Replacement of Dietary Carbohydrate with Protein versus Fat Differentially Alters Postprandial Circulating Hormones and Macronutrient Metabolism in Dogs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Foods and Analyses
2.2. Animals and Experimental Design
2.3. Sample Collection and Analyses
2.4. Statistical Analysis
3. Results
3.1. Comparative Macronutrient and Lipid Composition of Foods: HiCHO, PROT_LoCHO, and FAT_LoCHO
3.2. Consumption of Energy and Nutrients Vis-à-Vis BW Maintenance
3.3. Postabsorptive and Postprandial Responses of Biochemical Endpoints Relevant to Macronutrient Metabolism
3.4. Postabsorptive and Postprandial Levels of Circulating Energy Forms
3.5. Postabsorptive and Postprandial Levels of Circulating Metabolite Classes Indicative of Macronutrient Metabolism
3.6. Influence of Macronutrient Makeup and Fat-Type Content on Postabsorptive and Postprandial Levels of Individual Fatty Acids Derived from NEFAs and Complex Lipids
3.7. Differential Impact of Fat versus Protein Replacement of Carbohydrate on Circulating Satiety, Regulatory, and Counter-Regulatory Hormones in the Postabsorptive and Postprandial States
4. Discussion
4.1. Assessment of the Dynamics of Response to Macronutrient Intake
4.1.1. Macronutrient Composition Determines Postprandial Circulating Hormones and Energy Forms, Including Change from Postabsorptive State
4.1.2. Circulating Energy and Metabolic Hormones in the Fasted Postabsorptive State
4.1.3. Circulating Energy during the Transition to the Postprandial State
4.2. Metabolism of Protein and Nitrogen Disposition in the Postabsorptive and Postprandial States
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verkest, K.R.; Rand, J.S.; Fleeman, L.M.; Morton, J.M. Spontaneously obese dogs exhibit greater postprandial glucose, triglyceride, and insulin concentrations than lean dogs. Domest. Anim. Endocrinol. 2012, 42, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Nishii, N.; Nodake, H.; Takasu, M.; Soe, O.; Ohba, Y.; Maeda, S.; Ohtsuka, Y.; Honjo, T.; Saito, M.; Kitagawa, H. Postprandial changes in leptin concentrations of cerebrospinal fluid in dogs during development of obesity. Am. J. Vet. Res. 2006, 67, 2006–2011. [Google Scholar] [CrossRef] [PubMed]
- Söder, J.; Höglund, K.; Dicksved, J.; Hagman, R.; Eriksson Röhnisch, H.; Moazzami, A.A.; Wernersson, S. Plasma metabolomics reveals lower carnitine concentrations in overweight Labrador Retriever dogs. Acta Vet. Scand. 2019, 61, 10. [Google Scholar] [CrossRef] [PubMed]
- Söder, J.; Wernersson, S.; Hagman, R.; Karlsson, I.; Malmlöf, K.; Höglund, K. Metabolic and hormonal response to a feed-challenge test in lean and overweight dogs. J. Vet. Intern. Med. 2016, 30, 574–582. [Google Scholar] [CrossRef] [PubMed]
- Verkest, K.R.; Fleeman, L.M.; Morton, J.M.; Groen, S.J.; Suchodolski, J.S.; Steiner, J.M.; Rand, J.S. Association of postprandial serum triglyceride concentration and serum canine pancreatic lipase immunoreactivity in overweight and obese dogs. J. Vet. Intern. Med. 2012, 26, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Fleeman, L.; Barrett, R. Cushing’s syndrome and other causes of insulin resistance in dogs. Vet. Clin. N. Am. Small Anim. Pract. 2023, 53, 711–730. [Google Scholar] [CrossRef] [PubMed]
- Teshima, E.; Brunetto, M.A.; Teixeira, F.A.; Gomes, M.O.S.; Lucas, S.R.R.; Pereira, G.T.; Carciofi, A.C. Influence of type of starch and feeding management on glycaemic control in diabetic dogs. J. Anim. Physiol. Anim. Nutr. 2021, 105, 1192–1202. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.C.; Pagliassotti, M.J.; Swift, L.L.; Asher, J.; Murrell, J.; Neal, D.; Cherrington, A.D. Disposition of a mixed meal by the conscious dog. Am. J. Physiol. 1994, 266, E666–E675. [Google Scholar] [CrossRef] [PubMed]
- Epstein, M.; Barsanti, J.; Finco, D.; Cowgill, L.M. Postprandial changes in plasma urea nitrogen and plasma creatinine concentrations in dogs fed commercial diets. J. Am. Anim. Hosp. Assoc. 1984, 20, 779–782. [Google Scholar]
- Street, A.E.; Chesterman, H.; Smith, G.K.; Quinton, R.M. Prolonged blood urea elevation observed in the beagle after feeding. Toxicol. Appl. Pharmacol. 1968, 13, 363–371. [Google Scholar] [CrossRef]
- Plourde, M.; Tremblay-Mercier, J.; Fortier, M.; Pifferi, F.; Cunnane, S.C. Eicosapentaenoic acid decreases postprandial beta-hydroxybutyrate and free fatty acid responses in healthy young and elderly. Nutrition 2009, 25, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Guzmán, M.; Fernández-Ruiz, J.J.; Sánchez, C.; Velasco, G.; Ramos, J.A. Effects of anandamide on hepatic fatty acid metabolism. Biochem. Pharmacol. 1995, 50, 885–888. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, M.T.; Yudell, B.E.; Loor, J.J. Regulation of energy metabolism by long-chain fatty acids. Prog. Lipid Res. 2014, 53, 124–144. [Google Scholar] [CrossRef] [PubMed]
- Kasai, M.; Maki, H.; Nosaka, N.; Aoyama, T.; Ooyama, K.; Uto, H.; Okazaki, M.; Igarashi, O.; Kondo, K. Effect of medium-chain triglycerides on the postprandial triglyceride concentration in healthy men. Biosci. Biotechnol. Biochem. 2003, 67, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Austin, G.; Ferguson, J.J.; Thota, R.N.; Singh, H.; Burrows, T.; Garg, M.L. Postprandial lipaemia following consumption of a meal enriched with medium chain saturated and/or long chain omega-3 polyunsaturated fatty acids. A randomised cross-over study. Clin. Nutr. 2021, 40, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Yi, K.C.; Heseltine, J.C.; Jeffery, N.D.; Cook, A.K.; Nabity, M.B. Effect of withholding food versus feeding on creatinine, symmetric dimethylarginine, cholesterol, triglycerides, and other biochemical analytes in 100 healthy dogs. J. Vet. Intern. Med. 2023, 37, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Briens, J.M.; Subramaniam, M.; Kilgour, A.; Loewen, M.E.; Desai, K.M.; Adolphe, J.L.; Zatti, K.M.; Drew, M.D.; Weber, L.P. Glycemic, insulinemic and methylglyoxal postprandial responses to starches alone or in whole diets in dogs versus cats: Relating the concept of glycemic index to metabolic responses and gene expression. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2021, 257, 110973. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.L.; Bugbee, A.C.; Ward, C. The effect of postprandial exercise on mean blood glucose concentrations following high and maintenance carbohydrate content meals in healthy dogs. Res. Vet. Sci. 2022, 150, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Hewson-Hughes, A.K.; Gilham, M.S.; Upton, S.; Colyer, A.; Butterwick, R.; Miller, A.T. Postprandial glucose and insulin profiles following a glucose-loaded meal in cats and dogs. Br. J. Nutr. 2011, 106 (Suppl. 1), S101–S104. [Google Scholar] [CrossRef]
- Shea, E.K.; Hess, R.S. Assessment of postprandial hyperglycemia and circadian fluctuation of glucose concentrations in diabetic dogs using a flash glucose monitoring system. J. Vet. Intern. Med. 2021, 35, 843–852. [Google Scholar] [CrossRef]
- Watson, A.D.; Church, D.B.; Fairburn, A.J. Postprandial changes in plasma urea and creatinine concentrations in dogs. Am. J. Vet. Res. 1981, 42, 1878–1880. [Google Scholar]
- Yamamoto, S.; Ohta, Y.; Hasegawa, E.; Hashida, S.; Kaneko, Y.; Mizutani, S.; Ong, B.H.E.; Naganobu, K.; Torisu, S. Usefulness of urinary creatinine/urea nitrogen ratio as indicator of body protein catabolism in dogs fed low protein diets. Front. Vet. Sci. 2019, 6, 449. [Google Scholar] [CrossRef] [PubMed]
- Bates, M.W. Turnover rates of fatty acids of plasma triglyceride, cholesterol ester and phospholipid in the postabsorptive dog. Am. J. Physiol. 1958, 194, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Elliott, K.F.; Rand, J.S.; Fleeman, L.M.; Morton, J.M.; Markwell, P.J. Use of a meal challenge test to estimate peak postprandial triglyceride concentrations in dogs. Am. J. Vet. Res. 2011, 72, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Lubbs, D.C.; Vester Boler, B.M.; Ridge, T.K.; Spears, J.K.; Graves, T.K.; Swanson, K.S. Dietary macronutrients and feeding frequency affect fasting and postprandial concentrations of hormones involved in appetite regulation in adult dogs. J. Anim. Sci. 2010, 88, 3945–3953. [Google Scholar] [CrossRef]
- Blees, N.R.; Wolfswinkel, J.; Kooistra, H.S.; Corbee, R.J. Influence of macronutrient composition of commercial diets on circulating leptin and adiponectin concentrations in overweight dogs. J. Anim. Physiol. Anim. Nutr. 2020, 104, 698–706. [Google Scholar] [CrossRef]
- Jackson, M.I. Macronutrient proportions and fat type impact ketogenicity and shape the circulating lipidome in dogs. Metabolites 2022, 12, 591. [Google Scholar] [CrossRef]
- Dupuis, N.; Curatolo, N.; Benoist, J.F.; Auvin, S. Ketogenic diet exhibits anti-inflammatory properties. Epilepsia 2015, 56, e95–e98. [Google Scholar] [CrossRef]
- AOAC International. AOAC Official Methods. Available online: http://www.aoacofficialmethod.org/ (accessed on 9 March 2022).
- Ichihara, K.; Fukubayashi, Y. Preparation of fatty acid methyl esters for gas-liquid chromatography. J. Lipid Res. 2010, 51, 635–640. [Google Scholar] [CrossRef]
- Jones, L.M.; Legge, M. Plasma fatty acids as markers for desaturase and elongase activities in spinal cord injured males. J. Spinal Cord. Med. 2019, 42, 163–170. [Google Scholar] [CrossRef]
- Floerchinger, A.M.; Jackson, M.I.; Jewell, D.E.; MacLeay, J.M.; Paetau-Robinson, I.; Hahn, K.A. Effect of feeding a weight loss food beyond a caloric restriction period on body composition and resistance to weight gain in dogs. J. Am. Vet. Med. Assoc. 2015, 247, 375–384. [Google Scholar] [CrossRef] [PubMed]
- Shimy, K.J.; Feldman, H.A.; Klein, G.L.; Bielak, L.; Ebbeling, C.B.; Ludwig, D.S. Effects of dietary carbohydrate content on circulating metabolic fuel availability in the postprandial state. J. Endocr. Soc. 2020, 4, bvaa062. [Google Scholar] [CrossRef] [PubMed]
- Dagnelie, P.C.; Rietveld, T.; Swart, G.R.; Stijnen, T.; van den Berg, J.W. Effect of dietary fish oil on blood levels of free fatty acids, ketone bodies and triacylglycerol in humans. Lipids 1994, 29, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Bonatto, N.C.M.; Alves, L.S.S.; Silva, L.E.; Milhorine, C.A.; de Barros, L.D.; Santos, J.A.; de Almeida, B.F.M.; da Costa Flaiban, K.K.M. Does postprandial lipemia interfere with blood gas analysis and assessment of acid-base status in dogs? Res. Vet. Sci. 2023, 154, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Kraft, E.N.; Cervone, D.T.; Dyck, D.J. Ghrelin stimulates fatty acid oxidation and inhibits lipolysis in isolated muscle from male rats. Physiol. Rep. 2019, 7, e14028. [Google Scholar] [CrossRef] [PubMed]
- Hucik, B.; Lovell, A.J.; Hoecht, E.M.; Cervone, D.T.; Mutch, D.M.; Dyck, D.J. Regulation of adipose tissue lipolysis by ghrelin is impaired with high-fat diet feeding and is not restored with exercise. Adipocyte 2021, 10, 338–349. [Google Scholar] [CrossRef] [PubMed]
- Taggart, A.K.; Kero, J.; Gan, X.; Cai, T.Q.; Cheng, K.; Ippolito, M.; Ren, N.; Kaplan, R.; Wu, K.; Wu, T.J.; et al. (D)-beta-Hydroxybutyrate inhibits adipocyte lipolysis via the nicotinic acid receptor PUMA-G. J. Biol. Chem. 2005, 280, 26649–26652. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Yoshida, T.; Ito, Y.; Murakami, I.; Mokuda, O.; Tominaga, M.; Mashiba, H. Effect of beta-hydroxybutyrate and acetoacetate on insulin and glucagon secretion from perfused rat pancreas. Arch. Biochem. Biophys. 1987, 257, 140–143. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, M.J.; Longacre, M.J.; Stoker, S.W.; Brown, L.J.; Hasan, N.M.; Kendrick, M.A. Acetoacetate and beta-hydroxybutyrate in combination with other metabolites release insulin from INS-1 cells and provide clues about pathways in insulin secretion. Am. J. Physiol. Cell Physiol. 2008, 294, C442–C450. [Google Scholar] [CrossRef]
- Pradhan, G.; Samson, S.L.; Sun, Y. Ghrelin: Much more than a hunger hormone. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 619–624. [Google Scholar] [CrossRef]
- Rhodes, L.; Zollers, B.; Wofford, J.A.; Heinen, E. Capromorelin: A ghrelin receptor agonist and novel therapy for stimulation of appetite in dogs. Vet. Med. Sci. 2018, 4, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Pascutti, K.M.; O’Kell, A.L.; Hill, R.C.; Castro, R.A.; Salute, M.E.; Gilor, C. The effect of capromorelin on glycemic control in healthy dogs. Domest. Anim. Endocrinol. 2022, 81, 106732. [Google Scholar] [CrossRef] [PubMed]
- Anthony, R.M.; Amundson, M.D.; Brejda, J.; Becvarova, I. Acceptance of a novel, highly palatable, calorically dense, and nutritionally complete diet in dogs with benign and malignant tumors. Vet. Sci. 2023, 10, 148. [Google Scholar] [CrossRef] [PubMed]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- Weber, D.D.; Aminzadeh-Gohari, S.; Tulipan, J.; Catalano, L.; Feichtinger, R.G.; Kofler, B. Ketogenic diet in the treatment of cancer—Where do we stand? Mol. Metab. 2020, 33, 102–121. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Caprio, M.; Tuccinardi, D.; Moriconi, E.; Di Renzo, L.; Muscogiuri, G.; Colao, A.; Savastano, S. Could ketogenic diet “starve” cancer? Emerging evidence. Crit. Rev. Food Sci. Nutr. 2022, 62, 1800–1821. [Google Scholar] [CrossRef] [PubMed]
- Dmitrieva-Posocco, O.; Wong, A.C.; Lundgren, P.; Golos, A.M.; Descamps, H.C.; Dohnalová, L.; Cramer, Z.; Tian, Y.; Yueh, B.; Eskiocak, O.; et al. β-Hydroxybutyrate suppresses colorectal cancer. Nature 2022, 605, 160–165. [Google Scholar] [CrossRef] [PubMed]
- Westerterp-Plantenga, M.S.; Lemmens, S.G.; Westerterp, K.R. Dietary protein—Its role in satiety, energetics, weight loss and health. Br. J. Nutr. 2012, 108 (Suppl. 2), S105–S112. [Google Scholar] [CrossRef]
- Maljaars, P.W.; Symersky, T.; Kee, B.C.; Haddeman, E.; Peters, H.P.; Masclee, A.A. Effect of ileal fat perfusion on satiety and hormone release in healthy volunteers. Int. J. Obes. 2008, 32, 1633–1639. [Google Scholar] [CrossRef]
- Adamska-Patruno, E.; Ostrowska, L.; Goscik, J.; Pietraszewska, B.; Kretowski, A.; Gorska, M. The relationship between the leptin/ghrelin ratio and meals with various macronutrient contents in men with different nutritional status: A randomized crossover study. Nutr. J. 2018, 17, 118. [Google Scholar] [CrossRef]
- Arabi, Y.M.; Jawdat, D.; Al-Dorzi, H.M.; Tamim, H.; Tamimi, W.; Bouchama, A.; Sadat, M.; Afesh, L.; Abdullah, M.L.; Mashaqbeh, W.; et al. Leptin, ghrelin, and leptin/ghrelin ratio in critically ill patients. Nutrients 2019, 12, 36. [Google Scholar] [CrossRef] [PubMed]
- Crujeiras, A.B.; Díaz-Lagares, A.; Abete, I.; Goyenechea, E.; Amil, M.; Martínez, J.A.; Casanueva, F.F. Pre-treatment circulating leptin/ghrelin ratio as a non-invasive marker to identify patients likely to regain the lost weight after an energy restriction treatment. J. Endocrinol. Investig. 2014, 37, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.N.; Singh, R.G.; Petrov, M.S. Association between Intrapancreatic Fat Deposition and the Leptin/Ghrelin Ratio in the Fasted and Postprandial States. Ann. Nutr. Metab. 2022, 78, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Jelic, K.; Hallgreen, C.E.; Colding-Jørgensen, M. A model of NEFA dynamics with focus on the postprandial state. Ann. Biomed. Eng. 2009, 37, 1897–1909. [Google Scholar] [CrossRef] [PubMed]
- Sekizkardes, H.; Chung, S.T.; Chacko, S.; Haymond, M.W.; Startzell, M.; Walter, M.; Walter, P.J.; Lightbourne, M.; Brown, R.J. Free fatty acid processing diverges in human pathologic insulin resistance conditions. J. Clin. Investig. 2020, 130, 3592–3602. [Google Scholar] [CrossRef] [PubMed]
- Unger, R.H. Glucagon and the insulin: Glucagon ratio in diabetes and other catabolic illnesses. Diabetes 1971, 20, 834–838. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cheng, Y.; Xu, Z.; Lin, X.; Xu, B.; Wang, Z.; Li, P.; Nian, B. Interface chemistry affected the digestion fate of ketogenic diet based on medium- and long-chain triglycerides. Food Res. Int. 2024, 180, 114059. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.; Morgan, R.G.; Hofmann, A.F. Lipolytic activity of human gastric and duodenal juice against medium and long chain triglycerides. Gastroenterology 1971, 60, 1–15. [Google Scholar] [CrossRef]
- Mayorek, N.; Bar-Tana, J. Medium chain fatty acids as specific substrates for diglyceride acyltransferase in cultured hepatocytes. J. Biol. Chem. 1983, 258, 6789–6792. [Google Scholar] [CrossRef]
- You, Y.Q.; Ling, P.R.; Qu, J.Z.; Bistrian, B.R. Effects of medium-chain triglycerides, long-chain triglycerides, or 2-monododecanoin on fatty acid composition in the portal vein, intestinal lymph, and systemic circulation in rats. JPEN J. Parenter. Enteral Nutr. 2008, 32, 169–175. [Google Scholar] [CrossRef]
- Swift, L.L.; Hill, J.O.; Peters, J.C.; Greene, H.L. Medium-chain fatty acids: Evidence for incorporation into chylomicron triglycerides in humans. Am. J. Clin. Nutr. 1990, 52, 834–836. [Google Scholar] [CrossRef] [PubMed]
- Baba, N.; Bracco, E.F.; Hashim, S.A. Enhanced thermogenesis and diminished deposition of fat in response to overfeeding with diet containing medium chain triglyceride. Am. J. Clin. Nutr. 1982, 35, 678–682. [Google Scholar] [CrossRef] [PubMed]
- Crozier, G.; Bois-Joyeux, B.; Chanez, M.; Girard, J.; Peret, J. Metabolic effects induced by long-term feeding of medium-chain triglycerides in the rat. Metabolism 1987, 36, 807–814. [Google Scholar] [CrossRef] [PubMed]
- DeLany, J.P.; Windhauser, M.M.; Champagne, C.M.; Bray, G.A. Differential oxidation of individual dietary fatty acids in humans. Am. J. Clin. Nutr. 2000, 72, 905–911. [Google Scholar] [CrossRef] [PubMed]
- St-Onge, M.P.; Bosarge, A. Weight-loss diet that includes consumption of medium-chain triacylglycerol oil leads to a greater rate of weight and fat mass loss than does olive oil. Am. J. Clin. Nutr. 2008, 87, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, G.L.; Babayan, V.K. Medium-chain triglyceride storage in adipose tissue of orally fed infants. Am. J. Clin. Nutr. 1987, 46, 862–863. [Google Scholar] [CrossRef] [PubMed]
- Sarda, P.; Lepage, G.; Roy, C.C.; Chessex, P. Storage of medium-chain triglycerides in adipose tissue of orally fed infants. Am. J. Clin. Nutr. 1987, 45, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Damholt, A.B.; Kofod, H.; Buchan, A.M. Immunocytochemical evidence for a paracrine interaction between GIP and GLP-1-producing cells in canine small intestine. Cell Tissue Res. 1999, 298, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Baggio, L.L.; Drucker, D.J. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007, 132, 2131–2157. [Google Scholar] [CrossRef]
- Seino, Y.; Fukushima, M.; Yabe, D. GIP and GLP-1, the two incretin hormones: Similarities and differences. J. Diabetes Investig. 2010, 1, 8–23. [Google Scholar] [CrossRef]
- Ionut, V.; Hucking, K.; Liberty, I.F.; Bergman, R.N. Synergistic effect of portal glucose and glucagon-like peptide-1 to lower systemic glucose and stimulate counter-regulatory hormones. Diabetologia 2005, 48, 967–975. [Google Scholar] [CrossRef] [PubMed]
- Pederson, R.A.; Schubert, H.E.; Brown, J.C. The insulinotropic action of gastric inhibitory polypeptide. Can. J. Physiol. Pharmacol. 1975, 53, 217–223. [Google Scholar] [CrossRef] [PubMed]
- O’Dorisio, T.M.; Cataland, S.; Stevenson, M.; Mazzaferri, E.L. Gastric inhibitory polypeptide (GIP). Intestinal distribution and stimulation by amino acids and medium-chain triglycerides. Am. J. Dig. Dis. 1976, 21, 761–765. [Google Scholar] [CrossRef] [PubMed]
- Vester Boler, B.M.; Faber, T.A.; Bauer, L.L.; Swanson, K.S.; Smiley, S.; Bechtel, P.J.; Fahey, G.C., Jr. Acute satiety response of mammalian, avian and fish proteins in dogs. Br. J. Nutr. 2012, 107, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.H.; May, J.M.; Biesbroeck, J.B. Determinants of gastric inhibitory polypeptide and insulin secretion. Metabolism 1981, 30, 36–40. [Google Scholar] [CrossRef] [PubMed]
- Ionut, V.; Liberty, I.F.; Hucking, K.; Lottati, M.; Stefanovski, D.; Zheng, D.; Bergman, R.N. Exogenously imposed postprandial-like rises in systemic glucose and GLP-1 do not produce an incretin effect, suggesting an indirect mechanism of GLP-1 action. Am. J. Physiol. Endocrinol. Metab. 2006, 291, E779–E785. [Google Scholar] [CrossRef] [PubMed]
- Johnson, K.M.; Farmer, T.; Schurr, K.; Patrick Donahue, E.; Farmer, B.; Neal, D.; Cherrington, A.D. Endogenously released GLP-1 is not sufficient to alter postprandial glucose regulation in the dog. Endocrine 2011, 39, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Damholt, A.B.; Buchan, A.M.; Kofod, H. Glucagon-like-peptide-1 secretion from canine L-cells is increased by glucose-dependent-insulinotropic peptide but unaffected by glucose. Endocrinology 1998, 139, 2085–2091. [Google Scholar] [CrossRef] [PubMed]
- Yoshiya, K.; Yamamura, T.; Ishikawa, Y.; Utsunomiya, J.; Takemura, J.; Takeda, J.; Seino, Y.; Imura, H. Effect of truncal vagotomy on GIP release induced by intraduodenal glucose or fat in dogs. Digestion 1985, 31, 41–46. [Google Scholar] [CrossRef]
- Mitsuhashi, Y.; Nagaoka, D.; Bigley, K.E.; Umeda, T.; Otsuji, K.; Bauer, J.E. Metabolic and hormonal alterations with diacylglycerol and low glycemic index starch during canine weight loss. ISRN Vet. Sci. 2012, 2012, 750593. [Google Scholar] [CrossRef]
- Lin, H.V.; Chen, D.; Shen, Z.; Zhu, L.; Ouyang, X.; Vongs, A.; Kan, Y.; Levorse, J.M.; Kowalik, E.J., Jr.; Szeto, D.M.; et al. Diacylglycerol acyltransferase-1 (DGAT1) inhibition perturbs postprandial gut hormone release. PLoS ONE 2013, 8, e54480. [Google Scholar] [CrossRef] [PubMed]
- Model, J.F.A.; Rocha, D.S.; Fagundes, A.D.C.; Vinagre, A.S. Physiological and pharmacological actions of glucagon like peptide-1 (GLP-1) in domestic animals. Vet. Anim. Sci. 2022, 16, 100245. [Google Scholar] [CrossRef] [PubMed]
- Médaille, C.; Trumel, C.; Concordet, D.; Vergez, F.; Braun, J.P. Comparison of plasma/serum urea and creatinine concentrations in the dog: A 5-year retrospective study in a commercial veterinary clinical pathology laboratory. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2004, 51, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Giudice, E.; Giannetto, C.; Fazio, F.; Piccione, G. Daily rhythm of creatinine in dog: Clinical and diagnostic significance. Biol. Rhythm Res. 2009, 40, 181–187. [Google Scholar] [CrossRef]
- Romsos, D.R.; Belo, P.S.; Bennink, M.R.; Bergen, W.G.; Leveille, G.A. Effects of dietary carbohydrate, fat and protein on growth, body composition and blood metabolite levels in the dog. J. Nutr. 1976, 106, 1452–1464. [Google Scholar] [CrossRef]
- Kraft, G.; Coate, K.C.; Winnick, J.J.; Dardevet, D.; Donahue, E.P.; Cherrington, A.D.; Williams, P.E.; Moore, M.C. Glucagon’s effect on liver protein metabolism in vivo. Am. J. Physiol. Endocrinol. Metab. 2017, 313, E263–E272. [Google Scholar] [CrossRef] [PubMed]
- Association of American Feed Control Officials. AAFCO Methods for Substantiating Nutritional Adequacy of Dog and Cat Foods. Available online: www.aafco.org/wp-content/uploads/2023/01/Model_Bills_and_Regulations_Agenda_Midyear_2015_Final_Attachment_A.__Proposed_revisions_to_AAFCO_Nutrient_Profiles_PFC_Final_070214.pdf (accessed on 20 June 2024).
- Brooks, D.; Churchill, J.; Fein, K.; Linder, D.; Michel, K.E.; Tudor, K.; Ward, E.; Witzel, A. 2014 AAHA weight management guidelines for dogs and cats. J. Am. Anim. Hosp. Assoc. 2014, 50, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Allenspach, K.; Borcherding, D.C.; Iennarella-Servantez, C.A.; Mosichuk, A.P.; Atherly, T.; Sahoo, D.K.; Kathrani, A.; Suchodolski, J.S.; Bourgois-Mochel, A.; Serao, M.R.; et al. Ketogenic diets in healthy dogs induce gut and serum metabolome changes suggestive of anti-tumourigenic effects: A model for human ketotherapy trials. Clin. Transl. Med. 2022, 12, e1047. [Google Scholar] [CrossRef] [PubMed]
- Sousa, C.M.; Biancur, D.E.; Wang, X.; Halbrook, C.J.; Sherman, M.H.; Zhang, L.; Kremer, D.; Hwang, R.F.; Witkiewicz, A.K.; Ying, H.; et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 2016, 536, 479–483. [Google Scholar] [CrossRef]
- Prochownik, E.V.; Wang, H. The metabolic fates of pyruvate in normal and neoplastic cells. Cells 2021, 10, 762. [Google Scholar] [CrossRef]
- Son, J.; Lyssiotis, C.A.; Ying, H.; Wang, X.; Hua, S.; Ligorio, M.; Perera, R.M.; Ferrone, C.R.; Mullarky, E.; Shyh-Chang, N.; et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 2013, 496, 101–105. [Google Scholar] [CrossRef]
- Jagadeeshaprasad, M.G.; Batkulwar, K.B.; Meshram, N.N.; Tiwari, S.; Korwar, A.M.; Unnikrishnan, A.G.; Kulkarni, M.J. Targeted quantification of N-1-(carboxymethyl) valine and N-1-(carboxyethyl) valine peptides of β-hemoglobin for better diagnostics in diabetes. Clin. Proteomics 2016, 13, 7. [Google Scholar] [CrossRef]
- Rossi, M.; Johnson, D.W.; Xu, H.; Carrero, J.J.; Pascoe, E.; French, C.; Campbell, K.L. Dietary protein-fiber ratio associates with circulating levels of indoxyl sulfate and p-cresyl sulfate in chronic kidney disease patients. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 860–865. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.I.; Jewell, D.E. Balance of saccharolysis and proteolysis underpins improvements in stool quality induced by adding a fiber bundle containing bound polyphenols to either hydrolyzed meat or grain-rich foods. Gut Microbes 2019, 10, 298–320. [Google Scholar] [CrossRef]
- Jackson, M.I.; Waldy, C.; Cochrane, C.Y.; Jewell, D.E. Consumption of identically formulated foods extruded under low and high shear force reveals that microbiome redox ratios accompany canine immunoglobulin A production. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1551–1567. [Google Scholar] [CrossRef] [PubMed]
- Badri, D.V.; Jackson, M.I.; Jewell, D.E. Dietary protein and carbohydrate levels affect the gut microbiota and clinical assessment in healthy adult cats. J. Nutr. 2021, 151, 3637–3650. [Google Scholar] [CrossRef]
- Mazandarani, M.; Lashkarbolouk, N.; Ejtahed, H.S.; Qorbani, M. Does the ketogenic diet improve neurological disorders by influencing gut microbiota? A systematic review. Nutr. J. 2023, 22, 61. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, C.; Meng, Y.; Dang, Y.; Yang, L. Ketogenic diet ameliorates attention deficit hyperactivity disorder in rats via regulating gut microbiota. PLoS ONE 2023, 18, e0289133. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, L.; Li, H.; Chen, G.; Yang, L.; Wang, D.; Han, H.; Zheng, G.; Wang, X.; Liang, J.; et al. Effects of ketogenic diet on the classification and functional composition of intestinal flora in children with mitochondrial epilepsy. Front. Neurol. 2023, 14, 1237255. [Google Scholar] [CrossRef]
- Ang, Q.Y.; Alexander, M.; Newman, J.C.; Tian, Y.; Cai, J.; Upadhyay, V.; Turnbaugh, J.A.; Verdin, E.; Hall, K.D.; Leibel, R.L.; et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell 2020, 181, 1263–1275.e16. [Google Scholar] [CrossRef]
- Jiang, Z.; Wang, X.; Zhang, H.; Yin, J.; Zhao, P.; Yin, Q.; Wang, Z. Ketogenic diet protects MPTP-induced mouse model of Parkinson’s disease via altering gut microbiota and metabolites. MedComm 2023, 4, e268. [Google Scholar] [CrossRef] [PubMed]
- Holmes, A.J.; Chew, Y.V.; Colakoglu, F.; Cliff, J.B.; Klaassens, E.; Read, M.N.; Solon-Biet, S.M.; McMahon, A.C.; Cogger, V.C.; Ruohonen, K.; et al. Diet-microbiome interactions in health are controlled by intestinal nitrogen source constraints. Cell Metab. 2017, 25, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Kieffer, D.A.; Piccolo, B.D.; Vaziri, N.D.; Liu, S.; Lau, W.L.; Khazaeli, M.; Nazertehrani, S.; Moore, M.E.; Marco, M.L.; Martin, R.J.; et al. Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats. Am. J. Physiol. Renal Physiol. 2016, 310, F857–F871. [Google Scholar] [CrossRef] [PubMed]
- Niwa, T. Uremic toxicity of indoxyl sulfate. Nagoya J. Med. Sci. 2010, 72, 1–11. [Google Scholar] [PubMed]
- Athinarayanan, S.J.; Roberts, C.G.P.; Vangala, C.; Shetty, G.K.; McKenzie, A.L.; Weimbs, T.; Volek, J.S. The case for a ketogenic diet in the management of kidney disease. BMJ Open Diabetes Res. Care 2024, 12, e004101. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, H.; Leyrolle, Q.; Koistinen, V.; Kärkkäinen, O.; Layé, S.; Delzenne, N.; Hanhineva, K. Microbiota-derived metabolites as drivers of gut-brain communication. Gut Microbes 2022, 14, 2102878. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Bek, M.K.; Prince, N.Z.; Peralta Marzal, L.N.; Garssen, J.; Perez Pardo, P.; Kraneveld, A.D. The role of bacterial-derived aromatic amino acids metabolites relevant in autism spectrum disorders: A comprehensive review. Front. Neurosci. 2021, 15, 738220. [Google Scholar] [CrossRef] [PubMed]
- Needham, B.D.; Funabashi, M.; Adame, M.D.; Wang, Z.; Boktor, J.C.; Haney, J.; Wu, W.L.; Rabut, C.; Ladinsky, M.S.; Hwang, S.J.; et al. A gut-derived metabolite alters brain activity and anxiety behaviour in mice. Nature 2022, 602, 647–653. [Google Scholar] [CrossRef] [PubMed]
- Dietch, D.M.; Kerr-Gaffney, J.; Hockey, M.; Marx, W.; Ruusunen, A.; Young, A.H.; Berk, M.; Mondelli, V. Efficacy of low carbohydrate and ketogenic diets in treating mood and anxiety disorders: Systematic review and implications for clinical practice. BJPsych Open 2023, 9, e70. [Google Scholar] [CrossRef]
- Li, Q.; Liang, J.; Fu, N.; Han, Y.; Qin, J. A ketogenic diet and the treatment of autism spectrum disorder. Front. Pediatr. 2021, 9, 650624. [Google Scholar] [CrossRef]
Food Component | HiCHO | PROT_LoCHO | FAT_LoCHO |
---|---|---|---|
Ketogenic ratio | 0.46 | 1.08 | 1.65 |
Metabolizable energy, kcal/kg | 3728.3 | 4026.9 | 4484.4 |
Protein, % kcal | 25.4 | 51.5 | 29.6 |
Fat, % kcal | 35.3 | 42.6 | 66.2 |
Carbohydrate, % kcal | 39.3 | 5.9 | 4.2 |
Protein | 23.7 | 51.9 | 33.2 |
Fat | 14.6 | 19.1 | 33.0 |
Carbohydrate | 36.6 | 5.9 | 4.7 |
Starch | 35.5 | 5.4 | 3.9 |
Sugars | 1.1 | 0.5 | 0.8 |
Total dietary fiber | 10.6 | 11.2 | 14.7 |
Insoluble fiber | 8.5 | 10.2 | 12.1 |
Soluble fiber | 2.1 | 1 | 2.6 |
SFAs | 3.6 | 5.25 | 14.29 |
MUFAs | 5.17 | 7.38 | 10.52 |
n3 PUFAs | 0.45 | 0.81 | 2 |
n6 PUFAs | 3.61 | 3.74 | 4.23 |
n6/n3 Ratio | 8.02 | 4.62 | 2.12 |
C8:0 | <0.02 | <0.02 | 4.04 |
C10:0 | <0.02 | <0.02 | 3.11 |
C12:0 | <0.02 | <0.02 | <0.02 |
C14:0 | 0.06 | 0.09 | 0.2 |
C16:0 | 2.76 | 3.85 | 5.36 |
C16:1 | 0.59 | 0.96 | 1.42 |
C18:0 | 0.7 | 1.2 | 1.45 |
C18:1 | 4.48 | 6.28 | 8.89 |
C18:2n6 | 3.5 | 3.35 | 3.89 |
C18:3n6 | <0.02 | 0.04 | 0.05 |
C18:3n3 | 0.43 | 0.75 | 1.6 |
C20:3n6 | <0.02 | 0.05 | 0.04 |
C20:4n6 (ARA) | 0.05 | 0.21 | 0.17 |
C20:5n3 (EPA) | <0.02 | <0.02 | 0.18 |
C22:6n3 (DHA) | <0.02 | <0.02 | 0.13 |
Nutrient Intake | HiCHO | PROT_LoCHO | FAT_LoCHO | Mixed Model p |
---|---|---|---|---|
Metabolizable energy | 111.52 ± 2.67 a | 108.45 ± 3.33 b | 115.74 ± 4.35 a | <0.001 |
Crude protein | 7.09 ± 0.17 c | 13.97 ± 0.43 a | 8.57 ± 0.32 b | <0.001 |
Crude fat | 4.38 ± 0.10 c | 5.13 ± 0.16 b | 8.52 ± 0.32 a | <0.001 |
Carbohydrate | 10.95 ± 0.26 a | 1.60 ± 0.05 b | 1.21 ± 0.05 c | <0.001 |
Starch | 10.62 ± 0.25 a | 1.45 ± 0.04 b | 1.01 ± 0.04 c | <0.001 |
Sugars | 0.33 ± 0.01 a | 0.14 ± 0.00 c | 0.20 ± 0.01 b | <0.001 |
Total dietary fiber | 3.17 ± 0.08 b | 3.02 ± 0.09 b | 3.79 ± 0.14 a | <0.001 |
Insoluble fiber | 2.54 ± 0.06 c | 2.75 ± 0.08 b | 3.12 ± 0.12 a | <0.001 |
Soluble fiber | 0.63 ± 0.02 b | 0.27 ± 0.01 c | 0.67 ± 0.03 a | <0.001 |
SFAs | 1.08 ± 0.03 c | 1.41 ± 0.04 b | 3.69 ± 0.14 a | <0.001 |
MUFAs | 1.55 ± 0.04 c | 1.99 ± 0.06 b | 2.72 ± 0.10 a | <0.001 |
n3 PUFAs | 0.13 ± 0.00 c | 0.22 ± 0.01 b | 0.52 ± 0.02 a | <0.001 |
n6 PUFAs | 1.08 ± 0.03 a | 1.01 ± 0.03 b | 1.09 ± 0.04 a,b | <0.001 |
C8:0 | <0.007 b | <0.006 c | 1.04 ± 0.04 a | NA |
C10:0 | <0.007 b | <0.006 c | 0.80 ± 0.03 a | NA |
C12:0 | <0.007 a | <0.006 b | <0.006 c | NA |
C14:0 | 0.02 ± 0.00 c | 0.02 ± 0.00 b | 0.05 ± 0.00 a | <0.001 |
C16:0 | 0.83 ± 0.02 c | 1.04 ± 0.03 b | 1.38 ± 0.05 a | <0.001 |
C16:1 | 0.18 ± 0.00 c | 0.26 ± 0.01 b | 0.37 ± 0.01 a | <0.001 |
C18:0 | 0.21 ± 0.01 c | 0.32 ± 0.01 b | 0.37 ± 0.01 a | <0.001 |
C18:1 | 1.34 ± 0.03 c | 1.69 ± 0.05 b | 2.29 ± 0.09 a | <0.001 |
C18:2n6 | 1.05 ± 0.03 a | 0.90 ± 0.03 b | 1.00 ± 0.04 a | <0.001 |
C18:3n3 | 0.13 ± 0.00 c | 0.20 ± 0.01 b | 0.41 ± 0.02 a | <0.001 |
C18:3n6 | <0.007 c | 0.01 ± 0.00 b | 0.01 ± 0.00 a | NA |
C20:3n6 | <0.007 c | 0.01 ± 0.00 a | 0.01 ± 0.00 b | NA |
C20:4n6 (ARA) | 0.02 ± 0.00 c | 0.06 ± 0.00 a | 0.04 ± 0.00 b | <0.001 |
C20:5n3 (EPA) | <0.007 b | <0.006 c | 0.05 ± 0.00 a | NA |
C22:6n3 (DHA) | <0.007 b | <0.006 c | 0.03 ± 0.00 a | NA |
0 h | 2 h | 2 h−0 h | Mixed Model p Value (Overall Food Effect) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Analyte | HiCHO | PROT_LoCHO | FAT_LoCHO | HiCHO | PROT_LoCHO | FAT_LoCHO | HiCHO | PROT_LoCHO | FAT_LoCHO | 0 h | 2 h | 2 h−0 h |
Glucose (mM) | 5.06 | 5.01 | 5.04 | 5.17 a | 4.84 b | 4.65 b | 0.11 a | −0.18 b* | −0.25 b* | 0.804 | <0.001 | 0.004 |
Albumin (g/dL) | 3.47 c | 3.65 a | 3.57 b | 3.51 b | 3.69 a | 3.56 b | 0.04 b | 0.04 b* | 0.09 a | <0.001 | <0.001 | 0.827 |
BUN (mg/dL) | 13.44 b | 18.42 a | 13.52 b | 16.28 c | 31.73 a | 17.41 b | 2.84 c* | 13.31 a* | 4.26 b* | <0.001 | <0.001 | <0.001 |
Bilirubin, total (mg/dL) | 0.08 a | 0.07 a,b | 0.05 b | 0.04 a | 0.02 b | 0.01 b | −0.04 * | −0.04 * | −0.04 * | 0.005 | 0.001 | 0.885 |
Creatinine (mg/dL) | 0.69 | 0.72 | 0.73 | 0.75 b | 0.83 a | 0.85 a | 0.06 b* | 0.11 a* | 0.14 a* | 0.124 | <0.001 | 0.001 |
β-hydroxybutyrate (mM) | 0.08 c | 0.11 b | 0.13 a | 0.06 c | 0.14 b | 0.26 a | −0.02 c* | 0.03 b* | 0.13 a* | <0.001 | <0.001 | <0.001 |
NEFAs (mM) | 0.77 a,b | 0.83 a | 0.73 b | 0.44 b | 0.36 c | 0.64 a | −0.33 b* | −0.46 c* | −0.10 a | 0.247 | <0.001 | <0.001 |
β-hydroxybutyrate/NEFAs | 127.05 b | 129.91 b | 187.58 a | 153.91 b | 418.26 a | 433.12 a | 26.86 b* | 288.35 a* | 245.54 a* | <0.001 | <0.001 | <0.001 |
Triglycerides (mM) | 0.75 a | 0.42 c | 0.47 b | 1.77 b | 1.90 b | 3.27 a | 1.02 c* | 1.48 b* | 2.81 a* | <0.001 | <0.001 | <0.001 |
Total fatty acids (mM) | 9.46 b | 9.28 b | 10.67 a | 9.79 b | 9.43 c | 11.62 a | 0.33 b* | 0.15 b | 0.96 a* | <0.001 | <0.001 | <0.001 |
Cholesterol (mM) | 5.15 c | 5.41 b | 6.47 a | 5.12 c | 5.40 b | 6.37 a | −0.03 | −0.01 | 0.08 * | <0.001 | <0.001 | 0.750 |
Lipemic index (mg/dL) | 7.31 a | 6.28 b | 6.54 a,b | 62.86 b | 79.31 b | 128.06 a | 55.56 b* | 73.03 b* | 121.69 a* | 0.133 | <0.001 | <0.001 |
0 h | 2 h | 2 h−0 h | Mixed Model p Value (Overall Food Effect) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Analyte | HiCHO | PROT_LoCHO | FAT_LoCHO | HiCHO | PROT_LoCHO | FAT_LoCHO | HiCHO | PROT_LoCHO | FAT_LoCHO | 0 h | 2 h | 2 h−0 h |
Apparent total circulating energy, kcal/L 1 | 28.21 b | 27.77 b | 31.32 a | 29.52 b | 28.45 c | 34.16 a | 1.31 b* | 1.45 b* | 3.71 a* | <0.001 | <0.001 | 0.024 |
Glucose | 13.08 a | 13.15 a | 11.78 b | 12.73 a | 12.36 a | 9.99 b | −0.35 a | −0.43 a,b* | −1.46 b* | <0.001 | <0.001 | 0.084 |
β-hydroxybutyrate | 0.13 b | 0.17 a | 0.19 a | 0.10 c | 0.22 b | 0.34 a | −0.03 c* | 0.05 b* | 0.16 a* | <0.001 | <0.001 | <0.001 |
Triglycerides (only glycerol) | 0.95 a | 0.54 b | 0.54 b | 2.13 b | 2.36 b | 3.35 a | 1.18 c* | 1.84 b* | 2.82 a* | <0.001 | <0.001 | <0.001 |
Triglycerides (only fatty acids) | 19.31 a | 10.88 b | 10.90 b | 43.15 b | 47.79 b | 67.79 a | 23.84 c* | 37.22 b* | 57.19 a* | <0.001 | <0.001 | <0.001 |
NEFAs | 6.97 a,b | 7.64 a | 6.14 b | 3.82 b | 3.25 c | 4.81 a | −3.15 b* | −4.17 c* | −1.16 a* | 0.011 | <0.001 | <0.001 |
Adjusted total fatty acids 2 | 59.56 c | 67.63 b | 70.46 a | 38.08 a | 34.02 a | 13.72 b | −21.48 a* | −31.73 b* | −54.78 c* | <0.001 | <0.001 | <0.001 |
0 h | 2 h | 2 h−0 h | Mixed Model p Value (Overall Food Effect) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Analyte | HiCHO | PROT_LoCHO | FAT_LoCHO | HiCHO | PROT_LoCHO | FAT_LoCHO | HiCHO | PROT_LoCHO | FAT_LoCHO | 0 h | 2 h | 2 h−0 h |
Catabolic | ||||||||||||
Total amino acids | −4.76 a,b | −5.87 b | −4.02 a | 1.80 c | 14.29 a | 8.06 b | 6.55 c* | 20.16 a* | 12.09 b* | 0.003 | <0.001 | <0.001 |
Total indoles | 4.09 a | −10.14 b | −7.85 b | 5.09 a | −5.77 b | −7.05 b | 1.00 b | 4.38 a* | 0.80 b | <0.001 | <0.001 | 0.022 |
Total phenols | 5.28 a | −51.46 c | −20.67 b | 11.33 a | −35.27 c | −5.58 b | 6.05 b | 16.19 a* | 15.09 a* | <0.001 | <0.001 | 0.015 |
Total MDAGs | −24.52 a | −43.92 b | −34.42 a | 11.69 a,b | 6.58 b | 15.15 a | 36.21 b* | 50.50 a* | 50.49 a,b* | <0.001 | 0.018 | 0.022 |
Total acylcarnitines | −28.86 c | −8.71 b | 8.40 a | −34.50 c | −25.14 b | 30.94 a | −5.64 b* | −16.43 c* | 22.54 a* | <0.001 | <0.001 | <0.001 |
Total β-hydroxy FAs | −1.41 c | 0.87 b | 2.82 a | −5.69 b | −6.45 b | 6.71 a | −4.28 b* | −7.32 c* | 3.89 a* | <0.001 | <0.001 | <0.001 |
Total α-hydroxy FAs | −3.87 | −4.31 | −3.38 | 2.00 a | −1.41 b | 1.46 a | 5.25 * | 2.18 * | 4.10 * | 0.679 | 0.009 | 0.181 |
Total ω-carboxy FAs | 0.71 a | −0.81 a,b | −1.00 b | 0.24 b | −3.36 c | 7.93 a | −0.46 b | −2.55 b* | 8.94 a* | 0.099 | <0.001 | <0.001 |
Anabolic | ||||||||||||
Total GPCs | −2.25 b | 0.11 a | 1.43 a | 2.63 a | 0.52 b | 1.71 a,b | 4.88 a* | 0.41 b | 0.29 b | 0.001 | 0.062 | <0.001 |
Total GPEs | −2.16 a | −6.75 b | −10.77 c | 6.10 a | 1.90 c | 3.40 b | 8.26 b* | 8.65 b* | 14.17 a* | <0.001 | <0.001 | <0.001 |
Total SPHINGs | −11.18 b | −8.69 b | 7.26 a | −6.25 b | −2.82 b | 7.43 a | 4.93 a* | 5.87 a* | 0.16 b | <0.001 | <0.001 | <0.001 |
Signaling | ||||||||||||
Total acylcholines | −3.07 c | −1.34 b | 3.94 a | 5.03 a | −8.20 c | −0.95 b | 8.10 a* | −6.86 b* | −4.89 b* | <0.001 | <0.001 | <0.001 |
Total acylethanolamides | 0.04 b | −0.07 b | 0.73 a | 0.17 a | −0.83 b | −0.54 b | 0.13 a | −0.77 a,b* | −1.27 b* | 0.049 | 0.011 | 0.024 |
Total acyl amino acids | −6.87 b | −7.68 b | −4.36 a | −6.90 b | −10.81 c | 5.43 a | −0.03 b | −3.13 b | 9.79 a* | 0.049 | <0.001 | <0.001 |
Glycation | ||||||||||||
Total AGEs | −6.36 a | −12.99 c | −10.60 b | 3.72 b | 7.70 a | 6.92 a | 10.09 c* | 20.69 a* | 17.52 b* | <0.001 | <0.001 | <0.001 |
0 h | 2 h | 2 h−0 h | Mixed Model p Value (Overall Food Effect) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Analyte | HiCHO | PROT_LoCHO | FAT_LoCHO | HiCHO | PROT_LoCHO | FAT_LoCHO | HiCHO | PROT_LoCHO | FAT_LoCHO | 0 h | 2 h | 2 h−0 h |
Fatty acid (μM) | ||||||||||||
8:0 | 0.00 | 0.00 | 0.24 | 0.00 | 0.00 | 128.61 | 0.00 | 0.00 | 128.37 | NA | NA | NA |
10:0 | 0.76 | 0.17 | 12.38 | 0.00 | 0.00 | 184.68 | −0.76 | −0.17 | 172.30 | NA | NA | NA |
12:0 | 4.68 a | 3.74 a,b | 3.36 b | 3.45 a | 0.29 b | 0.30 b | −1.24 a | −3.45 b* | −3.05 b* | 0.270 | <0.001 | 0.031 |
14:0 | 22.97 a | 15.25 b | 15.22 b | 16.45 a | 11.18 b | 16.59 a | −6.52 c* | −4.07 b* | 1.36 a | <0.001 | <0.001 | <0.001 |
16:0 | 1440.90 b | 1495.31 a | 1497.13 a | 1468.95 b | 1520.43 b | 1637.77 a | 28.05 b | 25.11 b | 140.64 a* | 0.087 | <0.001 | <0.001 |
16:1 | 87.90 b | 96.29 a | 89.68 b | 72.70 c | 80.02 b | 107.12 a | −15.20 b* | −16.27 b* | 17.45 a* | 0.135 | <0.001 | <0.001 |
18:0 | 2624.17 b | 2563.46 b | 3300.45 a | 2784.64 b | 2679.67 b | 3449.60 a | 160.47 * | 116.21 * | 149.14 * | <0.001 | <0.001 | 0.461 |
18:1n9 | 836.73 | 831.30 | 869.30 | 770.47 b | 752.20 b | 963.54 a | −66.26 b* | −79.09 b* | 94.24 a* | 0.190 | <0.001 | <0.001 |
18:2n6 | 1960.81 a | 1571.01 c | 1773.10 b | 2062.00 a | 1632.24 c | 1952.81 b | 101.20 b* | 61.23 b* | 179.70 a* | <0.001 | <0.001 | <0.001 |
18:3n3 | 53.75 c | 63.61 b | 91.65 a | 49.02 c | 65.42 b | 133.12 a | −4.73 c* | 1.81 b | 41.48 a* | <0.001 | <0.001 | <0.001 |
18:3n6 | 11.07 a | 10.13 b | 9.83 b | 9.60 b | 10.40 a | 11.09 a | −1.47 b* | 0.28 a | 1.26 a* | 0.004 | 0.003 | <0.001 |
20:2n6 | 29.59 a | 21.03 b | 21.02 b | 30.69 a | 19.34 b | 19.78 b | 1.10 a | −1.68 b* | −1.24 b | <0.001 | <0.001 | 0.021 |
20:3n6 | 106.35 b | 104.58 b | 164.78 a | 117.71 b | 106.10 c | 166.79 a | 11.36 a* | 1.52 b | 2.02 b | <0.001 | <0.001 | <0.001 |
20:4n6 | 1825.26 b | 2080.74 a | 2050.25 a | 1941.51 b | 2131.57 a | 2083.86 a | 116.25 a* | 50.83 b* | 33.61 b* | <0.001 | <0.001 | 0.028 |
20:5n3 | 28.31 c | 35.15 b | 193.43 a | 26.60 c | 34.38 b | 196.06 a | −1.71 b* | −0.77 a,b | 2.63 a | <0.001 | <0.001 | 0.022 |
22:4n6 | 90.44 b | 117.25 a | 46.15 c | 93.51 b | 115.97 a | 46.03 c | 3.06 a* | −1.28 b | −0.12 b | <0.001 | <0.001 | 0.050 |
22:5n3 | 233.75 b | 187.68 c | 256.40 a | 243.24 a | 185.01 b | 252.18 a | 9.48 a* | −2.67 b | −4.22 b | <0.001 | <0.001 | <0.001 |
22:6n3 | 101.38 b | 85.59 c | 273.03 a | 100.44 b | 85.26 c | 273.08 a | −0.94 | −0.33 | 0.06 | <0.001 | <0.001 | 0.949 |
Enzyme Ratios | ||||||||||||
SCD1 (d9) (16:1/16:0) | 0.061 a,b | 0.064 a | 0.060 b | 0.050 c | 0.053 b | 0.065 a | −0.011 b* | −0.012 b* | 0.005 a* | 0.221 | <0.001 | <0.001 |
SCD1 (d9) (18:1/18:0) | 0.32 a | 0.33 a | 0.27 b | 0.28 | 0.28 | 0.28 | −0.04 b* | −0.04 b* | 0.01 a* | <0.001 | 0.756 | <0.001 |
d6 desaturase (18:3n6/18:2n6) | 0.0057 b | 0.0064 a | 0.0057 b | 0.0047 c | 0.0064 a | 0.0057 b | −0.001 b* | 0.00 a | 0.00 a | <0.001 | <0.001 | 0.001 |
d5 desaturase (20:4n6/20:3n6) | 18.13 b | 20.42 a | 12.96 c | 17.48 b | 20.57 a | 12.95 c | −0.65 b* | 0.15 a | −0.01 a | <0.001 | <0.001 | <0.001 |
Elongase Elovl-6 (18:0/16:0) | 1.82 b | 1.71 c | 2.21 a | 1.90 b | 1.76 c | 2.11 a | 0.07 a* | 0.05 a* | −0.09 b* | <0.001 | <0.001 | <0.001 |
Elongase Elovl-5 (20:3n6/18:3n6) | 9.79 c | 10.57 b | 17.82 a | 12.53 b | 10.47 c | 15.57 a | 2.74 a* | −0.11 b | −2.25 b | <0.001 | <0.001 | <0.001 |
Overall Elongation ((18:0 + 18:1)/16:0) | 2.40 b | 2.27 c | 2.79 a | 2.42 b | 2.26 c | 2.70 a | 0.02 a | −0.01 b* | −0.09 c* | <0.001 | <0.001 | <0.001 |
0 h | 2 h | 2 h−0 h | Mixed Model p Value (Overall Food Effect) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hormone | HiCHO | PROT_LoCHO | FAT_LoCHO | HiCHO | PROT_LoCHO | FAT_LoCHO | HiCHO | PROT_LoCHO | FAT_LoCHO | 0 h | 2 h | 2 h−0 h |
Insulin | 272.00 | 292.52 | 346.91 | 549.73 b | 709.57 a | 602.65 b | 277.73 a,b* | 417.05 a* | 255.74 b* | 0.306 | 0.006 | 0.112 |
Glucagon | 87.23 | 83.74 | 90.90 | 123.68 c | 239.52 a | 200.93 b | 36.45 c* | 155.79 a* | 110.03 b* | 0.405 | <0.001 | <0.001 |
Insulin/Glucagon (pM/pM) | 1.89 | 2.11 | 2.13 | 2.78 a | 1.95 a,b | 1.82 b | 0.89 a* | −0.20 b | −0.30 b | 0.442 | 0.014 | 0.002 |
GIP | 8.15 a | 6.48 b | 8.45 a,b | 168.19 b | 144.93 c | 217.65 a | 160.03 b* | 138.44 b* | 209.20 a* | 0.046 | 0.001 | 0.079 |
GLP-1 | 3.66 | 2.41 | 9.03 | 26.00 b | 33.90 b | 51.28 a | 22.34 b* | 31.48 a* | 42.25 a* | 0.081 | <0.001 | 0.115 |
PP | 214.87 | 125.65 | 178.40 | 802.89 a | 811.71 a | 649.14 b | 588.02 a,b* | 686.06 a* | 470.73 b* | 0.091 | <0.001 | 0.018 |
PYY | 154.54 a | 107.08 b | 162.22 a | 264.77 a,b | 247.22 b | 323.78 a | 110.23 * | 140.14 * | 161.56 * | 0.020 | 0.018 | 0.449 |
Leptin | 3241.29 a | 2113.62 b | 3513.98 a | 2976.98 | 2662.05 | 3001.70 | −264.31 b | 548.43 a* | −512.28 b | <0.001 | 0.464 | <0.001 |
Ghrelin | 728.10 b | 797.27 b | 1150.16 a | 628.35 a | 326.21 b | 585.90 a | −99.74 a | −471.06 b* | −564.26 b* | <0.001 | <0.001 | <0.001 |
Leptin/Ghrelin (pM/pM) | 14.74 a | 8.40 b | 7.55 b | 18.73 b | 31.12 a | 15.68 b | 3.99 c | 15.82 a* | 8.13 b* | 0.005 | 0.061 | 0.009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jackson, M.I. Replacement of Dietary Carbohydrate with Protein versus Fat Differentially Alters Postprandial Circulating Hormones and Macronutrient Metabolism in Dogs. Metabolites 2024, 14, 373. https://doi.org/10.3390/metabo14070373
Jackson MI. Replacement of Dietary Carbohydrate with Protein versus Fat Differentially Alters Postprandial Circulating Hormones and Macronutrient Metabolism in Dogs. Metabolites. 2024; 14(7):373. https://doi.org/10.3390/metabo14070373
Chicago/Turabian StyleJackson, Matthew Irick. 2024. "Replacement of Dietary Carbohydrate with Protein versus Fat Differentially Alters Postprandial Circulating Hormones and Macronutrient Metabolism in Dogs" Metabolites 14, no. 7: 373. https://doi.org/10.3390/metabo14070373
APA StyleJackson, M. I. (2024). Replacement of Dietary Carbohydrate with Protein versus Fat Differentially Alters Postprandial Circulating Hormones and Macronutrient Metabolism in Dogs. Metabolites, 14(7), 373. https://doi.org/10.3390/metabo14070373