Adipose Dysfunction Indices as a Key to Cardiometabolic Risk Assessment—A Population-Based Study of Post-Myocardial Infarction Patients
Abstract
:1. Introduction
2. Material and Methodology
2.1. Study Group Selection
2.2. Body Composition Analysis
2.3. Anthropometric Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
Study Limitations
5. Conclusions
- The study results suggest that the BMI, WC, and WHR have their limitations, whereas the WHtR, VAI, and BAI provide a more comprehensive view of cardiometabolic risk, especially in the context of adipose tissue distribution and its metabolic consequences.
- Incorporating the WHtR, VAI, and BAI into routine clinical practice may enhance the management of cardiometabolic risk, especially among post-MI patients.
- There is an association between adipose tissue distribution and cardiometabolic risk, with different patterns observed in men and women, which underscores the necessity for an individualised approach in risk assessment.
- The findings of the present study show that further research is needed to explore improved methods of cardiometabolic risk assessment that take into account both anthropometric parameters, body composition assessment, and biochemical parameters.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jenča, D.; Melenovský, V.; Stehlik, J.; Staněk, V.; Kettner, J.; Kautzner, J.; Adámková, V.; Wohlfahrt, P. Heart failure after myocardial infarction: Incidence and predictors. ESC Heart Fail. 2021, 8, 222–237. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jernberg, T.; Hasvold, P.; Henriksson, M.; Hjelm, H.; Thuresson, M.; Janzon, M. Cardiovascular risk in post-myocardial infarction patients: Nationwide real world data demonstrate the importance of a long-term perspective. Eur. Heart J. 2015, 36, 1163–1170. [Google Scholar] [CrossRef] [PubMed]
- Nedkoff, L.; Briffa, T.; Murray, K.; Gaw, J.; Yates, A.; Sanfilippo, F.M.; Nicholls, S.J. Risk of early recurrence and mortality in high-risk myocardial infarction patients: A population-based linked data study. Int. J. Cardiol. Cardiovasc. Risk Prev. 2023, 17, 200185. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Holzmann, M.J.; Andersson, T.; Doemland, M.L.; Roux, S. Recurrent myocardial infarction and emergency department visits: A retrospective study on the Stockholm Area Chest Pain Cohort. Open Heart 2023, 10, e002206. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Darbandi, M.; Pasdar, Y.; Moradi, S.; Mohamed, H.J.J.; Hamzeh, B.; Salimi, Y. Discriminatory Capacity of Anthropometric Indices for Cardiovascular Disease in Adults: A Systematic Review and Meta-Analysis. Prev. Chronic. Dis. 2020, 17, E131. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khanna, D.; Peltzer, C.; Kahar, P.; Parmar, M.S. Body Mass Index (BMI): A Screening Tool Analysis. Cureus 2022, 14, e22119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Melmer, A.; Lamina, C.; Tschoner, A.; Ress, C.; Kaser, S.; Laimer, M.; Sandhofer, A.; Paulweber, B.; Ebenbichler, C.F. Body adiposity index and other indexes of body composition in the SAPHIR study: Association with cardiovascular risk factors. Obesity (Silver Spring) 2013, 21, 775–781. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.C.; Arthur, R.; Iyengar, N.M.; Kamensky, V.; Xue, X.; Wassertheil-Smoller, S.; Allison, M.A.; Shadyab, A.H.; Wild, R.A.; Sun, Y.; et al. Association between regional body fat and cardiovascular disease risk among postmenopausal women with normal body mass index. Eur. Heart J. 2019, 40, 2849–2855. [Google Scholar] [CrossRef]
- Gruzdeva, O.; Borodkina, D.; Uchasova, E.; Dyleva, Y.; Barbarash, O. Localization of fat depots and cardiovascular risk. Lipids Health Dis. 2018, 17, 218. [Google Scholar] [CrossRef] [PubMed]
- Dereziński, T.; Zozulińska-Ziółkiewicz, D.; Uruska, A.; Dąbrowski, M. Visceral adiposity index as a useful tool for the assessment of cardiometabolic disease risk in women aged 65 to 74. Diabetes Metab. Res. Rev. 2018, 34, e3052. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.S.; Dunderdale, C.; Lu, M.T.; Walpert, A.R.; Shen, G.; Young, M.C.H.; Torriani, M.; Chu, J.T.; Haptu, H.H.; Manandhar, M.; et al. Visceral Adiposity Index as a Measure of Cardiovascular Disease in Persons With Human Immunodeficiency Virus. Open Forum Infect. Dis. 2023, 10, ofad398. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.C.; Giordano, C.; Galia, M.; Criscimanna, A.; Vitabile, S.; Midiri, M.; Galluzzo, A.; AlkaMeSy Study Group. Visceral Adiposity Index: A reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 2010, 33, 920–922. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Castell, M.; Samouda, H.; Bocquet, V.; Fagherazzi, G.; Stranges, S.; Huiart, L. Estimated visceral adiposity is associated with risk of cardiometabolic conditions in a population based study. Sci. Rep. 2021, 11, 9121, Erratum in: Sci. Rep. 2021, 11, 17434. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Qin, Y.; Qiao, Y.; Wang, D.; Li, M.; Yang, Z.; Li, L.; Yan, G.; Tang, C. Visceral adiposity index is positively associated with fasting plasma glucose: A cross-sectional study from National Health and Nutrition Examination Survey 2017–2020. BMC Public Health 2023, 23, 313. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dong, Y.; Bai, L.; Cai, R.; Zhou, J.; Ding, W. Visceral adiposity index performed better than traditional adiposity indicators in predicting unhealthy metabolic phenotype among Chinese children and adolescents. Sci. Rep. 2021, 11, 23850. [Google Scholar] [CrossRef] [PubMed]
- Hudzik, B.; Nowak, J.; Szkodziński, J.; Zubelewicz-Szkodzińska, B. Visceral Adiposity in Relation to Body Adiposity and Nutritional Status in Elderly Patients with Stable Coronary Artery Disease. Nutrients 2021, 13, 2351. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tamosiunas, A.; Luksiene, D.; Kranciukaite-Butylkiniene, D.; Radisauskas, R.; Sopagiene, D.; Bobak, M. Predictive importance of the visceral adiposity index and atherogenic index of plasma of all-cause and cardiovascular disease mortality in middle-aged and elderly Lithuanian population. Front. Public Health 2023, 11, 1150563. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Watson, J.; Whiting, P.F.; Salisbury, C.; Hamilton, W.T.; Banks, J. Blood tests in primary care: A qualitative study of communication and decision-making between doctors and patients. Health Expect. 2022, 25, 2453–2461. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tao, L.C.; Xu, J.N.; Wang, T.T.; Hua, F.; Li, J.J. Triglyceride-glucose index as a marker in cardiovascular diseases: Landscape and limitations. Cardiovasc. Diabetol. 2022, 21, 68. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wittczak, T.; Wittczak, A.; Jakubowski, J. Promocja zdrowia w praktyce lekarzy medycyny pracy w Polsce—Doświadczenia pacjentów. Medycyna Ogólna i Nauki o Zdrowiu 2020, 26, 286–290. [Google Scholar] [CrossRef]
- Strain, W.D.; Paldánius, P.M. Diabetes, cardiovascular disease and the microcirculation. Cardiovasc. Diabetol. 2018, 17, 57, Erratum in: Cardiovasc. Diabetol. 2021, 20, 120. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Keirns, B.H.; Sciarrillo, C.M.; Koemel, N.A.; Emerson, S.R. Fasting, non-fasting and postprandial triglycerides for screening cardiometabolic risk. J. Nutr. Sci. 2021, 10, e75. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, X.; Wang, D.; Qin, L. Lipid profile and prognosis in patients with coronary heart disease: A meta-analysis of prospective cohort studies. BMC Cardiovasc. Disord. 2021, 21, 69. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Gul, A.; Yousif, Y.; Gupta, A. A Systematic Review of Lipid Management in Secondary Prevention and Comparison of International Lipid Management Pathways. Cureus 2023, 15, e35463. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Body Composition Analuzer, MC-780 MA. Instruction Manual. Available online: http://www.tanitapolska.pl/analizatory-skladu-ciala-tanita/profesjonalne-analizatory/tanita-medyczna-waga-i-segmentowy-analizator-skladu-ciala-mc-780p-ma-kolor-czarny.html (accessed on 4 January 2024).
- Verney, J.; Schwartz, C.; Amiche, S.; Pereira, B.; Thivel, D. Comparisons of a Multi-Frequency Bioelectrical Impedance Analysis to the Dual-Energy X-Ray Absorptiometry Scan in Healthy Young Adults Depending on their Physical Activity Level. J. Hum. Kinet. 2015, 47, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Tanita Institute Contract Study. Algorithm Development for Estimating Visceral Fat Rating. Ph.D. Thesis, Columbia University College of Physicians and Surgeons, New York, NY, USA, 2004.
- Goh, L.G.; Dhaliwal, S.S.; Welborn, T.A.; Lee, A.H.; Della, P.R. Anthropometric measurements of general and central obesity and the prediction of cardiovascular disease risk in women: A cross-sectional study. BMJ Open 2014, 4, e004138. [Google Scholar] [CrossRef] [PubMed]
- Bergman, R.N.; Stefanovski, D.; Buchanan, T.A.; Sumner, A.E.; Reynolds, J.C.; Sebring, N.G.; Xiang, A.H.; Watanabe, R.M. A better index of body adiposity. Obesity 2011, 19, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337, Erratum in: Eur. Heart J. 2022, 43, 4468. [Google Scholar] [CrossRef] [PubMed]
- Szadkowska, I.; Szadkowski, K.; Migała, M.; Bajon-Laskowska, K.; Zielinska, M.; Kowalski, J.; Pawlicki, L. Zmienność zachowań zdrowotnych pacjentów z pierwszym zawałem serca leczonych metodą pierwotnej angioplastyki wieńcowej–obserwacja roczna. Hygeia Public Health 2016, 51, 77–81. [Google Scholar]
- Herrmann, J.; Gersh, B.J.; Goldfinger, J.Z.; Witzenbichler, B.; Guagliumi, G.; Dudek, D.; Kornowski, R.; Brener, S.J.; Parise, H.; Fahy, M.; et al. Body mass index and acute and long-term outcomes after acute myocardial infarction (from the Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction Trial). Am. J. Cardiol. 2014, 114, 9–16. [Google Scholar] [CrossRef]
- Khan, S.S.; Ning, H.; Wilkins, J.T.; Allen, N.; Carnethon, M.; Berry, J.D.; Sweis, R.N.; Lloyd-Jones, D.M. Association of Body Mass Index With Lifetime Risk of Cardiovascular Disease and Compression of Morbidity. JAMA Cardiol. 2018, 3, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Tewari, A.; Kumar, G.; Maheshwari, A.; Tewari, V.; Tewari, J. Comparative Evaluation of Waist-to-Height Ratio and BMI in Predicting Adverse Cardiovascular Outcome in People With Diabetes: A Systematic Review. Cureus 2023, 15, e38801. [Google Scholar] [CrossRef] [PubMed]
- Savva, S.C.; Lamnisos, D.; Kafatos, A.G. Predicting cardiometabolic risk: Waist-to-height ratio or BMI. A meta-analysis. Diabetes Metab. Syndr. Obes. Targets Ther. 2013, 6, 403–419. [Google Scholar] [CrossRef] [PubMed]
- Ashwell, M.; Mayhew, L.; Richardson, J.; Rickayzen, B. Waist-to-Height Ratio Is More Predictive of Years of Life Lost than Body Mass Index. PLoS ONE 2014, 9, e103483. [Google Scholar] [CrossRef] [PubMed]
- Chait, A.; den Hartigh, L.J. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Won, C.W. Sex-different changes of body composition in aging: A systemic review. Arch. Gerontol. Geriatr. 2022, 102, 104711. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.L.; Abdullah, N.; Bragg, F.; Murad, N.A.A.; Taylor, H.; Fong, C.S.; Lacey, B.; Sherliker, P.; Karpe, F.; Mustafa, N.; et al. Body composition and risk factors for cardiovascular disease in global multi-ethnic populations. Int. J. Obes. 2023, 47, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Shi, Y.; Dong, W.; Mu, Y.; Wang, J.; Gao, Y.; Hu, R.; Xu, Y.; Chen, Y.; et al. Influence of Waist-to-hip ratio on the prognosis of heart failure patients with revascularized coronary heart disease. Front. Cardiovasc. Med. 2021, 8, 732200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, Y.; Li, Y.; Wang, C.; Wang, Y.; Dong, M.; Xiao, J.; Lin, Z.; Lu, H.; Ji, X. Association between visceral adiposity index and heart failure: A cross-sectional study. Clin. Cardiol. 2023, 46, 310–319. [Google Scholar] [CrossRef]
- Deedwania, P.; Kosiborod, M.; Barrett, E.; Ceriello, A.; Isley, W.; Mazzone, T.; Raskin, P. Hyperglycemia and acute coronary syndrome: A scientific statement from the American Heart Association Diabetes Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2008, 117, 1610–1619, Correction in Circulation 2010, 121, e444. [Google Scholar] [CrossRef]
- Ceriello, A. Acute hyperglycaemia: A ‘new’ risk factor during myocardial infarction. Eur. Heart J. 2005, 26, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Helfand, B.K.; Maselli, N.J.; Lessard, D.M.; Yarzebski, J.; Gore, J.M.; McManus, D.D.; Saczynski, J.S.; Goldberg, R.J. Elevated serum glucose levels and survival after acute heart failure: A population-based perspective. Diabetes Vasc. Dis. Res. 2015, 12, 119–125. [Google Scholar] [CrossRef]
- Lin, Z.; He, J.; Yuan, S.; Song, C.; Bian, X.; Yang, M.; Dou, K. Glycemic control and cardiovascular outcomes in patients with diabetes and coronary artery disease according to triglyceride-glucose index: A large-scale cohort study. Cardiovasc. Diabetol. 2024, 23, 11. [Google Scholar] [CrossRef] [PubMed]
- Sinning, C.; Makarova, N.; Völzke, H.; Schnabel, R.B.; Ojeda, F.; Dörr, M.; Felix, S.B.; Koenig, W.; Peters, A.; Rathmann, W.; et al. Association of glycated hemoglobin A1c levels with cardiovascular outcomes in the general population: Results from the BiomarCaRE (Biomarker for Cardiovascular Risk Assessment in Europe) consortium. Cardiovasc. Diabetol. 2021, 20, 223. [Google Scholar] [CrossRef] [PubMed]
- Alloubani, A.; Nimer, R.; Samara, R. Relationship between hyperlipidemia, cardiovascular disease and stroke: A systematic review. Curr. Cardiol. Rev. 2021, 17, 52–66. [Google Scholar]
- Guan, B.; Li, X.; Xue, W.; Tse, G.; Waleed, K.B.; Liu, Y.; Zheng, M.; Wu, S.; Xia, Y.; Ding, Y. Blood lipid profiles and risk of atrial fibrillation: A systematic review and meta-analysis of cohort studies. J. Clin. Lipidol. 2020, 14, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, A.; Cannon, C.P.; Deedwania, P.C.; Labresh, K.A.; Smith, S.C., Jr.; Dai, D.; Hernandez, A.; Fonarow, G.C. Lipid levels in patients hospitalized with coronary artery disease: An analysis of 136,905 hospitalizations in Get With The Guidelines. Am. Heart J. 2009, 157, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Polyakova, E.A.; Mikhaylov, E.N. The prognostic role of high-sensitivity C-reactive protein in patients with acute myocardial infarction. J. Geriatr. Cardiol. 2020, 17, 379–383. [Google Scholar] [PubMed]
- Vanhaverbeke, M.; Veltman, D.; Pattyn, N.; De Crem, N.; Gillijns, H.; Cornelissen, V.; Janssens, S.; Sinnaeve, P.R. C-reactive protein during and after myocardial infarction in relation to cardiac injury and left ventricular function at follow-up. Clin. Cardiol. 2018, 41, 1201–1206. [Google Scholar] [CrossRef]
- Pokharel, Y.; Sharma, P.P.; Qintar, M.; Lu, Y.; Tang, Y.; Jones, P.; Dreyer, R.P.; Spertus, J.A. High-sensitivity C-reactive protein levels and health status outcomes after myocardial infarction. Atherosclerosis 2017, 266, 16–23. [Google Scholar] [CrossRef]
- Al Aseri, Z.A.; Habib, S.S.; Marzouk, A. Predictive value of high sensitivity C-reactive protein on progression to heart failure occurring after the first myocardial infarction. Vasc. Health Risk Manag. 2019, 15, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Strang, F.; Schunkert, H. C-reactive protein and coronary heart disease: All said—Is not it? Mediat. Inflamm. 2014, 2014, 757123. [Google Scholar] [CrossRef] [PubMed]
Women | Men |
---|---|
Age 40–59 years | Age 20–39 years |
|
|
Age ≥ 60 years | Age 40–59 years |
|
|
Age ≥ 60 years | |
|
BAI—Body Adiposity Index | |||
Women | Men | ||
Age 20–39 years | |||
0 | underweight | 0 | underweight |
21 | health | 8 | health |
33.01 | overweight | 21.01 | overweight |
39.01 | obesity | 26.01 | obesity |
Age 40–59 years | |||
0 | underweight | 0 | underweight |
23 | health | 11 | health |
35.01 | overweight | 23.01 | overweight |
41.01 | obesity | 29.01 | obesity |
Age 60–79 years | |||
0 | underweight | 0 | underweight |
25 | health | 13 | health |
38.01 | overweight | 25.01 | overweight |
43.01 | obesity | 31.01 | obesity |
WHtR—Waist to Height Ratio | |||
Women | Men | ||
0 | malnutrition | 0 | malnutrition |
0.36 | underweight | 0.36 | underweight |
0.43 | slightly underweight | 0.44 | slightly underweight |
0.47 | normal body weight | 0.47 | normal body weight |
0.5 | overweight | 0.54 | overweight |
0.55 | significantly overweight | 0.59 | significantly overweight |
0.59 | obesity | 0.64 | obesity |
WHR—Waist-hip Ratio | |||
Women | Men | ||
<0.8 | gynoid type | <1 | gynoid type |
≥0.8 | android type | ≥1 | android type |
VAI—Visceral Adiposity Index | |||
Age < 30 | |||
0 | no ATD * | ||
2.53 | mild ADT | ||
2.59 | average ADT | ||
2.74 | acute ADT | ||
≥30 < 42 years | |||
0 | no ATD | ||
2.24 | mild ATD | ||
2.54 | average ATD | ||
3.13 | acute ATD | ||
≥42 < 52 lat | |||
0 | no ATD | ||
1.93 | mild ATD | ||
2.17 | averae ATD | ||
2.78 | acute ATD | ||
≥52 < 66 lat | |||
0 | no ATD | ||
1.94 | mild ATD | ||
2.32 | average ATD | ||
3.26 | acute ATD | ||
≥66 lat | |||
0 | no ATD | ||
2.01 | mild ATD | ||
2.42 | average ATD | ||
3.18 | acuteATD | ||
BMI—Body Mass Index | |||
18.5–24.9 | normal body weight | ||
25–29.9 | overweight | ||
30–34.9 | obesity I˚ | ||
35.0–39.9 | obesity II˚ | ||
>40.0 | obesity III˚ |
Women n = 32 | Men n = 88 | Total n = 120 | U Mann–Whitney Test | |
---|---|---|---|---|
Hips [cm] | 104.78 ± 9.49 | 103.47 ± 8.64 | 103.67 ± 8.86 | p = 0.00981 |
Waist [cm] | 95.20 ± 12.30 | 103.27 ± 13.56 | 101.26 ± 13.68 | p = 0.00275 |
Body weight [kg] | 71.28 ± 11.34 | 85.54 ± 14.72 | 81.74 ± 15.23 | p = 0.28073 |
Height [cm] | 163.00 ± 6.28 | 174.27 ± 6.26 | 171.25 ± 7.99 | p = 0.00003 |
BMI [Kg/m2] | 26.66 ± 3.33 | 28.16 ± 4.27 | 27.76 ± 4.08 | p = 0.03418 |
WHR | 0.90 ± 0.06 | 1.00 ± 0.07 | 0.97 ± 0.08 | p = 0.00000 |
WHtR | 0.58 ± 0.07 | 0.59 ± 0.07 | 0.59 ± 0.07 | p = 0.00045 |
BAI | 30.11 ± 5.50 | 27.74 ± 4.73 | 28.37 ± 5.03 | p = 0.00000 |
VAI | 1.74 ± 1.17 | 3.57 ± 3.92 | 3.08 ± 3.50 | p = 0.00000 |
Fat P [%] | 30.35 ± 6.33 | 24.05 ± 6.15 | 25.73 ± 6.78 | p = 0.35721 |
PPM [kg] | 49.23 ± 5.94 | 64.33 ± 7.8 | 60.30 ± 9.96 | p = 0.35472 |
TBW [%] | 32.27 ± 3.02 | 45.48 ± 5.73 | 41.96 ± 7.80 | p = 0.66785 |
Women n = 32 | Men n = 88 | Total n = 120 | Mann–Whitney U Test | |
---|---|---|---|---|
GLUCOSE [mmol/L] | 7.78 ± 1.80 | 7.45 ± 2.90 | 7.54 ± 2.65 | p = 0.45621 |
HBA1C [%] | 4.55 ± 2.72 | 4.34 ± 3.02 | 4.40 ± 2.93 | p = 0.74543 |
TOTAL CHOLESTEROL [mmol/L] | 5.23 ± 1.46 | 4.96 ± 1.47 | 5.03 ±1 0.46 | p = 0.19857 |
HDL [mmol/L] | 1.37 ± 0.38 | 1.20 ± 0.33 | 1.25 ± 0.35 | p = 1.00000 |
LDL [mmol/L] | 3.07 ± 1.48 | 4.25 ± 10.49 | 3.93 ± 9.02 | p = 0.15744 |
TG [mmol/L] | 1.53 ± 0.70 | 1.73 ± 1.55 | 1.68 ± 1.37 | p = 0.09757 |
CRP [mg/L] | 11.14 ± 26.06 | 12.74 ± 30.40 | 12.31 ± 29.2 | p = 0.57873 |
Body Weight according to BMI | p Value Kruskal–Wallis | ||||
---|---|---|---|---|---|
Normal Body Weight n = 36 | Overweigjt n = 53 | Obesity I˚ n = 24 | Obesity II˚ n = 7 | ||
GLUCOSE [mmol/L] | 7.36 ± 3.13 | 7.46 ± 2.48 | 7.90 ± 2.54 | 7.87 ± 1.80 | p = 0.085 |
HBA1C | 4.21 ± 3.10 | 4.80 ± 2.76 | 3.84 ± 3.12 | 4.24 ± 2.96 | p = 0.99 |
TOTAL CHOLESTEROL [mmol/L] | 4.61 ± 1.22 | 5.16 ± 1.36 | 5.36 ±1.91 | 5.04 ± 1.51 | p = 1.00 |
HDL [mmol/L] | 1.24 ± 0.29 | 1.27 ± 0.41 | 1.24 ±0.33 | 1.12 ± 0.16 | p = 0.54 |
LDL [mmol/L] | 2.83 ± 1.19 | 5.00 ± 13.49 | 3.40 ±1.44 | 3.29 ± 1.34 | p = 0.93 |
TG [mmol/L] | 1.47 ± 0.88 | 1.70 ± 1.49 | 1.72 ±1.47 | 2.39 ± 2.16 | p = 1.00 |
Anthropometric Measurement Results | Men n = 88 | Women n = 32 | Total n = 120 | p Value Chi 2 NW | |||
---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||
BMI | |||||||
normal body weight | 26 | 29.55% | 10 | 31.25% | 36 | 30.00% | p = 0.18009 |
overweight | 35 | 39.77% | 18 | 56.25% | 53 | 44.17% | |
obesity I˚ | 21 | 23.86% | 3 | 9.38% | 24 | 20.00% | |
obesity II˚ | 6 | 6.82% | 1 | 3.13% | 7 | 5.83% | |
BAI | |||||||
underweight | 0 | 0.00% | 3 | 9.38% | 3 | 2.50% | p = 0.00000 V Cr = 0.630 |
health | 16 | 18.18% | 24 | 75.00% | 40 | 33.33% | |
overweight | 42 | 47.73% | 4 | 12.50% | 46 | 38.33% | |
obesity | 22 | 25.00% | 0 | 0.00% | 22 | 18.33% | |
out of range | 8 | 9.09% | 1 | 3.13% | 9 | 7.50% | |
VAI | |||||||
no ATD | 34 | 38.64% | 23 | 71.88% | 57 | 47.50% | p = 0.00237 V Cr = 0.319 |
mild ATD | 8 | 9.09% | 0 | 0.00% | 8 | 6.67% | |
average ATD | 12 | 13.64% | 4 | 12.50% | 16 | 13.33% | |
acute ATD | 34 | 38.64% | 5 | 15.63% | 39 | 32.50% | |
WHR | |||||||
normal body weight | 5 | 5.68% | 0 | 0.00% | 5 | 4.17% | p = 0.00000 V Cr = 0.498 |
android type | 33 | 37.50% | 30 | 93.75% | 63 | 52.50% | |
gynoid type | 50 | 56.82% | 2 | 6.25% | 52 | 43.33% | |
WHtR | |||||||
underweight | 0 | 0.00% | 2 | 6.25% | 2 | 1.67% | p = 0.00026 V Cr = 0.389 |
slightly underweight | 1 | 1.14% | 0 | 0.00% | 1 | 0.83% | |
normal body weight | 22 | 25.00% | 0 | 0.00% | 22 | 18.33% | |
overweight | 26 | 29.55% | 7 | 21.88% | 33 | 27.50% | |
significantly overweight | 18 | 20.45% | 9 | 28.13% | 27 | 22.50% | |
obesity | 21 | 23.86% | 14 | 43.75% | 35 | 29.17% | |
FATP | |||||||
underweight | 3 | 3.41% | 5 | 15.63% | 8 | 6.67% | p = 0.00144 V Cr = 0.346 |
standard | 36 | 40.91% | 20 | 62.50% | 56 | 46.67% | |
overweight | 29 | 32.95% | 6 | 18.75% | 35 | 29.17% | |
obesity | 20 | 22.73% | 1 | 3.13% | 21 | 17.50% | |
VFATL | |||||||
healthy level | 50 | 56.82% | 32 | 100.00% | 82 | 68.33% | p = 0.00001 |
excess level | 38 | 43.18% | 0 | 0.00% | 38 | 31.67% |
Anthropometric Measurement Results | Body Weight According to BMI | p Value Kruskal–Wallis | |||||||
---|---|---|---|---|---|---|---|---|---|
Normal body Weight n = 36 | Overweight n = 53 | Obesity I˚ n = 24 | Obesity II˚ n = 7 | ||||||
n | % | n | % | n | % | n | % | ||
BAI | |||||||||
underweight | 3 | 8.33% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | p = 0.4335 |
health | 14 | 38.89% | 18 | 33.96% | 7 | 29.17% | 1 | 14.29% | |
overweight | 11 | 30.56% | 23 | 43.40% | 8 | 33.33% | 4 | 57.14% | |
obesity | 4 | 11.11% | 8 | 15.09% | 8 | 33.33% | 2 | 28.57% | |
out of range | 4 | 11.11% | 4 | 7.55% | 1 | 4.17% | 0 | 0.00% | |
VAI | |||||||||
no ATD | 19 | 52.78% | 26 | 49.06% | 10 | 41.67% | 2 | 28.57% | p = 0.756 |
mild ATD | 2 | 5.56% | 3 | 5.66% | 2 | 8.33% | 1 | 14.29% | |
average ATD | 4 | 11.11% | 8 | 15.09% | 4 | 16.67% | 0 | 0.00% | |
acute ATD | 11 | 30.56% | 16 | 30.19% | 8 | 33.33% | 4 | 57.14% | |
WHR | |||||||||
normal body weight | 3 | 8.33% | 2 | 3.77% | 0 | 0.00% | 0 | 0.00% | p = 0.867 |
android type | 16 | 44.44% | 28 | 52.83% | 14 | 58.33% | 5 | 71.43% | |
gynoid type | 17 | 47.22% | 23 | 43.40% | 10 | 41.67% | 2 | 28.57% | |
WHtR | |||||||||
underweight | 2 | 5.56% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | p = 0.072 |
slightly underweight | 1 | 2.78% | 0 | 0.00% | 0 | 0.00% | 0 | 0.00% | |
normal body weight | 13 | 36.11% | 7 | 13.21% | 1 | 4.17% | 1 | 14.29% | |
overweight | 8 | 22.22% | 18 | 33.96% | 5 | 20.83% | 2 | 28.57% | |
significantly overweight | 8 | 22.22% | 8 | 15.09% | 11 | 45.83% | 0 | 0.00% | |
obesity | 4 | 11.11% | 20 | 37.74% | 7 | 29.17% | 4 | 57.14% | |
FATP | |||||||||
underweight | 7 | 19.44% | 0 | 0.00% | 1 | 4.17% | 0 | 0.00% | p = 0.0005 V Cr = 0.317 |
standard | 20 | 55.56% | 28 | 52.83% | 6 | 25.00% | 2 | 28.57% | |
overweight | 6 | 16.67% | 20 | 37.74% | 8 | 33.33% | 1 | 14.29% | |
obesity | 3 | 8.33% | 5 | 9.43% | 9 | 37.50% | 4 | 57.14% | |
VFATL | |||||||||
healthy level | 33 | 91.67% | 38 | 71.70% | 7 | 29.17% | 4 | 57.14% | p = 0.0000 V Cr = 0.472 |
excess level | 3 | 8.33% | 15 | 28.30% | 17 | 70.83% | 3 | 42.86% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szczepańska, E.; Słoma-Krześlak, M.; Białek-Dratwa, A.; Dudzik, I.; Kowalski, O. Adipose Dysfunction Indices as a Key to Cardiometabolic Risk Assessment—A Population-Based Study of Post-Myocardial Infarction Patients. Metabolites 2024, 14, 299. https://doi.org/10.3390/metabo14060299
Szczepańska E, Słoma-Krześlak M, Białek-Dratwa A, Dudzik I, Kowalski O. Adipose Dysfunction Indices as a Key to Cardiometabolic Risk Assessment—A Population-Based Study of Post-Myocardial Infarction Patients. Metabolites. 2024; 14(6):299. https://doi.org/10.3390/metabo14060299
Chicago/Turabian StyleSzczepańska, Elżbieta, Małgorzata Słoma-Krześlak, Agnieszka Białek-Dratwa, Izabela Dudzik, and Oskar Kowalski. 2024. "Adipose Dysfunction Indices as a Key to Cardiometabolic Risk Assessment—A Population-Based Study of Post-Myocardial Infarction Patients" Metabolites 14, no. 6: 299. https://doi.org/10.3390/metabo14060299
APA StyleSzczepańska, E., Słoma-Krześlak, M., Białek-Dratwa, A., Dudzik, I., & Kowalski, O. (2024). Adipose Dysfunction Indices as a Key to Cardiometabolic Risk Assessment—A Population-Based Study of Post-Myocardial Infarction Patients. Metabolites, 14(6), 299. https://doi.org/10.3390/metabo14060299