Lovrić, M.; Wang, T.; Staffe, M.R.; Šunić, I.; Časni, K.; Lasky-Su, J.; Chawes, B.; Rasmussen, M.A.
A Chemical Structure and Machine Learning Approach to Assess the Potential Bioactivity of Endogenous Metabolites and Their Association with Early Childhood Systemic Inflammation. Metabolites 2024, 14, 278.
https://doi.org/10.3390/metabo14050278
AMA Style
Lovrić M, Wang T, Staffe MR, Šunić I, Časni K, Lasky-Su J, Chawes B, Rasmussen MA.
A Chemical Structure and Machine Learning Approach to Assess the Potential Bioactivity of Endogenous Metabolites and Their Association with Early Childhood Systemic Inflammation. Metabolites. 2024; 14(5):278.
https://doi.org/10.3390/metabo14050278
Chicago/Turabian Style
Lovrić, Mario, Tingting Wang, Mads Rønnow Staffe, Iva Šunić, Kristina Časni, Jessica Lasky-Su, Bo Chawes, and Morten Arendt Rasmussen.
2024. "A Chemical Structure and Machine Learning Approach to Assess the Potential Bioactivity of Endogenous Metabolites and Their Association with Early Childhood Systemic Inflammation" Metabolites 14, no. 5: 278.
https://doi.org/10.3390/metabo14050278
APA Style
Lovrić, M., Wang, T., Staffe, M. R., Šunić, I., Časni, K., Lasky-Su, J., Chawes, B., & Rasmussen, M. A.
(2024). A Chemical Structure and Machine Learning Approach to Assess the Potential Bioactivity of Endogenous Metabolites and Their Association with Early Childhood Systemic Inflammation. Metabolites, 14(5), 278.
https://doi.org/10.3390/metabo14050278