Advancing Personalized Medicine by Analytical Means: Selection of Three Metabolites That Allows Discrimination between Glaucoma, Diabetes, and Controls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Metabolomics
2.3. Data Compilation and Computational Analyses
3. Results
3.1. Linear Discrimination Analysis (LDA) Considering All Metabolites
3.1.1. Descriptive Statistics: Boxplots
3.1.2. Correlation Analysis
3.2. Linear Discrimination Analysis (LDA) Considering the Most Discriminative Metabolites and Selecting an Optimal Non-Linear Combination
3.2.1. Descriptive Statistics: Boxplots
3.2.2. Correlation Analysis
3.2.3. Non-Linear Method to Achieve 100% Accuracy
3.2.4. 2D Map Space Reflecting Position of Controls, Glaucoma Patients, and Type 2 Diabetes Patients
C3*PC aa C42:6 + 30.440 × C32*Ac-Orn + 27.188 × C3*Ac-Orn2.
C3*PC aa C42:6 + 45.883054 × C32*Ac-Orn + 16.104838 × C3*Ac-Orn2.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Wang, J.; Pan, D.; Wang, X.; Xu, Y.; Yan, J.; Wang, L.; Yang, X.; Yang, M.; Liu, G. Applications of multi-omics analysis in human diseases. MedComm 2023, 4, e315. [Google Scholar] [CrossRef] [PubMed]
- Franco, R.; Serrano-Marín, J. Can chronic therapeutic drug use by the elderly affect Alzheimers disease risk and rate of progression? Explor. Neuroprot. Ther. 2023, 3, 8–23. [Google Scholar] [CrossRef]
- Tian, Q.; Shardell, M.D.; Kuo, P.L.; Tanaka, T.; Simonsick, E.M.; Moaddel, R.; Resnick, S.M.; Ferrucci, L. Plasma metabolomic signatures of dual decline in memory and gait in older adults. GeroScience 2023, 45, 2659–2667. [Google Scholar] [CrossRef]
- Xu, H.; Huang, L.; Jin, E.; Liang, Z.; Zhao, M. Plasma metabolomic profiling of central serous chorioretinopathy. Exp. Eye Res. 2021, 203, 108401. [Google Scholar] [CrossRef] [PubMed]
- Lillo, A.; Marin, S.; Serrano-Marín, J.; Bernal-Casas, D.; Binetti, N.; Navarro, G.; Cascante, M.; Sánchez-Navés, J.; Franco, R. Biogenic Amine Levels Markedly Increase in the Aqueous Humor of Individuals with Controlled Type 2 Diabetes. Int. J. Mol. Sci. 2022, 23, 12752. [Google Scholar] [CrossRef] [PubMed]
- Di Minno, A.; Gelzo, M.; Caterino, M.; Costanzo, M.; Ruoppolo, M.; Castaldo, G. Challenges in Metabolomics-Based Tests, Biomarkers Revealed by Metabolomic Analysis, and the Promise of the Application of Metabolomics in Precision Medicine. Int. J. Mol. Sci. 2022, 23, 5213. [Google Scholar] [CrossRef] [PubMed]
- Shang, P.; Ho, A.M.C.; Tufvesson-Alm, M.; Lindberg, D.R.; Grant, C.W.; Orhan, F.; Eren, F.; Bhat, M.; Engberg, G.; Schwieler, L.; et al. Identification of cerebrospinal fluid and serum metabolomic biomarkers in first episode psychosis patients. Transl. Psychiatry 2022, 12, 229. [Google Scholar] [CrossRef]
- Buergel, T.; Steinfeldt, J.; Ruyoga, G.; Pietzner, M.; Bizzarri, D.; Vojinovic, D.; Upmeier zu Belzen, J.; Loock, L.; Kittner, P.; Christmann, L.; et al. Metabolomic profiles predict individual multidisease outcomes. Nat. Med. 2022, 28, 2309–2320. [Google Scholar] [CrossRef]
- Qiu, S.; Cai, Y.; Yao, H.; Lin, C.; Xie, Y.; Tang, S.; Zhang, A. Small molecule metabolites: Discovery of biomarkers and therapeutic targets. Signal Transduct. Target. Ther. 2023, 8, 132. [Google Scholar] [CrossRef]
- Kline, A.; Wang, H.; Li, Y.; Dennis, S.; Hutch, M.; Xu, Z.; Wang, F.; Cheng, F.; Luo, Y. Multimodal machine learning in precision health: A scoping review. NPJ Digit. Med. 2022, 5, 171. [Google Scholar] [CrossRef]
- Pammi, M.; Aghaeepour, N.; Neu, J. Multiomics, artificial intelligence, and precision medicine in perinatology. Pediatr. Res. 2023, 93, 308–315. [Google Scholar] [CrossRef] [PubMed]
- Hogan, C.A.; Rajpurkar, P.; Sowrirajan, H.; Phillips, N.A.; Le, A.T.; Wu, M.; Garamani, N.; Sahoo, M.K.; Wood, M.L.; Huang, C.H.; et al. Nasopharyngeal metabolomics and machine learning approach for the diagnosis of influenza. EBioMedicine 2021, 71, 103546. [Google Scholar] [CrossRef] [PubMed]
- Abedi, V.; Khan, A.; Chaudhary, D.; Misra, D.; Avula, V.; Mathrawala, D.; Kraus, C.; Marshall, K.A.; Chaudhary, N.; Li, X.; et al. Using artificial intelligence for improving stroke diagnosis in emergency departments: A practical framework. Ther. Adv. Neurol. Disord. 2020, 13, 1756286420938962. [Google Scholar] [CrossRef] [PubMed]
- Lillo, A.; Marin, S.; Serrano-Marín, J.; Binetti, N.; Navarro, G.; Cascante, M.; Sánchez-Navés, J.; Franco, R. Targeted Metabolomics Shows That the Level of Glutamine, Kynurenine, Acyl-Carnitines and Lysophosphatidylcholines Is Significantly Increased in the Aqueous Humor of Glaucoma Patients. Front. Med. 2022, 9, 2082. [Google Scholar] [CrossRef] [PubMed]
- Kumar, Y.; Koul, A.; Singla, R.; Ijaz, M.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda. J. Ambient Intell. Humaniz. Comput. 2023, 14, 8459–8486. [Google Scholar] [CrossRef] [PubMed]
- Bonomo, R.; Cavaletti, G.; Skene, D.J. Metabolomics markers in Neurology: Current knowledge and future perspectives for therapeutic targeting. Expert Rev. Neurother. 2020, 20, 725–738. [Google Scholar] [CrossRef] [PubMed]
- Hassan-Smith, G.; Wallace, G.R.; Douglas, M.R.; Sinclair, A.J. The role of metabolomics in neurological disease. J. Neuroimmunol. 2012, 248, 48–52. [Google Scholar] [CrossRef]
- Griffin, J.L.; Atherton, H.; Shockcor, J.; Atzori, L. Metabolomics as a tool for cardiac research. Nat. Rev. Cardiol. 2011, 8, 630–643. [Google Scholar] [CrossRef]
- McGarrah, R.W.; Crown, S.B.; Zhang, G.F.; Shah, S.H.; Newgard, C.B. Cardiovascular Metabolomics. Circ. Res. 2018, 122, 1238–1258. [Google Scholar] [CrossRef]
- Serrano-Marín, J.; Marin, S.; Bernal-Casas, D.; Lillo, A.; González-Subías, M.; Navarro, G.; Cascante, M.; Sánchez-Navés, J.; Franco, R. A metabolomics study in aqueous humor discloses altered arginine metabolism in Parkinson’s disease. Fluids Barriers CNS 2023, 20, 90. [Google Scholar] [CrossRef]
- Tang, Y.; Pan, Y.; Chen, Y.; Kong, X.; Chen, J.; Zhang, H.; Tang, G.; Wu, J.; Sun, X. Metabolomic Profiling of Aqueous Humor and Plasma in Primary Open Angle Glaucoma Patients Points Towards Novel Diagnostic and Therapeutic Strategy. Front. Pharmacol. 2021, 12, 621146. [Google Scholar] [CrossRef] [PubMed]
- Zeleznik, O.A.; Kang, J.H.; Lasky-Su, J.; Eliassen, A.H.; Frueh, L.; Clish, C.B.; Rosner, B.A.; Elze, T.; Hysi, P.; Khawaja, A.; et al. Plasma metabolite profile for primary open-angle glaucoma in three US cohorts and the UK Biobank. Nat. Commun. 2023, 14, 2860. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Faheem, S.M.; Nawaz, S.S.; Siddiqui, K. The role of metabolomics in personalized medicine for diabetes. Pers. Med. 2021, 18, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Kelleni, M.T. Mini Review Integrative Obesity and Diabetes Together towards an early global detection of type 2 diabetes using a simplified metabolomics’ test. Integr Obes. Diabetes 2015, 1, 96–97. [Google Scholar] [CrossRef]
- Reynier, P.; Leruez, S.; Procaccio, V.; Chao de la Marca, J.M.; Lenaers, G.; Bonneau, D.; Gohier, P. Metabolic Signature and Use Thereof for the Diagnosis of Glaucoma. World Intellectual Property Organization Patent WO2019185918A1, 29 March 2019. [Google Scholar]
- Martínez-Bisbal, M.; Pinazo Durán, M.; Martínez Máñez, R.; Botello Marabotto, M.; Sanz González, S. Method for Detecting Primary Open-Angle Glaucoma Using Metabolomic Techniques 2023. World Intellectual Property Organization Patent PCT/ES2022/070703. WO/2023/079202, 11 May 2023. [Google Scholar]
C3 | 0.4921 * | 0.3685 * | 0.5109 * |
C3-DC (C4-OH) | 0.3018 * | 0.4539 * | |
Ac-Orn | 0.3703 * | ||
PC aa C42:6 |
Ac-Orn | 0.8575 * | 0.3760 * | 0.2715 | 0.1843 | 0.1986 |
Ac-Orn2 | 0.3719 * | 0.1813 | 0.1710 | 0.3177 * | |
C3*Ac-Orn | 0.7258 * | 0.8972 * | 0.7186 * | ||
C3*PC aa C42:6 | 0.7808 * | 0.4784 * | |||
C32*Ac-Orn | 0.7293 * | ||||
C3*Ac-Orn2 |
Real | Control | Glaucoma | Diabetes | |
---|---|---|---|---|
Test | ||||
Control | 31 | 0 | 0 | |
Glaucoma | 0 | 8 | 0 | |
Diabetes | 0 | 0 | 7 |
Real | Control | Glaucoma | Diabetes | |
---|---|---|---|---|
Test | ||||
Control | 19 | 0 | 1 | |
Glaucoma | 0 | 8 | 0 | |
Diabetes | 0 | 0 | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernal-Casas, D.; Serrano-Marín, J.; Sánchez-Navés, J.; Oller, J.M.; Franco, R. Advancing Personalized Medicine by Analytical Means: Selection of Three Metabolites That Allows Discrimination between Glaucoma, Diabetes, and Controls. Metabolites 2024, 14, 149. https://doi.org/10.3390/metabo14030149
Bernal-Casas D, Serrano-Marín J, Sánchez-Navés J, Oller JM, Franco R. Advancing Personalized Medicine by Analytical Means: Selection of Three Metabolites That Allows Discrimination between Glaucoma, Diabetes, and Controls. Metabolites. 2024; 14(3):149. https://doi.org/10.3390/metabo14030149
Chicago/Turabian StyleBernal-Casas, David, Joan Serrano-Marín, Juan Sánchez-Navés, Josep M. Oller, and Rafael Franco. 2024. "Advancing Personalized Medicine by Analytical Means: Selection of Three Metabolites That Allows Discrimination between Glaucoma, Diabetes, and Controls" Metabolites 14, no. 3: 149. https://doi.org/10.3390/metabo14030149
APA StyleBernal-Casas, D., Serrano-Marín, J., Sánchez-Navés, J., Oller, J. M., & Franco, R. (2024). Advancing Personalized Medicine by Analytical Means: Selection of Three Metabolites That Allows Discrimination between Glaucoma, Diabetes, and Controls. Metabolites, 14(3), 149. https://doi.org/10.3390/metabo14030149