Phytochemical Profiling Studies of Alkaloids and Coumarins from the Australian Plant Geijera parviflora Lindl. (Rutaceae) and Their Anthelmintic and Antimicrobial Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. Extraction and Analysis
2.4. Silica Flash Column Chromatography
2.5. HPLC-DAD Analysis
2.6. Semi-Preparative HPLC Isolation
2.7. LC-MS Analysis
2.8. NMR Spectroscopy
2.9. Compound Characterisation
2.10. Anthelmintic Activity Assessment
2.11. Antimicrobial Activity Assessment
3. Results and Discussion
3.1. Isolation of Compounds from the Bark of G. parviflora
3.2. Isolation of Compounds from the Leaves of G. parviflora
3.3. Comparison of Phytochemical Profiles of the Flowers, Leaves, Bark, and Fruits of G. parviflora
3.4. Anthelmintic Activity Assessment
3.5. Antimicrobial Activity Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shou, Q.; Banbury, L.K.; Maccarone, A.T.; Renshaw, D.E.; Mon, H.; Griesser, S.; Griesser, H.J.; Blanksby, S.J.; Smith, J.E.; Wohlmuth, H. Antibacterial anthranilic acid derivatives from Geijera parviflora. Fitoterapia 2014, 93, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Penfold, A.R. Natural Chemical Resources of Australian Plant Products. Part II. J. Chem. Educ. 1932, 9, 429–438. [Google Scholar] [CrossRef]
- Sadgrove, N.J.; Jones, G.L. Characterization and Bioactivity of Essential Oils from Geijera parviflora (Rutaceae): A Native Bush Medicine from Australia. Nat. Prod. Commun. 2013, 8, 747–751. [Google Scholar] [CrossRef]
- Banbury, L.K.; Shou, Q.; Renshaw, D.E.; Lambley, E.H.; Griesser, H.J.; Mon, H.; Wohlmuth, H. Compounds from Geijera parviflora with prostaglandin E2 inhibitory activity may explain its traditional use for pain relief. J. Ethnopharmacol. 2015, 163, 251–255. [Google Scholar] [CrossRef]
- Lahey, F.N.; MacLeod, J.K. The Coumarins of Geijera Parviflora Lindl. Aust. J. Chem. 1967, 20, 1943–1955. [Google Scholar] [CrossRef]
- Bae, D.S.; Kim, C.Y.; Lee, J.K. Anti-inflammatory effects of dehydrogeijerin in LPS-stimulated murine macrophages. Int. Immunopharmacol. 2012, 14, 734–739. [Google Scholar] [CrossRef]
- Jerris, P.J.; Smith, A.B. Synthesis and Configurational Assignment of Geiparvarin: A Novel Antitumor Agent. J. Org. Chem. 1981, 46, 577–585. [Google Scholar] [CrossRef]
- Wang, B.; Du, J.; Zhang, Z.; Huang, P.; Chen, S.; Zou, H. Geiparvarin Inhibits the Progression of Osteosarcoma by Down-regulating COX2 Expression. Curr. Cancer Drug Targets 2023, 23, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Bodkin, F. Dharawal Pharmacopeia Collection; Western Sydney University: Penrith, NSW, Australia, 2021. [Google Scholar]
- Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Simple Coumarins and Analogues in Medicinal Chemistry: Occurrence, Synthesis and Biological Activity. Curr. Med. Chem. 2005, 12, 887–916. [Google Scholar] [CrossRef]
- Szewczyk, A.; Pęczek, F. Furoquinoline Alkaloids: Insights into Chemistry, Occurrence, and Biological Properties. Int. J. Mol. Sci. 2023, 24, 12811. [Google Scholar] [CrossRef]
- Fiorito, S.; Preziuso, F.; Sharifi-Rad, M.; Marchetti, L.; Epifano, F.; Genovese, S. Auraptene and umbelliprenin: A review on their latest literature acquisitions. Phytochem. Rev. 2020, 21, 317–326. [Google Scholar] [CrossRef]
- Adams, D.H.; Shou, Q.; Wohlmuth, H.; Cowin, A.J. Native Australian plant extracts differentially induce Collagen I and Collagen III in vitro and could be important targets for the development of new wound healing therapies. Fitoterapia 2016, 109, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Tayarani-Najaran, Z.; Tayarani-Najaran, N.; Eghbali, S. A Review of Auraptene as an Anticancer Agent. Front. Pharmacol. 2021, 12, 698352. [Google Scholar] [CrossRef] [PubMed]
- Dugan, D.; Bell, R.J.; Brkljača, R.; Rix, C.; Urban, S. A Review of the Ethnobotanical Use, Chemistry and Pharmacological Activities of Constituents Derived from the Plant Genus Geijera (Rutaceae). Metabolites 2024, 14, 81. [Google Scholar] [CrossRef] [PubMed]
- Gasser, R.; Samson-Himmelstjerna, G.v. Haemonchus Contortus and Haemonchosis—Past, Present and Future Trends, 1st ed.; Elsevier Science & Technology: San Diego, CA, USA, 2016; Volume 93. [Google Scholar]
- Laing, R.; Kikuchi, T.; Martinelli, A.; Tsai, I.J.; Beech, R.N.; Redman, E.; Holroyd, N.; Bartley, D.J.; Beasley, H.; Britton, C.; et al. The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery. Genome Biol. 2013, 14, R88. [Google Scholar] [CrossRef]
- Dreyer, D.L.; Lee, A. Extractives of Geijera parviflora. Phytochemistry 1972, 11, 763–767. [Google Scholar] [CrossRef]
- Mitaku, S.; Skaltsounis, A.-L.; Tillequin, F.; Koch, M.; Pusset, J.; Chauviere, G. Plantes de Nouvelle-Calédonie, XCVI. Alcaloïdes de Geijera balansae. J. Nat. Prod. 1985, 48, 772–777. [Google Scholar] [CrossRef]
- Taki, A.C.; Byrne, J.J.; Wang, T.; Sleebs, B.E.; Nguyen, N.; Hall, R.S.; Korhonen, P.K.; Chang, B.C.H.; Jackson, P.; Jabbar, A.; et al. High-throughput phenotypic assay to screen for anthelmintic activity on haemonchus contortus. Pharmaceuticals 2021, 14, 616. [Google Scholar] [CrossRef] [PubMed]
- Chimichi, S.; Boccalini, M.; Salvador, A.; Dall’Acqua, F.; Basso, G.; Viola, G. Synthesis and biological evaluation of new geiparvarin derivatives. ChemMedChem 2009, 4, 769–779. [Google Scholar] [CrossRef]
- Carotti, A.; Carrieri, A.; Chimichi, S.; Boccalini, M.; Cosimelli, B.; Gnerre, C.; Carotti, A.; Carrupt, P.A. Natural and synthetic geiparvarins are strong and selective MAO-B inhibitors. Synthesis and SAR studies. Bioorganic Med. Chem. Lett. 2002, 12, 3551–3555. [Google Scholar] [CrossRef]
- Maltese, F.; van der Kooy, F.; Verpoorte, R. Solvent derived artifacts in natural products chemistry. Nat. Prod. Commun. 2009, 4, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Duraipandiyan, V.; Ignacimuthu, S. Antibacterial and antifungal activity of Flindersine isolated from the traditional medicinal plant, Toddalia asiatica (L.) Lam. J. Ethnopharmacol. 2009, 123, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Borisov, V.N.; Ban’kovskii, A.I.; Sheichenko, V.I.; Kabanov, V.S. Auraptene from Ferula microloba. Chem. Nat. Compd. 1974, 10, 672. [Google Scholar] [CrossRef]
- Suthiphasilp, V.; Maneerat, T.; Laphookhieo, S.; Songkerdthong, J.; Harding, D.J.; Charoensup, R. Bioactive compounds from the fruit extract of Clausena excavata Burm. f. (Rutaceae). South Afr. J. Bot. 2022, 151, 538–548. [Google Scholar] [CrossRef]
- Maloba, P.; Mandela, E.; Kimoloi, S.; Onyancha, J. Antiinflammatory, Antinociceptive and Antioxidant activities of aqueous and methanolic stem bark extracts of Fagaropsis hildebrandtii (Engl.) Milne-Redh. (Rutaceae). J. Phytopharm. 2023, 12, 211–217. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, G.; Zhou, D.; Xu, L.; Meng, Q.; Lin, B.; Hao, J.; Sun, F.; Hou, Y.; Li, N. Chemical profile of the roots of Clausena lansium and their inhibitory effects of the over-activation in BV-2 microglial cells. Phytochemistry 2024, 220, 114008. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wang, M.; Zhong, S.; Xu, B. Comprehensive Review of Phytochemical Profiles and Health-Promoting Effects of Different Portions of Wampee (Clausena lansium). ACS Omega 2023, 8, 26699–26714. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.D.; Zhu, W.L.; Lin, W.Y.; Qiu, Y.H.; Wu, G.L.; Ding, X.Y.; Yang, Z.K.; Feng, Q.; Zhang, R.R.; Qiao, L.J.; et al. Ethanol extract of Evodia lepta Merr. ameliorates cognitive impairment through inhibiting NLRP3 inflammasome in scopolamine-treated mice. Aging 2024, 16, 2385–2397. [Google Scholar] [CrossRef]
- Ding, X.-Y.; Wen, J.-R.; Lin, W.-Y.; Huang, G.-Y.; Feng, Q.; Duan, L.; Zhang, S.-J.; Liu, Z.; Zhang, R.-R.; Wang, Y. Phloroglucinol derivatives, coumarins and an alkaloid from the roots of Evodia lepta Merr. Phytochemistry 2023, 213, 113774. [Google Scholar] [CrossRef]
- Dzouemo, L.C.; Mouthé Happi, G.; Ahmed, S.A.; Dongmo Tekapi Tsopgni, W.; Nde Akuma, M.; Salau, S.; Ngeufa Happi, E.; Wansi, J.D. Chemical Constituents of the Bark of Zanthoxylum gilletii (Rutaceae) and Their In Vitro Antiplasmodial and Molecular Docking Studies. J. Chem. 2022, 2022, 1111817. [Google Scholar] [CrossRef]
Position | Carbon, Type | Proton, Multiplicity (J in Hz) | gCOSY | gHMBCAD |
---|---|---|---|---|
1 | 161.2, C | |||
2 | 113.7, CH | 6.28, (d, J = 9.4 Hz, 1H) | 3 | 1 |
3 | 143.4, CH | 7.65, (d, J = 9.4 Hz, 1H) | 2 | 1, 4, 7a |
3a | 113.2, C | |||
4 | 129.1, CH | 7.41, (d, J = 8.7 Hz, 1H) | 5 | 6, 7a |
5 | 113.1, CH | 6.88, (m, 1H) | 4 | |
6 | 161.47, CH | |||
7 | 101.7, CH | 6.83, s | 3a, 5 | |
7a | 156.0, C | |||
1′ | 65.36, CH2 | 4.86, (d, J = 5.9 Hz, 2H) | 2′, 3′-CH3 w | 6, 2′, 3′ |
2′ | 135.0, CH | 6.95, (t, J = 5.9 Hz, 1H) | 1′, 3′-CH3 w | |
3′ | 129.16, C | |||
2″ | 176.4, C | |||
3″ | ND | ND | ||
4″ | 200.6, C | |||
5″ | 87.2, C | |||
3′-CH3 | 14.1, CH3 | 2.15, s | 1′ w, 2′ w | 2′, 3′, 2″, |
5″-CH3 | 23.4, CH3 | 1.45, s | 4″, 5″, 5″-CH3 |
Position | Carbon, Type | Proton, Multiplicity (J in Hz) | Carbon, Type | Proton, Multiplicity (J in Hz) |
---|---|---|---|---|
1 | 161.2, C | 161.2, C | ||
2 | 113.7, CH | 6.28, (d, J = 9.4 Hz, 1H) | 113.7, CH | 6.28, (d, J = 9.4 Hz, 1H) |
3 | 143.4, CH | 7.65, (d, J = 9.4 Hz, 1H) | 143.4, CH | 7.65, (d, J = 9.4 Hz, 1H) |
3a | 113.2, C | 113.2, C | ||
4 | 129.1, CH | 7.40, (d, J = 8.7 Hz, 1H) | 129.1, CH | 7.40, (d, J = 8.7 Hz, 1H) |
5 | 113.1, CH | 6.88, (m, 1H) | 113.1, CH | 6.88, (m, 1H) |
6 | 161.47, CH | 161.57, C | ||
7 | 101.7, CH | 6.83, s | 101.7, CH | 6.83, s |
7a | 156.0, C | 156.0, C | ||
1′ | 65.36, CH2 | 4.86, (d, J = 5.9 Hz, 2H) | 65.33, CH2 | 4.83, (d, J = 5.9 Hz, 2H) |
2′ | 135.0, CH | 6.95, (t, J = 5.9 Hz, 1H) | 130.5, CH | 6.75, (t, J = 5.9 Hz, 1H) |
3′ | 129.16, C | 128.94, C | ||
2″ | 176.4, C | 183.0, C | ||
3″ | ND | 100.5, CH | 5.62, s | |
4″ | 200.6, C | 207.4, C | ||
5″ | 87.2, C | 88.9, C | ||
3′-CH3 | 14.1, CH3 | 2.15, s | 14.0, CH3 | 2.03, s |
5″-CH3 | 23.4, CH3 | 1.45, s | 23.2, CH3 | 1.41, s |
Retention Time (min) | UV Maxima (nm) | Negative Ion m/z | Positive Ion m/z | Compound Name & Molecular Weight (amu) |
---|---|---|---|---|
10.2 | 202, 220, 284, 326 | 609 [M − H]− | 611 [M + H]+ | Rutin 610 |
14.1 | 204, 222, 324 | - | 333 [M + H]+ | Marmin 332 |
15.4 | 192, 222, 346 | 226 [M − H]− | 228 [M + H]+ | Flindersine 227 |
15.8 | 202, 220, 322 | - | 331 [M + H]+ | 6′-dehydromarmin 330 |
16.6 | 200, 218, 314 | 325 [M − H]− | 327 [M + H]+ | Geiparvarin 326 |
18.3 | 224, 350 | 298 [M − H]− | 300 [M + H]+ | N-(acetoxymethyl) flindersine 299 |
26.0 | 230, 322 | - | 299 [M + H]+ | Auraptene 298 |
Description | Motility Reduction | Development Inhibition | Abnormal Phenotype Induction |
---|---|---|---|
Dichloromethane extract of the bark | ≥70% | Nil. | Nil. |
Methanol extract of the bark (resin) | 100% | 100% | Nil. |
Methanol extract of the bark (solids) | Nil. | Nil. | Nil. |
Dichloromethane extract of the leaves | ≥70% | Nil. | Skn |
Methanol extract of the leaves (resin) | 100% | Nil. | Skn |
Methanol extract of the leaves (solids) | ≥70% | Nil. | Nil. |
Dichloromethane extract of the flowers | ≥70% | Nil. | Skn |
Methanol extract of the flowers | Nil. | Nil. | Nil. |
Description | Motility Reduction (IC50; µM) | Development Inhibition | Abnormal Phenotype Induction |
---|---|---|---|
Compound 1 flindersine | 3.7 µM | Nil. | Nil. |
Compound 2 N-(acetoxymethyl)flindersine | >50 µM | Nil. | Nil. |
Compound 3 geiparvarin | >50 µM | Nil. | 100% Skn at 21.7 µM |
Compound 5 6′dehydromarmin | >50 µM | Nil. | Nil. |
Compound 9 auraptene | >50 µM | 100% at 25 µM | Nil. |
Monepantel (control) | 0.2 µM | 100% at 0.8 µM | 100% Coi at 6.3 µM |
Moxidectin (control) | 0.4 µM | 100% 25 µM | Nil. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dugan, D.; Bell, R.J.; Brkljača, R.; Rix, C.; Taki, A.C.; Gasser, R.B.; Urban, S. Phytochemical Profiling Studies of Alkaloids and Coumarins from the Australian Plant Geijera parviflora Lindl. (Rutaceae) and Their Anthelmintic and Antimicrobial Assessment. Metabolites 2024, 14, 259. https://doi.org/10.3390/metabo14050259
Dugan D, Bell RJ, Brkljača R, Rix C, Taki AC, Gasser RB, Urban S. Phytochemical Profiling Studies of Alkaloids and Coumarins from the Australian Plant Geijera parviflora Lindl. (Rutaceae) and Their Anthelmintic and Antimicrobial Assessment. Metabolites. 2024; 14(5):259. https://doi.org/10.3390/metabo14050259
Chicago/Turabian StyleDugan, Deepika, Rachael J. Bell, Robert Brkljača, Colin Rix, Aya C. Taki, Robin B. Gasser, and Sylvia Urban. 2024. "Phytochemical Profiling Studies of Alkaloids and Coumarins from the Australian Plant Geijera parviflora Lindl. (Rutaceae) and Their Anthelmintic and Antimicrobial Assessment" Metabolites 14, no. 5: 259. https://doi.org/10.3390/metabo14050259
APA StyleDugan, D., Bell, R. J., Brkljača, R., Rix, C., Taki, A. C., Gasser, R. B., & Urban, S. (2024). Phytochemical Profiling Studies of Alkaloids and Coumarins from the Australian Plant Geijera parviflora Lindl. (Rutaceae) and Their Anthelmintic and Antimicrobial Assessment. Metabolites, 14(5), 259. https://doi.org/10.3390/metabo14050259