Comprehensive Two-Dimensional Gas Chromatography–Mass Spectrometry as a Tool for the Untargeted Study of Hop and Their Metabolites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Samples
2.2. Sample Preparation
2.3. Gas Chromatography (GC–MS and GC×GC–MS)
2.4. Data Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moir, M. Hops—A millennium review. J. Am. Soc. Brew. Chem. 2018, 58, 131–146. [Google Scholar] [CrossRef]
- Steenackers, B.; De Cooman, L.; De Vos, D. Chemical transformations of characteristic hop secondary metabolites in relation to beer properties and the brewing process: A review. Food Chem. 2015, 172, 742–756. [Google Scholar] [CrossRef] [PubMed]
- Research, M. Global Hops Market—2023–2030. Available online: https://www.marketresearch.com/DataM-Intelligence-4Market-Research-LLP-v4207/Global-Hops-34833012/ (accessed on 25 September 2023).
- Almaguer, C.; Schönberger, C.; Gastl, M.; Arendt, E.K.; Becker, T. Humulus lupulus—A story that begs to be told. A review. J. Inst. Brew. 2014, 120, 289–314. [Google Scholar] [CrossRef]
- Cattoor, K.; Dresel, M.; De Bock, L.; Boussery, K.; Van Bocxlaer, J.; Remon, J.-P.; De Keukeleire, D.; Deforce, D.; Hofmann, T.; Heyerick, A. Metabolism of hop-derived bitter acids. J. Agric. Food Chem. 2013, 61, 7916–7924. [Google Scholar] [CrossRef] [PubMed]
- Knez Hrnčič, M.; Španinger, E.; Košir, I.J.; Knez, Ž.; Bren, U. Hop compounds: Extraction techniques, chemical analyses, antioxidative, antimicrobial, and anticarcinogenic effects. Nutrients 2019, 11, 257. [Google Scholar] [CrossRef] [PubMed]
- Rettberg, N.; Biendl, M.; Garbe, L.-A. Hop aroma and hoppy beer flavor: Chemical backgrounds and analytical tools—A review. J. Am. Soc. Brew. Chem. 2018, 76, 1–20. [Google Scholar] [CrossRef]
- King, A.J.; Dickinson, J.R. Biotransformation of hop aroma terpenoids by ale and lager yeasts. FEMS Yeast Res. 2003, 3, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, B.P.; Nascimento, P.G.B.D.; Ghesti, G.F. Intellectual property and plant variety protection: Prospective study on hop (Humulus lupulus L.) cultivars. World Patent Inf. 2021, 65, 102041. [Google Scholar] [CrossRef]
- Afendi, F.M.; Okada, T.; Yamazaki, M.; Hirai-Morita, A.; Nakamura, Y.; Nakamura, K.; Ikeda, S.; Takahashi, H.; Altaf-Ul-Amin, M.; Darusman, L.K.; et al. KNApSAcK family databases: Integrated metabolite-plant species databases for multifaceted plant research. Plant Cell Physiol. 2012, 53, e1. [Google Scholar] [CrossRef]
- Nezi, P.; Cicaloni, V.; Tinti, L.; Salvini, L.; Iannone, M.; Vitalini, S.; Garzoli, S. Metabolomic and proteomic profile of dried hop Inflorescences (Humulus lupulus L. cv. Chinook and cv. Cascade) by SPME-GC-MS and UPLC-MS-MS. Separations 2022, 9, 204. [Google Scholar] [CrossRef]
- Fiehn, O.; Kopka, J.; Dormann, P.; Altmann, T.; Trethewey, R.N.; Willmitzer, L. Metabolite profiling for plant functional genomics. Nat. Biotech. 2000, 18, 1157–1161. [Google Scholar] [CrossRef] [PubMed]
- Hughey, C.A.; McMinn, C.M.; Phung, J. Beeromics: From quality control to identification of differentially expressed compounds in beer. Metabolomics 2016, 12, 11. [Google Scholar] [CrossRef]
- Ikhalaynen, Y.A.; Plyushchenko, I.V.; Rodin, I.A. Hopomics: Humulus lupulus brewing cultivars classification based on LC-MS profiling and nested feature selection. Metabolites 2022, 12, 945. [Google Scholar] [CrossRef] [PubMed]
- Brendel, R.; Schwolow, S.; Rohn, S.; Weller, P. Gas-phase volatilomic approaches for quality control of brewing hops based on simultaneous GC-MS-IMS and machine learning. Anal. Bioanal. Chem. 2020, 412, 7085–7097. [Google Scholar] [CrossRef] [PubMed]
- Fiehn, O. Metabolomics by gas chromatography-mass spectrometry: Combined targeted and untargeted profiling. Curr. Protocols Mol. Biol. 2016, 114, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Eyres, G.; Dufour, J.-P. Hop essential oil: Analysis, chemical composition and odor characteristics. In Beer in Health and Disease Prevention; Preedy, V.R., Ed.; Academic Press: Burlington, MA, USA, 2009; pp. 239–254. [Google Scholar]
- Aberl, A.; Coelhan, M. Determination of volatile compounds in different hop varieties by headspace-trap GC/MS—In comparison with conventional hop essential oil analysis. J. Agric. Food Chem. 2012, 60, 2785–2792. [Google Scholar] [CrossRef] [PubMed]
- Jorge, K.; Trugo, L.C. Discrimination of different hop varieties using headspace gas chromatographic data. J. Brazil. Chem. Soc. 2003, 14, 411–415. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Liu, Y. Rapid differentiation of Chinese hop varieties (Humulus lupulus) using volatile fingerprinting by HS-SPME-GC-MS combined with multivariate statistical analysis. J. Sci. Food Agric. 2018, 98, 3758–3766. [Google Scholar] [CrossRef] [PubMed]
- Eri, S.; Khoo, B.K.; Lech, J.; Hartman, T.G. Direct thermal desorption-gas chromatography and gas chromatography-mass spectrometry profiling of hop (Humulus lupulus L.) essential oils in support of varietal characterization. J. Agric. Food Chem. 2000, 48, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- Kovačevič, M.; Kač, M. Solid-phase microextraction of hop volatiles. Potential use for determination and verification of hop varieties. J. Chromatogr. A 2001, 918, 159–167. [Google Scholar] [CrossRef]
- Kishimoto, T.; Teramoto, S.; Fujita, A.; Yamada, O. Principal component analysis of hop-derived odorants identified by stir bar sorptive extraction method. J. Am. Soc. Brew. Chem. 2020, 79, 272–280. [Google Scholar] [CrossRef]
- Inui, T.; Tsuchiya, F.; Ishimaru, M.; Oka, K.; Komura, H. Different beers with different hops. Relevant compounds for their aroma characteristics. J. Agric. Food Chem. 2013, 61, 4758–4764. [Google Scholar] [CrossRef] [PubMed]
- Richter, T.M.; Eyres, G.T.; Silcock, P.; Bremer, P.J. Comparison of four extraction methods for analysis of volatile hop-derived aroma compounds in beer. J. Sep. Sci. 2017, 40, 4366–4376. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Wang, X.; Yuan, A.; Liu, J.; Li, Z.; Xie, D.; Zhang, H.; Luo, W.; Xu, H.; Liu, J.; et al. Chemical constituents and bioactivities of hops (Humulus lupulus L.) and their effects on beer-related microorganisms. Food Energ. Sec. 2022, 11, e367. [Google Scholar] [CrossRef]
- Rubiolo, P.; Sgorbini, B.; Liberto, E.; Cordero, C.; Bicchi, C. Essential oils and volatiles: Sample preparation and analysis. A review. Flav. Fragr. J. 2010, 25, 282–290. [Google Scholar] [CrossRef]
- Abolghasemi, M.M.; Piryaei, M. Development of direct microwave desorption/gas chromatography mass spectrometry system for rapid analysis of volatile components in medicinal plants. J. Sep. Sci. 2020, 43, 782–787. [Google Scholar] [CrossRef] [PubMed]
- Priest, M.A.; Boersma, J.A.; Bronczyk, S.A. Effects of aging on hops and liquid CO2 hop extracts. J. Am. Soc. Brew. Chem. 2018, 49, 98–100. [Google Scholar] [CrossRef]
- Gonçalves, J.L.; Figueira, J.A.; Rodrigues, F.P.; Ornelas, L.P.; Branco, R.N.; Silva, C.L.; Camara, J.S. A powerful methodological approach combining headspace solid phase microextraction, mass spectrometry and multivariate analysis for profiling the volatile metabolomic pattern of beer starting raw materials. Food Chem. 2014, 160, 266–280. [Google Scholar] [CrossRef] [PubMed]
- Nolvachai, Y.; Amaral, M.S.S.; Herron, R.; Marriott, P.J. Solid phase microextraction for quantitative analysis—Expectations beyond design? Green Anal. Chem. 2023, 4, 100048. [Google Scholar] [CrossRef]
- Nolvachai, Y.; Amaral, M.S.S.; Marriott, P.J. Foods and contaminants analysis using multidimensional gas chromatography: An update of recent studies, technology, and applications. Anal. Chem. 2023, 95, 238–263. [Google Scholar] [CrossRef] [PubMed]
- Wong, Y.F.; Perlmutter, P.; Marriott, P.J. Untargeted metabolic profiling of Eucalyptus spp. leaf oils using comprehensive two-dimensional gas chromatography with high resolution mass spectrometry: Expanding the metabolic coverage. Metabolomics 2017, 13, 46. [Google Scholar] [CrossRef]
- Yan, D.; Wong, Y.F.; Tedone, L.; Shellie, R.A.; Marriott, P.J.; Whittock, S.P.; Koutoulis, A. Chemotyping of new hop (Humulus lupulus L.) genotypes using comprehensive two-dimensional gas chromatography with quadrupole accurate mass time-of-flight mass spectrometry. J. Chromatogr. A 2018, 1536, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Dufour, J.-P.; Marriott, P.J.; Reboul, E.; Leus, M.; Silcock, P. Quantitative analysis of complex flavour mixtures using comprehensive multidimensional gas chromatography. In Proceedings of the Flavour Research at the Dawn of the 21st Century, Beaune, France, 24–28 June 2002; Quéré, J.L., Étiévant, P.X., Eds.; Editions Tec & Doc: Paris, France, 2002; pp. 500–504. [Google Scholar]
- Yan, D.; Tedone, L.; Koutoulis, A.; Whittock, S.P.; Shellie, R.A. Parallel comprehensive two-dimensional gas chromatography. J. Chromatogr. A 2017, 1524, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Reglitz, K.; Lemke, N.; Steinhaus, M.; Hanke, S. On the behavior of the important hop odorant 4-mercapto-4-methylpentan-2-one (4MMP) during dry hopping and during Storage of dry hopped beer. Brew. Sci. 2018, 71, 96–99. [Google Scholar] [CrossRef]
- Eyres, G.T.; Marriott, P.J.; Dufour, J.-P. Comparison of odor-active compounds in the spicy fraction of hop (Humulus lupulus L.) essential oil from four different varieties. J. Agric. Food Chem. 2007, 55, 6252–6261. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.; Biendl, M.; Hanke, S.; Reglitz, K.; Steinhaus, M. Dry hopping potential of Eureka! A new hop variety. Brew. Sci. 2019, 72, 173–178. [Google Scholar]
- Yan, D.; Wong, Y.F.; Whittock, S.P.; Koutoulis, A.; Shellie, R.A.; Marriott, P.J. Sequential hybrid three-dimensional gas chromatography with accurate mass spectrometry: A novel tool for high-resolution characterization of multicomponent samples. Anal. Chem. 2018, 90, 5264–5271. [Google Scholar] [CrossRef] [PubMed]
- Reglitz, K.; Steinhaus, M. Quantitation of 4-Methyl-4-sulfanylpentan-2-one (4MSP) in hops by a stable isotope dilution assay in combination with GCxGC–TOFMS: Method development and application to study the influence of variety, Provenance, harvest year, and processing on 4MSP concentrations. J. Agric. Food Chem. 2017, 65, 2364–2372. [Google Scholar] [CrossRef] [PubMed]
- Inui, T.; Matsui, H.; Hosoya, T.; Kumazawa, S.; Fukui, N.; Oka, K. Effect of harvest time and pruning date on aroma characteristics of hop teas and related compounds of Saaz hops. J. Am. Soc. Brew. Chem. 2016, 74, 231–241. [Google Scholar] [CrossRef]
- Lusk, L.T.; Kay, S.B.; Porubcan, A.; Ryder, D.S. Key olfactory cues for beer oxidation. J. Am. Soc. Brew. Chem. 2012, 70, 257–261. [Google Scholar] [CrossRef]
- Eyres, G.; Marriott, P.J.; Dufour, J.-P. The combination of gas chromatography-olfactometry and multidimensional gas chromatography for the characterisation of essential oils. J. Chromatogr. A 2007, 1150, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Roberts, M.T.; Dufour, J.P.; Lewis, A.C. Application of comprehensive multidimensional gas chromatography combined with time-of-flight mass spectrometry (GC x GC-TOFMS) for high resolution analysis of hop essential oil. J. Sep. Sci. 2004, 27, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Yin, Y. Aroma characterization of regional Cascade and Chinook hops (Humulus lupulus L.). Food Chem. 2021, 364, 130410. [Google Scholar] [CrossRef] [PubMed]
- Amaral, M.S.S.; Hearn, M.T.W.; Marriott, P.J. Lipase-catalysed changes in essential oils revealed by comprehensive two-dimensional gas chromatography. Anal. Bioanal. Chem. 2023, 415, 3189–3199. [Google Scholar] [CrossRef] [PubMed]
- Marriott, P.J.; Massil, T.; Hugel, H. Molecular structure retention relationships in comprehensive two-dimensional gas chromatography. J. Sep. Sci. 2004, 27, 1273–1284. [Google Scholar] [CrossRef] [PubMed]
- Marriott, P.J.; Resende, G.A.P. GC×GC technology for non-targeted analysis of volatile compounds It just makes sense. Wiley Analyt. Sci. Mag. 2023, 3, 29–34. [Google Scholar]
- Wong, Y.F.; Marriott, P.J. Approaches and challenges for analysis of flavor and fragrance volatiles. J. Agric. Food Chem. 2017, 65, 7305–7307. [Google Scholar] [CrossRef]
- Champagne, A.; Boutry, M. A comprehensive proteome map of glandular trichomes of hop (Humulus lupulus L.) female cones: Identification of biosynthetic pathways of the major terpenoid-related compounds and possible transport proteins. Proteomics 2017, 17, 1600411. [Google Scholar] [CrossRef] [PubMed]
- Eriksen, R.L.; Padgitt-Cobb, L.K.; Townsend, M.S.; Henning, J.A. Gene expression for secondary metabolite biosynthesis in hop (Humulus lupulus L.) leaf lupulin glands exposed to heat and low-water stress. Sci. Rep. 2021, 11, 5138. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Tian, L.; Aziz, N.; Broun, P.; Dai, X.; He, J.; King, A.; Zhao, P.X.; Dixon, R.A. Terpene biosynthesis in glandular trichomes of hop. Plant Physiol. 2008, 148, 1254–1266. [Google Scholar] [CrossRef]
- Howard, G.A.; Slater, C.A. Evaluation of hops VII. Composition of the essential oil of hops. J. Inst. Brew. 1957, 63, 491–506. [Google Scholar] [CrossRef]
- Móricz, Á.M.; Bartoszek, M.; Polak, J.; Marczewska, P.; Knaś, M.; Böszörményi, A.; Fodor, J.; Kowalska, T.; Sajewicz, M. A comparison of quantitative composition and bioactivity of oils derived from seven North American varieties of hops (Humulus lupulus L.). Separations 2023, 10, 402. [Google Scholar] [CrossRef]
- Stevens, R. The chemistry of hop constituents. Chem. Rev. 1967, 67, 19–71. [Google Scholar] [CrossRef]
- Rutnik, K.; Knez Hrnčič, M.; Jože Košir, I. Hop essential oil: Chemical composition, extraction, analysis, and applications. Food Rev. Int. 2021, 38, 529–551. [Google Scholar] [CrossRef]
- Buglass, A.J.; Caven-Quantrill, D.J. Applications of natural ingredients in alcoholic drinks. In Natural Food Additives, Ingredients and Flavourings; Baines, D., Seal, R., Eds.; Woodhead Publishing: Cambridge, UK, 2012; pp. 358–416. [Google Scholar]
Hop Types | Sample Preparation | GC×GC Setup | Column Set | Aim of the Study | Compounds | Ref. |
---|---|---|---|---|---|---|
Dry-hopped German Pilsner beer using hop pellets of US Eureka harvested in 2016 | Degassed beer followed by solvent extraction with diethyl ether, the organic phase dried and applied onto mercurated agarose, and the thiol fraction purified by SAFE | GC×GC–TOFMS, liquid nitrogen-cooled dual-stage quad-jet thermal modulator | 1D column: DB-FFAP (30 m × 0.25 mm I.D. × 0.25 µm df) 2D column: DB-5 (2.0 m × 0.15 mm I.D. × 0.30 µm df) | Evaluation of the effect of Eureka hop in beers within the process of dry hopping | 4MMP | Schmidt et al., 2019 [39] |
Dry-hopped Pilsner style beer using hop pellets of US Eureka harvested in 2016 in 4 different days | Degassed beer followed by solvent extraction with diethyl ether, the organic phase dried and applied onto mercurated agarose, and the thiol fraction purified by SAFE | GC×GC–TOFMS, liquid nitrogen-cooled dual-stage quad-jet thermal modulator | 1D column: DB-FFAP (30 m × 0.25 mm I.D. × 0.25 µm df) 2D column: DB-5 (2.0 m × 0.15 mm I.D. × 0.30 µm df) | Investigation of 4MMP originated from hops during the process of dry hopping and its behaviour through storage | 4MMP | Reglitz et al., 2018 [37] |
Hop cones from Australia | Hydro-distillation of the cones into essential oil and injection of the diluted solution | GC×GC–QMS, LMCS modulator and GC–GC×GC–accTOFMS, LMCS modulator | QMS 1D column: SUPELCOWAX10 (30 m × 0.25 mm I.D. × 0.25 µm df) 2D column: SLB-IL59 or BPX5 (1.4 m × 0.1 mm I.D. × 0.08 µm df) accTOFMS 1D column: DB-5 ms (30 m × 0.25 mm I.D. × 0.25 µm df) 2D column: SUPELCOWAX10 (30 m × 0.25 mm I.D. × 0.25 µm df) 3D column: DB-5 (1.4 m × 0.1 mm I.D. × 0.08 µm df) | Use of a sequential hybrid three-dimensional gas chromatography applied to hop samples | Oxygenated sesquiterpenes in hop and improvement in the separation of those compounds | Yan et al., 2018 [40] |
Four experimental hops from Tasmania and 4 commercial hops: Cascade, Galaxy, Helga, and Superpride | Extraction of the essential oils by hydro-distillation with the use of 50 g of dried hops into a Clevenger apparatus | GC×GC–QTOFMS, LMCS modulator | 1D column: Mega-Wax MS (60 m × 0.25 mm I.D. × 0.25 µm df) 2D column: BPX5 (2 m × 0.1 mm I.D. × 0.1 µm df) | Use of GC×GC–QTOFMS for the comprehensive study of the genotypes present in new hops | 210–306 unique compounds were detected and 99 identified | Yan et al., 2018 [34] |
78 samples of leaf, wild cones, and hop pellets | Samples were immersed in liquid N2, ground into powder, nonvolatiles removed by SAFE, and preconcentration of the solution | GC×GC–TOFMS, liquid nitrogen-cooled dual-stage quad-jet thermal modulator | 1D column: DB-FFAP (30 m × 0.25 mm I.D. × 0.25 µm df) 2D column: DB-5 (2.0 m × 0.15 mm I.D. × 0.30 µm df) | Development of an analytical method for the determination of 4MSP in hop and hop products | 4MSP | Reglitz and Steinhaus, 2017 [41] |
Dry hop cones | Hydro-distillation of the cones into essential oil and injection of the diluted solution | 2GC×2GC–FID, dual-stage thermal modulator | First parallel setting 1D column: BPX5 (60 m × 0.25 mm I.D. × 0.25 µm df) 2D column: BP10 (1.2 m × 0.25 mm I.D. × 0.25 µm df) Second parallel setting 1D column: SolGel-Wax (60 m × 0.25 mm I.D. × 0.25 µm df) 2D column: SolGel-Wax (1.2 m × 0.25 mm I.D. × 0.25 µm df) | A new system of parallel comprehensive two-dimensional gas chromatography with the application of hop | - | Yan et al., 2017 [36] |
Hop cultivars from four farms in the Saaz region, collected between 2011 and 2014 | SPE (C18 500 mg bonded silica sorbent) of hop solutions | GC×GC–TOFMS, quad-jet dual-stage cryo-modulator using liquid nitrogen | 1D column: DB-WAX (60 m × 0.25 mm I.D. × 0.25 µm df) 2D column: DB-5ms (1.6 m × 0.18 mm I.D. × 0.18 µm df) | Study of the time of harvest and pruning date on aroma characteristics of hop teas | 63 compounds were identified and 33 compounds quantified | Inui et al., 2016 [42] |
Hallertauer Mittelfrüh, Saazer, Tradition, Perle, and Cascade | Extraction by the mixture of 350 mL of beer and 300 g of CH2Cl2, separation of the organic phase, and preconcentration | GC×GC–TOFMS, quad-jet dual-stage cryo-modulator using liquid nitrogen | 1D column: Rtx-1 (30 m × 0.25 mm I.D. × 0.25 µm df) 2D column: InertCap 17 (1.6 m × 0.10 mm I.D. × 0.1 µm df) | Determination of the relationship between key hop-derived compounds and sensorial properties | 67 compounds identified | Inui et al., 2013 [24] |
American-style lager beer with the addition of light-stable hops | 2 cm, 85 µm Car/PDMS SPME fibre for the GC×GC–MS–olfactometry and a 10 mm × 0.5 mm PDMS stir bar (SBSE) for TOFMS | GC×GC–MS–olfactometry, GC×GC–TOFMS, dual-jet thermo modulator | 1D column: DB-5 (10 m × 0.18 mm I.D. × 0.18 µm df) 2D column: Rxi-17ms (1.0 m × 0.15 mm I.D. × 0.30 µm df) | Study of the flavour changes in beer by the process of oxidation by GC×GC and olfactometry | 7 key olfactory compounds | Lusk et al., 2012 [43] |
Hop essential oil from the types Target and Cascade | Extraction of hop pellets using liquid CO2 and isolation of the essential oil by distillation performed with high vacuum | GC×GC–FID, GC×GC–TOFMS, LMCS modulator | FID 1D column: BPX5 (30 m × 0.25 mm I.D. × 0.25 µm df) 2D column: BP20 (1.1 m × 0.1 mm I.D. × 0.1 µm df) TOFMS 1D column: BPX5 (30 m × 0.25 mm I.D. × 0.25 µm df) 2D column: BP20 (0.8 m × 0.1 mm I.D. × 0.1 µm df) | Development of a methodology for the identification of compounds with odorant impact | Monoterpene and sesquiterpene alcohols from the spicy fraction and 8 peaks were resolved in a heart-cut of 18s | Eyres, Marriott, and Dufour, 2007 [44] |
Hops Target, Saaz, Hallertauer, Hersbrucker, and Cascade | Extraction of hop pellets using liquid CO2 and isolation of the essential oil by distillation performed with high vacuum | GC×GC–FID and GC×GC–TOFMS, LMCS modulator | FID 1D column: BPX5 (30 m × 0.25 mm I.D. × 0.25 µm df) 2D column: BP20 (1.1 m × 0.1 mm I.D. × 0.1 µm df) TOFMS 1D column: BPX5 (30 m × 0.25 mm I.D. × 0.25 µm df) 2D column: BP20 (0.8 m × 0.1 mm I.D. × 0.1 µm df) | Identification of odorants present in the spice fraction of hop essential oils by GC×GC–FID, GC×GC–TOFMS, GC–O, and heart-cut MDGC–O | 119 odour-active regions and some compounds identified (14-hydroxy-β-caryophyllene, geraniol, linalool, β-ionone, and eugenol) in one region | Eyres, Marriott, and Dufour, 2007 [38] |
Hop essential oil from Target hops | Molecular-distilled, liquid CO2 extraction of oil fraction | GC×GC–TOFMS, thermal modulator with cryogenic trapping | 1D column: DB-5 (10 m × 0.18 mm I.D. × 0.18 µm df) 2D column: DB17 (1.9 m × 0.1 mm I.D. × 0.1 µm df) | Use of GC×GC–TOFMS to separate and identify compounds in hop essential oils | More than 1000 peaks and 119 compounds identified | Roberts, Dufour, and Lewis, 2004 [45] |
Hop essential oil | - | GC×GC–FID, LMCS modulator | 1D column: BPX5 (30 m × 0.25 mm I.D. × 0.25 µm df) 2D column: BP20 (0.8 m × 0.1 mm I.D. × 0.1 µm df) | Determination of compounds in hop essential oil by GC×GC | - | Dufour et al., 2003 [35] |
Samples | No. of Peaks of GC–MS | No. of Peaks of GC×GC–MS | ||
---|---|---|---|---|
Integrated | Identified | Integrated | Identified | |
CASC | 184 | 45 | 258 | 67 |
ENIG | 151 | 51 | 413 | 71 |
ZAPP | 149 | 51 | 472 | 81 |
N. | 1tR (min) | 2tR (s) | Compound * | Class a | CAS | Formula | Lit. RI b | Exp. RI c | Relative GC×GC–MS TIC Area (%) | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AZAC | CASC | ENIG | LORA | ZAPP | |||||||||
1 | 8.9 | 1.28 | Hexanal | Ald | 66-25-1 | C6H12O | 800 ± 2 | 800 | 0.005 | 0.015 | ND | 0.009 | 0.002 |
2 | 10.9 | 0.90 | Propyl isobutyrate | Est | 644-49-5 | C7H14O2 | 842 ± 6 | 848 | ND | ND | 0.005 | ND | 0.002 |
3 | 11.4 | 0.99 | Isobutyl propionate | Est | 540-42-1 | C7H14O2 | 866 ± 2 | 859 | ND | ND | ND | ND | 0.011 |
4 | 11.7 | 1.21 | Ethylbenzene | Hyd | 100-41-4 | C8H10 | 855 ± 10 | 867 | ND | ND | ND | 0.004 | ND |
5 | 11.9 | 1.16 | 2-Methylbutyl acetate | Est | 624-41-9 | C7H14O2 | 880 ± 3 | 871 | ND | ND | 0.007 | ND | 0.046 |
6 | 13.7 | 0.93 | Isobutyl isobutyrate | Est | 97-85-8 | C8H16O2 | 910 ± 4 | 912 | 0.025 | 0.032 | 0.352 | ND | 0.695 |
7 | 14.1 | 1.36 | Methyl hexanoate | Est | 106-70-7 | C7H14O2 | 925 ± 3 | 920 | 0.023 | 0.019 | ND | 0.008 | 0.030 |
8 | 14.2 | 0.71 | (E)-1,3-Nonadiene | Hyd | 56700-77-7 | C9H16 | 924 ± 0 | 922 | ND | ND | 0.015 | ND | ND |
9 | 14.4 | 0.67 | α-Thujene | MHyd | 2867-05-2 | C10H16 | 929 ± 2 | 927 | 0.023 | 0.044 | 0.006 | 0.037 | ND |
10 | 14.7 | 0.67 | α-Pinene d | MHyd | 80-56-8 | C10H16 | 937 ± 3 | 933 | 0.037 | 0.147 | 0.106 | 0.017 | 0.267 |
11 | 14.8 | 1.93 | Methyl 4-methyl-3-pentenoate | Est | 2258-65-3 | C7H14O2 | NA | 935 | 0.023 | ND | ND | ND | ND |
12 | 15.4 | 1.01 | Isobutyl butyrate | Est | 539-90-2 | C8H16O2 | 955 ± 6 | 947 | ND | ND | 0.004 | 0.002 | 0.012 |
13 | 15.4 | 4.09 | 4,4-Dimethyl-2-buten-4-olide | Oth | 20019-64-1 | C6H8O2 | 952 ± 5 | 947 | ND | 0.086 | ND | ND | ND |
14 | 15.6 | 0.72 | Camphene d | MHyd | 79-92-5 | C10H16 | 952 ± 2 | 951 | ND | 0.060 | 0.003 | 0.014 | ND |
15 | 16.1 | 5.67 | Benzaldehyde | Ald | 100-52-7 | C7H6O | 962 ± 3 | 961 | ND | ND | ND | 0.003 | ND |
16 | 16.5 | 1.14 | 2-Methylbutyl propionate | Est | 2438-20-2 | C8H16O2 | 970 ± 4 | 969 | 0.010 | ND | 0.081 | 0.051 | 0.706 |
17 | 16.7 | 0.84 | β-Thujene | MHyd | 28634-89-1 | C10H16 | 966 ± 12 | 973 | ND | 0.006 | ND | ND | ND |
18 | 17.0 | 0.76 | β-Pinene d | MHyd | 127-91-4 | C10H16 | 979 ± 2 | 980 | 0.041 | 0.238 | 0.085 | 0.057 | 1.154 |
19 | 17.2 | 2.05 | 6-Methyl-5-heptene-2-one | Ket | 110-93-0 | C8H14O | 986 ± 2 | 984 | 0.027 | 0.206 | ND | 0.077 | 0.022 |
20 | 17.2 | 1.25 | Methyl isoheptanoate | Est | 2177-83-5 | C8H16O2 | 993 ± NA | 984 | ND | ND | ND | ND | 0.035 |
21 | 17.4 | 1.64 | 2-Octanone | Ket | 111-13-7 | C8H16O | 990 ± 7 | 988 | 0.030 | ND | ND | ND | ND |
22 | 17.4 | 0.98 | β-Myrcene d | MHyd | 123-35-3 | C10H16 | 991 ± 2 | 988 | 0.907 | 5.931 | 37.817 | 2.632 | 17.065 |
23 | 17.5 | 0.57 | 2,2,4,6,6-Pentamethylheptane | Hyd | 13475-82-6 | C12H26 | 991 ± 4 | 990 | ND | 0.045 | ND | ND | ND |
24 | 17.8 | 1.18 | Ethyl hexanoate d | Est | 123-66-0 | C8H16O2 | 1000 ± 2 | 996 | ND | ND | ND | 0.003 | ND |
25 | 18.1 | 0.97 | Isobutyl 2-methylbutanoate | Est | 2445-67-2 | C9H18O2 | 1004 ± 4 | 1002 | 0.010 | 0.003 | 0.060 | 0.005 | 0.031 |
26 | 18.3 | 1.06 | Isobutyl isovalerate | Est | 589-59-3 | C9H18O2 | 1005 ± 2 | 1006 | ND | 0.020 | 0.012 | 0.003 | 0.046 |
27 | 18.3 | 0.85 | α-Phellandrene | MHyd | 99-83-2 | C10H16 | 1005 ± 2 | 1006 | ND | ND | 0.016 | ND | ND |
28 | 18.5 | 0.94 | Isoamyl isobutanoate | Est | 2050-01-3 | C9H18O2 | 1015 ± 3 | 1010 | ND | ND | 0.222 | 0.503 | ND |
29 | 18.7 | 1.01 | 2-Methylbutyl isobutyrate | Est | 2445-69-4 | C9H18O2 | 1016 ± 2 | 1014 | 2.184 | 0.599 | 2.185 | 0.738 | 7.530 |
30 | 19.1 | 1.40 | Methyl heptanoate | Est | 106-73-0 | C8H16O2 | 1023 ± 3 | 1022 | 0.127 | 0.061 | 0.024 | ND | 0.122 |
31 | 19.2 | 2.43 | o-Cymene | MHyd | 527-84-4 | C10H14 | 1022 ± 2 | 1023 | 0.007 | ND | ND | 0.012 | 0.014 |
32 | 19.2 | 1.64 | Methyl 3-methyl-3-hexenoate | Est | 50652-84-1 | C8H14O2 | NA | 1025 | 0.221 | ND | ND | ND | ND |
33 | 19.3 | 1.25 | p-Cymene | MHyd | 99-87-6 | C10H14 | 1025 ± 2 | 1025 | 0.103 | 0.284 | 0.008 | 0.146 | 0.156 |
34 | 19.5 | 0.98 | D-Limonene d | MHyd | 5989-27-5 | C10H16 | 1030 ± 2 | 1029 | 0.229 | 1.103 | 0.304 | 0.497 | 0.699 |
35 | 19.7 | 0.98 | β-Ocimene | MHyd | 13877-91-3 | C10H16 | 1037 ± 7 | 1033 | ND | ND | 0.078 | ND | 0.026 |
36 | 20.3 | 1.05 | trans-β-Ocimene | MHyd | 3779-61-1 | C10H16 | 1049 ± 2 | 1045 | ND | ND | 2.806 | ND | 0.394 |
37 | 20.4 | 1.01 | Amyl isobutyrate | Est | 2445-72-9 | C9H18O2 | 1056 ± 1 | 1047 | ND | ND | ND | 0.007 | ND |
38 | 20.5 | 1.31 | Prenyl isobutyrate | Est | 76649-23-5 | C9H16O2 | 1052 ± 1 | 1049 | ND | ND | ND | 0.007 | 0.871 |
39 | 20.7 | 1.25 | (E)-2-Methylbut-2-en-1-yl isobutyrate | Est | 95654-17-4 | C9H16O2 | 1059 ± NA | 1053 | ND | ND | 0.041 | ND | 0.048 |
40 | 20.7 | 0.61 | 9-Methyl-1-decene | Hyd | 61142-78-7 | C11H22 | 1055 ± NA | 1053 | ND | ND | ND | ND | 0.011 |
41 | 20.8 | 1.06 | 2-Methylbutyl butanoate | Est | 51115-64-1 | C9H18O2 | 1056 ± 3 | 1055 | ND | ND | ND | ND | 0.011 |
42 | 20.9 | 0.97 | γ-Terpinene | MHyd | 99-85-4 | C10H16 | 1060 ± 3 | 1057 | ND | ND | 0.015 | ND | 0.023 |
43 | 20.9 | 1.14 | Methyl 2-methylheptanoate | Est | 51209-78-0 | C9H18O2 | 1067 ± NA | 1057 | ND | ND | ND | ND | 0.010 |
44 | 21.7 | 2.15 | cis-Linalool oxide | OM | 5989-33-3 | C10H18O2 | 1074 ± 4 | 1073 | ND | 0.022 | ND | 0.006 | ND |
45 | 22.3 | 1.00 | Isoterpinolene | MHyd | 586-63-0 | C10H16 | 1086 ± 3 | 1084 | ND | ND | 0.015 | ND | 0.028 |
46 | 22.3 | 1.29 | Methyl 6-methyl heptanoate | Est | 2519-37-1 | C9H18O2 | NA | 1084 | ND | ND | ND | 0.020 | 1.968 |
47 | 22.5 | 2.22 | trans-Linalool oxide | OM | 34995-77-2 | C10H18O2 | 1086 ± 5 | 1088 | ND | 0.036 | ND | 0.010 | ND |
48 | 22.6 | 1.63 | 2-Nonanone | Ket | 821-55-6 | C9H18O | 1092 ± 2 | 1090 | 0.508 | 0.022 | ND | 0.028 | 0.085 |
49 | 22.9 | 1.24 | Ethyl heptanoate | Est | 106-30-9 | C9H18O2 | 1097 ± 3 | 1096 | 0.012 | ND | ND | 0.016 | ND |
50 | 23.0 | 2.54 | 2-Nonanol | Alc | 628-99-9 | C9H20O | 1102 ± 4 | 1098 | ND | ND | 0.029 | 0.125 | ND |
51 | 23.0 | 4.19 | Isomyrcenol | OM | 6994-89-4 | C10H16O | NA | 1098 | ND | 0.062 | ND | ND | ND |
52 | 23.0 | 1.71 | Perillene | MHyd | 539-52-6 | C10H14O | 1101 ± 2 | 1098 | 0.185 | 1.432 | 0.035 | 0.309 | 0.640 |
53 | 23.1 | 1.43 | Hop ether | Oth | 344294-72-0 | C10H16O | NA | 1100 | 0.063 | 0.199 | ND | 0.089 | 0.232 |
54 | 23.1 | 2.91 | Linalool d | OM | 78-70-6 | C10H18O | 1099 ± 2 | 1100 | 0.635 | 1.376 | 0.141 | 1.952 | 0.979 |
55 | 23.2 | 1.05 | 2-Methylbutyl 2-methylbutanoate | Est | 2445-78-5 | C10H20O2 | 1105 ± 2 | 1102 | 0.077 | 0.052 | 0.169 | 0.068 | 0.140 |
56 | 23.2 | 1.18 | Hexyl propanoate | Est | 2445-76-3 | C9H18O2 | 1108 ± 6 | 1102 | ND | ND | ND | 0.017 | ND |
57 | 23.5 | 1.07 | 2-Methylbutyl isovalerate | Est | 2445-77-4 | C10H20O2 | 1107 ± 2 | 1108 | 0.214 | 0.197 | 0.086 | 0.128 | 0.255 |
58 | 24.1 | 2.95 | Fenchol | OM | 1632-73-1 | C10H18O | 1113 ± 4 | 1120 | ND | ND | ND | 0.003 | ND |
59 | 24.2 | 1.38 | Methyl octanoate | Est | 111-11-5 | C9H18O2 | 1126 ± 2 | 1122 | 0.067 | 0.034 | 0.043 | 0.057 | 0.142 |
60 | 24.4 | 1.21 | Neo-allo-ocimene | MHyd | 7216-56-0 | C10H16 | 1131 ± 0 | 1126 | ND | ND | 0.005 | ND | ND |
61 | 25.0 | 1.28 | (4E,6E)-Allocimene | MHyd | 3016-19-1 | C10H16 | 1144 ± 1 | 1138 | ND | ND | 0.020 | ND | ND |
62 | 25.3 | 1.38 | 3-Methylbut-2-en-1-yl pivalate | Est | 211429-71-9 | C10H18O2 | 1141 ± NA | 1144 | ND | ND | ND | ND | 0.010 |
63 | 25.4 | 1.14 | Hexyl isobutyrate | Est | 2349-07-7 | C10H20O2 | 1150 ± 2 | 1146 | 0.081 | 0.001 | 0.095 | 0.156 | ND |
64 | 27.5 | 1.34 | Methyl 6-methyloctanoate | Est | 5129-62-4 | C10H20O2 | 1193 ± 5 | 1188 | ND | ND | ND | ND | 0.749 |
65 | 27.6 | 1.64 | 2-Decanone | Ket | 693-54-9 | C10H20O | 1193 ± 2 | 1190 | 0.489 | 0.078 | ND | 0.032 | 0.182 |
66 | 27.8 | 1.26 | Ethyl octanoate | Est | 106-32-1 | C10H20O2 | 1196 ± 3 | 1194 | 0.007 | ND | ND | 0.026 | ND |
67 | 27.8 | 3.27 | α-Terpineol | OM | 98-55-5 | C10H18O | 1189 ± 2 | 1194 | ND | ND | ND | 0.012 | ND |
68 | 28.0 | 2.29 | 2-Decanol | Alc | 1120-06-5 | C10H22O | 1200 ± 7 | 1198 | ND | ND | 0.018 | 0.115 | ND |
69 | 28.0 | 0.60 | Dodecane | Hyd | 112-40-3 | C12H26 | 1200 ± NA | 1198 | ND | ND | ND | 0.012 | ND |
70 | 28.1 | 1.20 | Heptyl propanoate | Est | 2216-81-1 | C10H20O2 | 1201 ± NA | 1200 | ND | ND | 0.003 | 0.020 | ND |
71 | 29.0 | 1.36 | Methyl nonanoate | Est | 1731-84-6 | C10H20O2 | 1225 ± 2 | 1219 | ND | ND | 0.012 | 0.015 | 0.018 |
72 | 30.1 | 1.08 | HeptyI isobutyrate | Est | 2349-13-5 | C11H22O2 | 1247 ± 1 | 1243 | ND | ND | 0.050 | 0.233 | ND |
73 | 30.4 | 4.78 | Geraniol d | OM | 106-24-1 | C10H18O | 1255 ± 3 | 1249 | 0.034 | 0.893 | 0.027 | 0.054 | 0.066 |
74 | 30.5 | 1.19 | 2-Methylbutyl hexanoate | Est | 2601-13-0 | C11H22O2 | 1247 ± 1 | 1251 | 0.012 | 0.017 | 0.017 | ND | 0.011 |
75 | 31.2 | 2.76 | α-Citral | OM | 141-27-5 | C10H16O | 1270 ± 2 | 1266 | ND | ND | ND | 0.010 | ND |
76 | 31.7 | 1.89 | (Z)-Undec-6-en-2-one | Ket | 107853-70-3 | C11H20O | 1274 ± NA | 1277 | 0.271 | 0.148 | 0.028 | 0.089 | 0.122 |
77 | 31.7 | 3.28 | Perillaldehyde | Ald | 2111-75-3 | C10H14O | 1272 ± 4 | 1277 | ND | ND | ND | 0.011 | ND |
78 | 32.0 | 1.34 | Methyl 8-methylnonanoate | Est | 5129-54-4 | C11H22O2 | 1277 ± NA | 1283 | ND | ND | 0.007 | ND | 0.350 |
79 | 32.4 | 1.64 | 2-Undecanone | Ket | 112-12-9 | C11H22O | 1294 ± 2 | 1291 | 1.935 | 0.669 | 0.293 | 1.244 | 0.731 |
80 | 32.8 | 2.21 | 2-Undecanol | Alc | 1653-30-1 | C11H24O | 1307 ± 4 | 1300 | ND | ND | 0.049 | 0.460 | ND |
81 | 32.8 | 1.24 | n-Octyl propionate | Est | 142-60-9 | C11H22O2 | 1302 ± NA | 1300 | ND | ND | ND | 0.048 | ND |
82 | 33.1 | 1.65 | Methyl (Z)-4-decenoate | Est | 7367-83-1 | C11H20O2 | NA | 1307 | 0.108 | 0.037 | 0.471 | 0.956 | 2.256 |
83 | 33.7 | 1.40 | Methyl decanoate | Est | 110-42-9 | C11H22O2 | 1325 ± 1 | 1320 | ND | ND | 0.014 | ND | 0.034 |
84 | 33.7 | 2.00 | trans-Geranic acid methyl ester | OM | 1189-09-9 | C11H18O2 | 1324 ± 2 | 1320 | 0.251 | 0.438 | 0.403 | 1.785 | 0.262 |
85 | 34.7 | 1.14 | n-Octyl isobutyrate | Est | 109-15-9 | C12H24O2 | 1346 ± 3 | 1342 | 0.022 | ND | 0.052 | 0.537 | ND |
86 | 35.0 | 1.18 | Isopentyl heptanoate | Est | 109-25-1 | C12H24O2 | 1334 ± 1 | 1349 | 0.013 | ND | 0.015 | ND | ND |
87 | 35.1 | 0.94 | α-Cubebene | SHyd | 17699-14-8 | C15H24 | 1351 ± 2 | 1351 | 0.024 | 0.014 | ND | 0.009 | 0.060 |
88 | 35.3 | 1.05 | Isobutyric acid 1-methyl-octyl ester | Est | 69121-76-2 | C13H26O2 | 1365 ± NA | 1356 | 0.012 | ND | ND | 0.017 | ND |
89 | 35.3 | 1.58 | 2-Methyl-1-undecanal | Ald | 110-41-8 | C12H24O | 1365 ± 2 | 1356 | 0.024 | 0.022 | ND | ND | 0.063 |
90 | 36.1 | 1.01 | Ylangene | SHyd | 14912-44-8 | C15H24 | 1372 ± 2 | 1373 | 0.680 | 0.377 | 0.141 | 0.398 | 0.218 |
91 | 36.2 | 1.94 | Geranyl acetate d | OM | 105-87-3 | C12H20O2 | 1382 ± 3 | 1376 | 0.016 | 0.086 | ND | 0.016 | 0.233 |
92 | 36.3 | 1.48 | Ethyl cis-4-decenoate | Est | 7367-84-2 | C12H22O2 | 1361 ± 2 | 1378 | 0.025 | ND | ND | 0.065 | ND |
93 | 36.4 | 1.06 | Copaene | SHyd | 3856-25-5 | C15H24 | 1376 ± 2 | 1380 | 2.623 | 1.643 | 0.567 | 1.595 | 0.739 |
94 | 36.7 | 1.02 | β-Bourbonene | SHyd | 5208-59-3 | C15H24 | 1384 ± 3 | 1387 | ND | ND | ND | 0.027 | ND |
95 | 36.8 | 1.08 | α-Bourbonene | SHyd | 5208-58-2 | C15H24 | 1384 ± 8 | 1389 | ND | 0.011 | ND | ND | ND |
96 | 37.0 | 1.67 | 2-Dodecanone | Ket | 6175-49-1 | C12H24O | 1396 ± 9 | 1393 | 0.200 | 0.056 | 0.011 | 0.148 | 0.159 |
97 | 37.2 | 1.06 | (+)-Sativene | SHyd | 3650-28-0 | C15H24 | 1396 ± 0 | 1398 | 0.047 | 0.022 | 0.005 | 0.025 | ND |
98 | 37.2 | 0.72 | Tetradecane | Hyd | 629-59-4 | C14H30 | 1400 ± NA | 1398 | ND | ND | ND | 0.011 | ND |
99 | 37.7 | 0.97 | 1,3-Dimethyl-5-n-propyl-adamantane | Hyd | 19385-87-6 | C15H26 | NA | 1409 | 0.029 | ND | ND | 0.015 | 0.008 |
100 | 37.7 | 1.14 | Isocaryophyllene | SHyd | 118-65-0 | C15H24 | 1406 ± 3 | 1410 | 0.029 | 0.036 | ND | 0.021 | 0.059 |
101 | 37.8 | 1.64 | Methyl undecenoate | Est | 111-81-9 | C12H22O2 | 1427 ± 2 | 1412 | ND | ND | ND | ND | 0.011 |
102 | 38.0 | 1.06 | cis-α-Bergamotene | SHyd | 18252-46-5 | C15H24 | 1415 ± 3 | 1417 | ND | 0.040 | ND | ND | ND |
103 | 38.4 | 1.32 | Caryophyllene d | SHyd | 87-44-5 | C15H24 | 1419 ± 3 | 1426 | 21.711 | 13.191 | 8.484 | 15.606 | 20.439 |
104 | 38.8 | 1.14 | β-Copaene | SHyd | 13744-15-5 | C15H24 | 1432 ± 3 | 1436 | 0.417 | ND | 0.022 | 0.368 | 0.443 |
105 | 38.8 | 1.12 | α-Bergamotene | SHyd | 17699-05-7 | C15H24 | 1435 ± 4 | 1436 | ND | 2.169 | 0.929 | ND | 0.007 |
106 | 39.2 | 1.21 | 2-Methylbutyl octanoate | Est | 67121-39-5 | C13H26O2 | 1449 ± 2 | 1445 | ND | ND | 0.020 | 0.009 | 0.007 |
107 | 39.5 | 1.28 | (E)-β-Farnesene | SHyd | 28973-97-9 | C15H24 | 1457 ± 2 | 1452 | ND | 1.091 | 9.024 | ND | ND |
108 | 39.9 | 1.50 | Humulene d | SHyd | 6753-98-6 | C15H24 | 1454 ± 3 | 1462 | 41.362 | 36.442 | 16.036 | 54.069 | 10.053 |
109 | 40.0 | 1.73 | Geranyl propionate | OM | 105-90-8 | C13H22O2 | 1475 ± 3 | 1464 | ND | ND | ND | ND | 0.282 |
110 | 40.5 | 1.32 | 7-epi-α-Cadinene | SHyd | 483-75-0 | C15H24 | 1485 ± 10 | 1476 | ND | ND | ND | 2.104 | ND |
111 | 40.5 | 1.33 | γ-Selinene | SHyd | 515-17-3 | C15H24 | 1479 ± 6 | 1476 | ND | ND | 1.369 | ND | ND |
112 | 40.6 | 1.36 | γ-Muurolene | SHyd | 30021-74-0 | C15H24 | 1477 ± 3 | 1479 | 4.510 | 3.129 | ND | ND | 2.218 |
113 | 40.8 | 1.56 | α-Curcumene | SHyd | 644-30-4 | C15H22 | 1483 ± 3 | 1483 | ND | 0.090 | ND | ND | ND |
114 | 41.0 | 1.24 | (Z,E)-α-Farnesene | SHyd | 26560-14-5 | C15H24 | 1491 ± 3 | 1488 | ND | 0.040 | 0.045 | ND | ND |
115 | 41.2 | 1.35 | Eremophilene | SHyd | 10219-75-7 | C15H24 | 1499 ± 8 | 1493 | 0.086 | ND | ND | ND | ND |
116 | 41.2 | 1.68 | 2-Tridecanone | Ket | 593-08-8 | C13H26O | 1497 ± 4 | 1493 | 0.452 | 0.146 | 0.022 | 0.415 | 0.066 |
117 | 41.3 | 1.48 | β-Eudesmene | SHyd | 17066-67-0 | C15H24 | 1486 ± 3 | 1495 | 1.733 | 3.842 | 5.830 | 1.045 | 2.432 |
118 | 41.5 | 1.37 | α-Muurolene | SHyd | 31983-22-9 | C15H24 | 1500 ± NA | 1500 | 2.457 | ND | ND | 1.042 | 0.701 |
119 | 41.5 | 2.18 | Methyl 3,6-dodecadienoate | Est | 16106-01-7 | C13H22O2 | NA | 1500 | ND | ND | 0.338 | ND | 0.548 |
120 | 41.6 | 1.45 | α-Selinene | SHyd | 473-13-2 | C15H24 | 1494 ± 3 | 1502 | ND | 3.506 | 0.405 | ND | 2.090 |
121 | 41.7 | 1.56 | Geranyl isobutyrate | OM | 2345-26-8 | C14H24O2 | 1514 ± 2 | 1505 | 0.150 | 0.133 | ND | 0.085 | 3.761 |
122 | 41.9 | 1.29 | β-Bisabolene | SHyd | 495-61-4 | C15H24 | 1509 ± 3 | 1510 | ND | 0.111 | 0.109 | ND | ND |
123 | 42.2 | 1.50 | γ-Cadinene | SHyd | 39029-41-9 | C15H24 | 1513 ± 2 | 1517 | 2.959 | 2.108 | 0.481 | 1.126 | 1.187 |
124 | 42.4 | 1.42 | δ-Cadinene | SHyd | 483-76-1 | C15H24 | 1524 ± 2 | 1522 | 3.685 | 1.261 | 0.937 | 1.974 | 1.463 |
125 | 42.5 | 1.70 | Calamenene | SHyd | 483-77-2 | C15H22 | 1523 ± 5 | 1525 | 0.863 | 0.572 | 0.045 | 0.458 | 0.314 |
126 | 42.6 | 1.36 | Zonarene | SHyd | 41929-05-9 | C15H24 | 1527 ± NA | 1527 | 0.256 | 0.059 | 0.128 | 0.094 | 0.055 |
127 | 42.9 | 1.39 | Cadine-1,4-diene | SHyd | 16728-99-7 | C15H24 | 1533 ± 4 | 1535 | ND | ND | 0.149 | ND | ND |
128 | 43.1 | 1.47 | α-Cadinene | SHyd | 24406-05-1 | C15H24 | 1538 ± 1 | 1540 | ND | 0.205 | ND | 0.225 | 0.193 |
129 | 43.2 | 1.45 | (4aR,8aS)-4a-Methyl-1-methylene-7-(propan-2-ylidene)decahydronaphthalene | SHyd | 58893-88-2 | C15H24 | 1544 ± NA | 1542 | 0.970 | ND | ND | ND | ND |
130 | 43.3 | 1.97 | α-Calacorene | SHyd | 21391-99-1 | C15H20 | 1542 ± 3 | 1545 | 0.151 | 0.079 | 0.011 | 0.065 | 0.058 |
131 | 43.4 | 1.45 | Selina-3,7(11)-diene | SHyd | 6813-21-4 | C15H24 | 1542 ± 3 | 1547 | 0.345 | ND | ND | ND | ND |
132 | 44.2 | 1.87 | (Z)-Tetradec-6-en-2-one | Oth | NA | C14H26O | 1570 ± NA | 1567 | ND | ND | ND | 0.031 | 0.047 |
133 | 45.1 | 2.19 | Caryophyllene oxide d | OS | 1139-30-6 | C15H24O | 1581 ± 2 | 1590 | 0.593 | 0.431 | ND | 0.291 | 1.427 |
134 | 45.2 | 1.63 | 2-Tetradecanone | Ket | 2345-27-9 | C14H28O | 1597 ± 1 | 1593 | ND | ND | ND | 0.017 | ND |
135 | 45.7 | 2.28 | Humulene epoxide I | OS | 19888-33-6 | C15H24O | 1604 ± 3 | 1605 | 0.120 | 0.245 | ND | 0.127 | 0.040 |
136 | 46.1 | 2.40 | Humulene epoxide II | OS | 19888-34-7 | C15H24O | 1606 ± 2 | 1616 | 1.347 | 1.867 | ND | 1.254 | 0.549 |
137 | 47.6 | 2.16 | (E,Z)-5,7-Dodecadien-1-ol acetate | Est | 78350-11-5 | C14H24O2 | 1653 ± 0 | 1657 | ND | ND | ND | 0.068 | ND |
Total | 96.889 | 87.617 | 91.454 | 96.282 | 89.225 |
Sample | Compounds (Peak Number) |
---|---|
AZAC | methyl 4-methyl-3-pentenoate (11), 2-octanone (21), methyl 3-methyl-3-hexenoate (32), eremophilene (115), (4aR,8aS)-4a-methyl-1-methylene-7-(propan-2-ylidene)decahydronaphthalene (129) *, and selina-3,7(11)-diene (131); |
CASC | 4,4-dimethyl-2-buten-4-olide (13), β-thujene (17), 2,2,4,6,6-pentamethylheptane (23), isomyrcenol (51), α-bourbonene (95), cis-α-bergamotene (102), and α-curcumene (113); |
ENIG | (E)-1,3-nonadiene (8), α-phellandrene (27), neo-allo-ocimene (60), (4E,6E)-allocimene (61), γ-selinene (111), and cadine-1,4-diene (127); |
LORA | amyl isobutyrate (37), hexyl propanoate (56), fenchol (58), α-terpineol (67), dodecane (69), α-citral (75), perillaldehyde (77), n-octyl propionate (81), β-bourbonene (94), tetradecane (98), 7-epi-α-cadinene (110), 2-tetradecanone (134), and (E,Z)-5,7-dodecadien-1-ol acetate (137); |
ZAPP | isobutyl propionate (3), methyl isoheptanoate (20), 9-methyl-1-decene (40), 2-methylbutyl butanoate (41), methyl 2-methylheptanoate (43), 3-methylbut-2-en-1-yl pivalate (62), methyl 6-methyloctanoate (64), methyl undecenoate (101), and geranyl propionate (109). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Resende, G.A.P.; Amaral, M.S.S.; Botelho, B.G.; Marriott, P.J. Comprehensive Two-Dimensional Gas Chromatography–Mass Spectrometry as a Tool for the Untargeted Study of Hop and Their Metabolites. Metabolites 2024, 14, 237. https://doi.org/10.3390/metabo14040237
Resende GAP, Amaral MSS, Botelho BG, Marriott PJ. Comprehensive Two-Dimensional Gas Chromatography–Mass Spectrometry as a Tool for the Untargeted Study of Hop and Their Metabolites. Metabolites. 2024; 14(4):237. https://doi.org/10.3390/metabo14040237
Chicago/Turabian StyleResende, Glaucimar A. P., Michelle S. S. Amaral, Bruno G. Botelho, and Philip J. Marriott. 2024. "Comprehensive Two-Dimensional Gas Chromatography–Mass Spectrometry as a Tool for the Untargeted Study of Hop and Their Metabolites" Metabolites 14, no. 4: 237. https://doi.org/10.3390/metabo14040237
APA StyleResende, G. A. P., Amaral, M. S. S., Botelho, B. G., & Marriott, P. J. (2024). Comprehensive Two-Dimensional Gas Chromatography–Mass Spectrometry as a Tool for the Untargeted Study of Hop and Their Metabolites. Metabolites, 14(4), 237. https://doi.org/10.3390/metabo14040237