danzeng, Hongyuan Yang, Maida Mushtaq, Jiachong Liang, Bai Xue, and Guobo Quan. 2024. "Impact of Varying Dietary Calcium Contents on the Gut Metabolomics of Yunnan Semi-Fine Wool Sheep (Ovis aries)" Metabolites 14, no. 7: 381. https://doi.org/10.3390/metabo14070381
APA StyleKhan, M., Zhao, X., Ni, X., Ali, S., Danzeng, B., Yang, H., Mushtaq, M., Liang, J., Xue, B., & Quan, G. (2024). Impact of Varying Dietary Calcium Contents on the Gut Metabolomics of Yunnan Semi-Fine Wool Sheep (Ovis aries). Metabolites, 14(7), 381. https://doi.org/10.3390/metabo14070381