Explorative Study on Volatile Organic Compounds of Cinnamon Based on GC-IMS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Analysis by GC-IMS
2.2.1. Instruments and Equipment
2.2.2. Sample Preparation
2.2.3. Headspace Conditions
2.2.4. GC Conditions
2.2.5. IMS Conditions
2.3. Statistical Analysis
3. Results
3.1. GC-IMS Analysis of VOCs in Four Cinnamon Samples
3.1.1. Comparison of VOCs in Four Batches of Cinnamon
3.1.2. Qualitative Analysis of VOCs in Four Batches of Cinnamon by GC-IMS
3.1.3. GC-IMS Profile Analysis of VOCs in Four Batches of Cinnamon
3.2. Chemometric Analysis
3.2.1. Principal Component Analysis (PCA)
3.2.2. Cluster Analysis (CA)
3.2.3. Partial Least-Squares Discriminant Analysis (PLS-DA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ulewicz-Magulska, B.; Wesolowski, M. Antioxidant Activity of Medicinal Herbs and Spices from Plants of the Lamiaceae, Apiaceae and Asteraceae Families: Chemometric Interpretation of the Data. Antioxidants 2023, 12, 2039. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Bhattacharya, S.; Urbanová, K.; Dutta, A.; Hazra, A.K.; Fernández-Cusimamani, E.; Leuner, O. Systematic analysis of antimicrobial activity, phytochemistry, and in silico molecular interaction of selected essential oils and their formulations from different Indian spices against foodborne bacteria. Heliyon 2023, 9, e22480. [Google Scholar] [CrossRef]
- Mackonochie, M.; Rodriguez-Mateos, A.; Mills, S.; Rolfe, V. A Scoping Review of the Clinical Evidence for the Health Benefits of Culinary Doses of Herbs and Spices for the Prevention and Treatment of Metabolic Syndrome. Nutrients 2023, 15, 4867. [Google Scholar] [CrossRef] [PubMed]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China: Vol I; China Medical Science and Technology Press: Beijing, China, 2020; pp. 142–143. [Google Scholar]
- Kwon, H.K.; Hwang, J.S.; So, J.S.; Lee, C.G.; Sahoo, A.; Ryu, J.H.; Jeon, W.K.; Ko, B.S.; Lee, S.H.; Park, Z.Y.; et al. Cinnamon extract induces tumor cell death through inhibition of NFkappaB and AP1. BMC Cancer 2010, 10, 392. [Google Scholar] [CrossRef] [PubMed]
- Palmioli, A.; Forcella, M.; Oldani, M.; Angotti, I.; Sacco, G.; Fusi, P.; Airoldi, C. Adjuvant Effect of Cinnamon Polyphenolic Components in Colorectal Cancer Cell Lines. Int. J. Mol. Sci. 2023, 24, 16117. [Google Scholar] [CrossRef]
- Sadeghi, S.; Davoodvandi, A.; Pourhanifeh, M.H.; Sharifi, N.; ArefNezhad, R.; Sahebnasagh, R.; Moghadam, S.A.; Sahebkar, A.; Mirzaei, H. Anti-cancer effects of cinnamon: Insights into its apoptosis effects. Eur. J. Med. Chem. 2019, 178, 131–140. [Google Scholar] [CrossRef]
- Sharma, S.; Mandal, A.; Kant, R.; Jachak, S.; Jagzape, M. Is Cinnamon Efficacious for Glycaemic Control in Type-2 Diabetes Mellitus? J. Pak. Med. Assoc. 2020, 11, 2065–2069. [Google Scholar]
- Kirkham, S.; Akilen, R.; Sharma, S.; Tsiami, A. The potential of cinnamon to reduce blood glucose levels in patients with type 2 diabetes and insulin resistance. Diabetes Obes. Metab. 2009, 11, 1100–1113. [Google Scholar] [CrossRef] [PubMed]
- Bandara, T.; Uluwaduge, I.; Jansz, E.R. Bioactivity of cinnamon with special emphasis on diabetes mellitus: A review. Int. J. Food Sci. Nutr. 2012, 63, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, N.G.; Croda, J.; Simionatto, S. Antibacterial mechanisms of cinnamon and its constituents: A review. Microb. Pathog. 2018, 120, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, J.; Tyburski, J.; Matysiak, K.; Jakubowska, M.; Łukaszyk, J.; Krzymińska, J. Cinnamon as a Useful Preventive Substance for the Care of Human and Plant Health. Molecules 2021, 26, 5299. [Google Scholar] [CrossRef]
- Brochot, A.; Guilbot, A.; Haddioui, L.; Roques, C. Antibacterial, antifungal, and antiviral effects of three essential oil blends. Microbiologyopen. 2017, 6, e00459. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, M.C.; Procópio, F.R.; Figueiredo, F.G.; Munhoz Moya, A.M.T.; Cazarin, C.B.B.; Hubinger, M.D. Cinnamon and paprika oleoresin emulsions: A study of physicochemical stability and antioxidant synergism. Food Res. Int. 2021, 150, 110777. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, M.; Bingol, Z.; Uc, E.M.; Köksal, E.; Goren, A.C.; Alwasel, S.H.; Gulcin, İ. Comprehensive Metabolite Profiling of Cinnamon (Cinnamomum zeylanicum) Leaf Oil Using LC-HR/MS, GC/MS, and GC-FID: Determination of Antiglaucoma, Antioxidant, Anticholinergic, and Antidiabetic Profiles. Life 2023, 13, 136. [Google Scholar] [CrossRef] [PubMed]
- Vezzani, B.; Perrone, M.; Carinci, M.; Palumbo, L.; Tombolato, A.; Tombolato, D.; Daminato, C.; Gentili, V.; Rizzo, R.; Campo, G.; et al. SARS-CoV-2 infection as a model to study the effect of cinnamaldehyde as adjuvant therapy for viral pneumonia. J. Inflamm. 2023, 20, 40. [Google Scholar] [CrossRef] [PubMed]
- Hidayat, R.; Wulandari, P.; Reagan, M. The Potential of Cinnamon Extract (Cinnamomum burmanii) as Anti-insomnia Medication through Hypothalamus Pituitary Adrenal Axis Improvement in Rats. Acta Med. Acad. 2022, 51, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Fan, L.; Fan, S.; Wang, J.; Luo, T.; Tang, Y.; Chen, Z.; Yu, L. Cinnamomum cassia Presl: A Review of Its Traditional Uses, Phytochemistry, Pharmacology and Toxicology. Molecules 2019, 24, 3473. [Google Scholar] [CrossRef]
- Ding, Y.; Wu, E.Q.; Liang, C.; Chen, J.; Tran, M.N.; Hong, C.H.; Jang, Y.; Park, K.L.; Bae, K.; Kim, Y.H.; et al. Discrimination of cinnamon bark and cinnamon twig samples sourced from various countries using HPLC-based fingerprint analysis. Food Chem. 2011, 127, 755–760. [Google Scholar] [CrossRef] [PubMed]
- Pages-Rebull, J.; Pérez-Ràfols, C.; Serrano, N.; del Valle, M.; Díaz-Cruz, J.M. Classification and authentication of spices and aromatic herbs by means of HPLC-UV and chemometrics. Food Biosci. 2023, 52, 102401. [Google Scholar] [CrossRef]
- Feltes, G.; Ballen, S.C.; Steffens, J.; Paroul, N.; Steffens, C. Differentiating True and False Cinnamon: Exploring Multiple Approaches for Discrimination. Micromachines 2023, 14, 1819. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Yang, Y.; Ren, L.; Su, Z.; Bian, X.; Fan, J.; Wang, Y.; Han, B.; Zhang, N. HS-GC-IMS and PCA to Characterize the Volatile Flavor Compounds in Three Sweet Cherry Cultivars and Their Wines in China. Molecules 2022, 27, 9056. [Google Scholar] [CrossRef]
- Li, C.; Wan, H.; Wu, X.; Yin, J.; Zhu, L.; Chen, H.; Song, X.; Han, L.; Yang, W.; Yu, H.; et al. Discrimination and Characterization of the Volatile Organic Compounds in Schizonepetae Spica from Six Regions of China Using HS-GC-IMS and HS-SPME-GC-MS. Molecules 2022, 27, 4393. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, Z.; Zhang, X.; Tian, X.; Chen, K.; Zeng, X. Characterization of Volatile Compounds by HS-GC-IMS and Chemical Composition Analysis of Colored Highland Barley Roasted at Different Temperatures. Foods 2022, 11, 2921. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J.; Tian, A.; Wang, S.; Zhao, K.; Zhang, R.; Wu, X.; Liu, Y.; Liu, X.; Chen, K.; et al. Characteristic volatiles fingerprints in olive vegetable stored at different conditions by HS-GC-IMS. Food Chem. X. 2023, 18, 100707. [Google Scholar] [CrossRef]
- Duan, H.; Zhou, Y.; Wang, D.; Yan, W. Differences in Volatile Organic Compounds in Rhizoma gastrodiae (Tian Ma) of Different Origins Determined by HS-GC-IMS. Molecules 2023, 28, 4883. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Li, Z.Y.; Zheng, X.L.; Li, Q.; Yang, X.; Xu, H. Quality Assessment of Kumu Injection, a Traditional Chinese Medicine Preparation, Using HPLC Combined with Chemometric Methods and Qualitative and Quantitative Analysis of Multiple Alkaloids by Single Marker. Molecules 2018, 23, 856. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.D.; Fang, F.M.; Wang, R.B.; Zhou, J.J.; Li, L.H. Differentiation between wild and artificial cultivated Stephaniae tetrandrae radix using chromatographic and flow-injection mass spectrometric fingerprints with the aid of principal component analysis. Food Sci. Nutr. 2020, 8, 4223–4231. [Google Scholar] [CrossRef]
- Wu, L.; Liang, W.; Chen, W.; Li, S.; Cui, Y.; Qi, Q.; Zhang, L. Screening and Analysis of the Marker Components in Ganoderma lucidum by HPLC and HPLC-MSn with the Aid of Chemometrics. Molecules 2017, 22, 584. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Jiao, Y.; Cui, W.; Wang, B.; Guo, D.; Xue, F.; Mu, X.; Li, H.; Lin, Y.; Lin, H. Quality Evaluation of Traditional Chinese Medicine Prescription in Naolingsu Capsule Based on Combinative Method of Fingerprint, Quantitative Determination, and Chemometrics. J. Anal. Methods Chem. 2022, 2022, 1429074. [Google Scholar] [CrossRef]
- Tong, G.Y.; Wu, H.L.; Wang, T.; Chang, Y.Y.; Chen, Y.; Yang, J.; Fu, H.Y.; Yang, X.L.; Li, X.F.; Yu, R.Q. Analysis of active compounds and geographical origin discrimination of Atractylodes macrocephala Koidz. by using high performance liquid chromatography-diode array detection fingerprints combined with chemometrics. J. Chromatogr. A 2022, 1674, 463121. [Google Scholar] [CrossRef]
- Mu, Q.; Zhang, Y.; Cui, Y.; Chai, X.; Liu, J.; Li, Y.; Yu, H.; Wang, Y. Study on Closely Related Citrus CMMs based on Chemometrics and Prediction of Components-Targets-Diseases Network by Ingenuity Pathway Analysis. Evid Based Complement Altern. Med. 2022, 2022, 1106353. [Google Scholar] [CrossRef] [PubMed]
- Ghardashpour, M.; Saeedi, M.; Negarandeh, R.; Enderami, S.E.; Ghorbani, A.; Lotfizadeh, A.; Jafari, A.; Arezoumandi, A.; Hassannia, H.; Molania, T. Anti-inflammatory and tissue repair effect of cinnamaldehyde and nano cinnamaldehyde on gingival fibroblasts and macrophages. BMC Oral Health 2023, 23, 1014. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wu, Z.Q.; He, M.; Que, C.T.; Yang, J.; Zeng, N. Effects of Volatile Oil from Cinnamomi Ramulus and Cinnamaldehyde on Cytokines and T Cell Subsets in H1N1-infected Mice. Chin. J. Exp. Tradit. Med. Formulae 2015, 21, 139–143. [Google Scholar] [CrossRef]
- Yu, H.R.; Huang, X.Y.; Zhou, L.P.; Wang, Y. Incorporation of cinnamaldehyde, carvacrol, and eugenol into zein films for active food packaging: Enhanced mechanical properties, antimicrobial activity, and controlled release. J. Food Sci. Technol. 2023, 60, 2846–2857. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Zhu, D.; Sun, J. Application of GC-IMS coupled with chemometric analysis for the classification and authentication of geographical indication agricultural products and food. Front. Nutr. 2023, 10, 1247695. [Google Scholar] [CrossRef]
- Pages-Rebull, J.; Sagristà, G.; Pérez-Ràfols, C.; Serrano, N.; Díaz-Cruz, J.M. Application of HPLC-UV combined with chemometrics for the detection and quantification of ‘true cinnamon’ adulteration. Talanta 2024, 271, 125676. [Google Scholar] [CrossRef]
- Rehman, N.U.; Albaqami, F.F.; Salkini, M.A.A.; Farahat, N.M.; Alharbi, H.H.; Almuqrin, S.M.; Abdel-Kader, M.S.; Sherif, A.E. Comparative GC Analysis, Bronchodilator Effect and the Detailed Mechanism of Their Main Component—Cinnamaldehyde of Three Cinnamon Species. Separations 2023, 10, 198. [Google Scholar] [CrossRef]
- Castro, R.C.; Ribeiro, D.S.; Santos, J.L.; Páscoa, R.N. Authentication/discrimination, identification and quantification of cinnamon adulterants using NIR spectroscopy and different chemometric tools: A tutorial to deal with counterfeit samples. Food Control 2023, 147, 109619. [Google Scholar] [CrossRef]
No | Compounds | CAS | Molecular Formula | MW | RI | Rt/s | Dt/ms |
---|---|---|---|---|---|---|---|
1 | 1-Terpinen-4-ol D | C562743 | C10H18O | 154.3 | 1180.1 | 777.504 | 1.70722 |
2 | 1-Terpinen-4-ol M | C562743 | C10H18O | 154.3 | 1182 | 783.315 | 1.23744 |
3 | Geraniol D | C106241 | C10H18O | 154.3 | 1210.3 | 871.554 | 1.72796 |
4 | Geraniol M | C106241 | C10H18O | 154.3 | 1232.7 | 948.221 | 1.22722 |
5 | α-Terpineol D | C98555 | C10H18O | 154.3 | 1164.3 | 732.687 | 1.78782 |
6 | α-Terpineol M | C98555 | C10H18O | 154.3 | 1167.5 | 741.366 | 1.29145 |
7 | Terpinen-4-ol | C562743 | C10H18O | 154.3 | 1171 | 751.492 | 1.21992 |
8 | Acetophenone D | C98862 | C8H8O | 120.2 | 1072 | 517.153 | 1.57321 |
9 | Acetophenone M | C98862 | C8H8O | 120.2 | 1072 | 517.153 | 1.18488 |
10 | Benzaldehyde D | C100527 | C7H6O | 106.1 | 970.9 | 356.587 | 1.4681 |
11 | Benzaldehyde M | C100527 | C7H6O | 106.1 | 970.9 | 356.587 | 1.14984 |
12 | (E)-2-Octenal D | C2548870 | C8H14O | 126.2 | 1062.3 | 498.662 | 1.81392 |
13 | (E)-2-Octenal M | C2548870 | C8H14O | 126.2 | 1061.6 | 497.283 | 1.33401 |
14 | β-Pinene P | C127913 | C10H16 | 136.2 | 988.7 | 378.791 | 1.72682 |
15 | β-Pinene P | C127913 | C10H16 | 136.2 | 988.3 | 378.347 | 1.65397 |
16 | β-Pinene D | C127913 | C10H16 | 136.2 | 985.9 | 375.235 | 1.29899 |
17 | β-Pinene M | C127913 | C10H16 | 136.2 | 983.8 | 372.568 | 1.22 |
18 | α-Pinene M | C80568 | C10H16 | 136.2 | 943.3 | 324.558 | 1.21897 |
19 | α-Pinene D | C80568 | C10H16 | 136.2 | 942.5 | 323.669 | 1.29489 |
20 | α-Pinene P | C80568 | C10H16 | 136.2 | 943.3 | 324.558 | 1.67552 |
21 | α-Pinene P | C80568 | C10H16 | 136.2 | 940.5 | 321.447 | 1.73708 |
22 | 2-Hexenal | C505577 | C6H10O | 98.1 | 851.7 | 242.32 | 1.18101 |
23 | (E)-2-Hexenol | C928950 | C6H12O | 100.2 | 853 | 243.209 | 1.52265 |
24 | Cinnamyl Alcohol | C104541 | C9H10O | 134.2 | 1323.3 | 1334.331 | 1.09418 |
25 | 2,3-Butanediol | C513859 | C4H10O2 | 90.1 | 783.1 | 198.295 | 1.36304 |
26 | 2-Butanone-3-Hydroxy | C513860 | C4H8O2 | 88.1 | 709.4 | 159.656 | 1.33619 |
27 | Hexanal D | C66251 | C6H12O | 100.2 | 798.5 | 207.446 | 1.56833 |
28 | Hexanal M | C66251 | C6H12O | 100.2 | 796.8 | 206.429 | 1.26513 |
29 | Ethyl 2-Methylpropanoate D | C97621 | C6H12O2 | 116.2 | 744.3 | 176.942 | 1.56675 |
30 | Ethyl 2-Methylpropanoate M | C97621 | C6H12O2 | 116.2 | 754 | 182.026 | 1.19406 |
31 | Linalol M | C78706 | C10H18O | 154.3 | 1103.6 | 582.614 | 1.21977 |
32 | Linalol D | C78706 | C10H18O | 154.3 | 1104.4 | 584.504 | 1.76789 |
33 | γ-Terpinene D | C99854 | C10H16 | 136.2 | 1062.4 | 498.83 | 1.70206 |
34 | γ-Terpinene M | C99854 | C10H16 | 136.2 | 1064.4 | 502.61 | 1.2238 |
35 | Methyl Eugenol | C93152 | C11H14O2 | 178.2 | 1373.9 | 1615.044 | 1.46374 |
36 | Citronellyl Acetate | C150845 | C12H22O2 | 198.3 | 1352.9 | 1491.955 | 1.46092 |
37 | 3-Ethyl-2-Hydroxy-2-CyclopeNtenone | C21835018 | C7H10O2 | 126.2 | 1129.1 | 641.552 | 1.20911 |
38 | Borneol | C507700 | C10H18O | 154.3 | 1155 | 707.475 | 1.21716 |
39 | (+)-Limonene D | C138863 | C10H16 | 136.2 | 1036.3 | 452.134 | 1.29163 |
40 | (+)-Limonene M | C138863 | C10H16 | 136.2 | 1030.9 | 443.002 | 1.2188 |
41 | (+)-Limonene P | C138863 | C10H16 | 136.2 | 1033.3 | 446.915 | 1.65583 |
42 | (E,E)-2,4-Hexadienal | C142836 | C6H8O | 96.1 | 903.8 | 283.739 | 1.46049 |
43 | Ethanol D | C64175 | C2H6O | 46.1 | 509.1 | 106.67 | 1.13303 |
44 | Ethanol M | C64175 | C2H6O | 46.1 | 468.1 | 98.64 | 1.04239 |
45 | Pentanal | C110623 | C5H10O | 86.1 | 730.3 | 169.806 | 1.41087 |
46 | 2-Undecenal | C2463776 | C11H20O | 168.3 | 1309.9 | 1268.716 | 1.48683 |
47 | (E)-2-Ecenal | C3913813 | C10H18O | 154.3 | 1266.7 | 1077.838 | 1.46558 |
48 | 2,4-Decadienal | C2363884 | C10H16O | 152.2 | 1290.1 | 1177.253 | 1.43466 |
49 | Butyl 2-Methylbutanoate D | C15706737 | C9H18O2 | 158.2 | 1046.8 | 470.298 | 1.89602 |
50 | Butyl 2-Methylbutanoate M | C15706737 | C9H18O2 | 158.2 | 1046.8 | 470.298 | 1.3633 |
51 | Linalool Oxide D | C60047178 | C10H18O2 | 170.3 | 1077.7 | 528.43 | 1.81683 |
52 | Linalool Oxide M | C60047178 | C10H18O2 | 170.3 | 1078.7 | 530.405 | 1.26283 |
53 | 3-Carene D | C13466789 | C10H16 | 136.2 | 1012.7 | 413.543 | 1.67851 |
54 | 3-Carene M | C13466789 | C10H16 | 136.2 | 1016.5 | 419.463 | 1.29223 |
55 | α-Terpinene D | C99865 | C10H16 | 136.2 | 1022 | 428.342 | 1.72448 |
56 | α-Terpinene M | C99865 | C10H16 | 136.2 | 1022.5 | 429.177 | 1.21953 |
57 | 2-Heptanone D | C110430 | C7H14O | 114.2 | 892.4 | 272.936 | 1.63499 |
58 | 2-Heptanone M | C110430 | C7H14O | 114.2 | 893 | 273.436 | 1.25997 |
59 | Butyl Acetate D | C123864 | C6H12O2 | 116.2 | 804.2 | 210.924 | 1.62396 |
60 | Butyl Acetate M | C123864 | C6H12O2 | 116.2 | 806.2 | 212.174 | 1.23712 |
61 | 1-Hexanol D | C111273 | C6H14O | 102.2 | 869.4 | 255.183 | 1.63814 |
62 | 1-Hexanol M | C111273 | C6H14O | 102.2 | 867.1 | 253.432 | 1.32772 |
63 | Heptanal D | C111717 | C7H14O | 114.2 | 905.8 | 285.688 | 1.70038 |
64 | Heptanal M | C111717 | C7H14O | 114.2 | 906.3 | 286.189 | 1.33166 |
65 | 3-Methyl-but-1-yl acetate D | C123922 | C7H14O2 | 130.2 | 876.7 | 260.684 | 1.74214 |
66 | 3-Methyl-but-1-yl acetate M | C123922 | C7H14O2 | 130.2 | 877.4 | 261.184 | 1.29936 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Qiao, L.; Liu, S.; He, Y.; Huang, D.; Wu, W.; Liu, Y.; Chen, L.; Huang, D. Explorative Study on Volatile Organic Compounds of Cinnamon Based on GC-IMS. Metabolites 2024, 14, 274. https://doi.org/10.3390/metabo14050274
Pan Y, Qiao L, Liu S, He Y, Huang D, Wu W, Liu Y, Chen L, Huang D. Explorative Study on Volatile Organic Compounds of Cinnamon Based on GC-IMS. Metabolites. 2024; 14(5):274. https://doi.org/10.3390/metabo14050274
Chicago/Turabian StylePan, Yu, Liya Qiao, Shanshuo Liu, Ye He, Danna Huang, Wuwei Wu, Yingying Liu, Lu Chen, and Dan Huang. 2024. "Explorative Study on Volatile Organic Compounds of Cinnamon Based on GC-IMS" Metabolites 14, no. 5: 274. https://doi.org/10.3390/metabo14050274
APA StylePan, Y., Qiao, L., Liu, S., He, Y., Huang, D., Wu, W., Liu, Y., Chen, L., & Huang, D. (2024). Explorative Study on Volatile Organic Compounds of Cinnamon Based on GC-IMS. Metabolites, 14(5), 274. https://doi.org/10.3390/metabo14050274