Association between Dyslipidemia and Glycated Hemoglobin in a Population-Based Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Variables
2.3. Statistical Analysis
3. Results
3.1. General Characteristics of the Study Participants according to the Presence of Dyslipidemia Diagnosis
3.2. Characteristics of Participants According to Diagnostic Classifications for Diabetes
3.3. Odds Ratio for Dyslipidemia according to Age Group and HbA1c Levels
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rana, J.S.; Liu, J.Y.; Moffet, H.H.; Solomon, M.D.; Go, A.S.; Jaffe, M.G.; Karter, A.J. Metabolic dyslipidemia and risk of coronary heart disease in 28,318 adults with diabetes mellitus and low-density lipoprotein cholesterol < 100 mg/dL. Am. J. Cardiol. 2015, 116, 1700–1704. [Google Scholar]
- Leon, B.M.; Maddox, T.M. Diabetes and cardiovascular disease: Epidemiology, biological mechanisms, treatment recommendations and future research. World J. Diabetes 2015, 6, 1246. [Google Scholar] [CrossRef]
- Almdal, T.; Scharling, H.; Jensen, J.S.; Vestergaard, H. The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: A population-based study of 13000 men and women with 20 years of follow-up. Arch. Intern. Med. 2004, 164, 1422–1426. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, L.; Yu, D.; Ding, G. The prevalence and risk factors of dyslipidemia in different diabetic progression stages among middle-aged and elderly populations in China. PLoS ONE 2018, 13, e0205709. [Google Scholar] [CrossRef] [PubMed]
- Noh, J.; Han, K.-D.; Ko, S.-H.; Ko, K.S.; Park, C.-Y. Trends in the pervasiveness of type 2 diabetes, impaired fasting glucose and co-morbidities during an 8-year-follow-up of nationwide Korean population. Sci. Rep. 2017, 7, 46656. [Google Scholar] [CrossRef]
- Boo, S.; Yoon, Y.J.; Oh, H. Evaluating the prevalence, awareness, and control of hypertension, diabetes, and dyslipidemia in Korea using the NHIS-NSC database: A cross-sectional analysis. Medicine 2018, 97, e13713. [Google Scholar] [CrossRef]
- Jung, K.-W.; Won, Y.-J.; Kong, H.-J.; Lee, E.S. Cancer statistics in Korea: Incidence, mortality, survival, and prevalence in 2016. Cancer Res. Treat. Off. J. Korean Cancer Assoc. 2019, 51, 417. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Yang, Z.; Wu, Y.; Yin, R.-X.; Liao, Y.; Wang, J.; Gao, B.; Zhang, L.; China National Survey of Chronic Kidney Disease Working Group. The prevalence, awareness, treatment and control of dyslipidemia among adults in China. Atherosclerosis 2016, 248, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.R.; Anjana, R.M.; Deepa, M.; Pradeepa, R.; Bhansali, A.; Dhandania, V.K.; Joshi, P.P.; Unnikrishnan, R.; Nirmal, E.; Subashini, R. Prevalence of dyslipidemia in urban and rural India: The ICMR–INDIAB study. PLoS ONE 2014, 9, e96808. [Google Scholar] [CrossRef]
- Na, W.; Chung, B.; Sohn, C. A relationship between dietary patterns and dyslipidemia in urban-dwelling middle-aged Korean men: Using Korean Genome and Epidemiology Study (KoGES). Clin. Nutr. Res. 2019, 8, 219–228. [Google Scholar] [CrossRef]
- Bennett, C.M.; Guo, M.; Dharmage, S.C. HbA1c as a screening tool for detection of Type 2 diabetes: A systematic review. Diabet. Med. 2007, 24, 333–343. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Diabetes. Available online: https://www.cdc.gov/diabetes/managing/managing-blood-sugar/a1c.html (accessed on 23 January 2024).
- American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care 2021, 44 (Suppl. S1), S15–S33. [Google Scholar]
- Hur, K.Y.; Moon, M.K.; Park, J.S.; Kim, S.K.; Lee, S.H.; Yun, J.S.; Back, J.H.; Noh, J.; Lee, B.; Oh, T.J.; et al. 2021 Clinical practice guidelines for diabetes mellitus of the Korean Diabetes Association. Diabetes Metab. J. 2021, 45, 461–481. [Google Scholar] [CrossRef]
- Hanley, A.J.; Wagenknecht, L.E.; D’Agostino, R.B., Jr.; Zinman, B.; Haffner, S.M. Identification of subjects with insulin resistance and beta-cell dysfunction using alternative definitions of the metabolic syndrome. Diabetes 2003, 52, 2740–2747. [Google Scholar] [CrossRef]
- Cohn, G.; Valdes, G.; Capuzzi, D.M. Pathophysiology and treatment of the dyslipidemia of insulin resistance. Curr. Cardiol. Rep. 2001, 3, 416–423. [Google Scholar] [CrossRef]
- Vekic, J.; Zeljkovic, A.; Stefanovic, A.; Jelic-Ivanovic, Z.; Spasojevic-Kalimanovska, V. Obesity and dyslipidemia. Metab. Clin. Exp. 2019, 92, 71–81. [Google Scholar] [CrossRef]
- Ferreira, A.P.; Oliveira, C.E.; França, N.M. Metabolic syndrome and risk factors for cardiovascular disease in obese children: The relationship with insulin resistance (HOMA-IR). J. Pediatr. 2007, 83, 21–26. [Google Scholar] [CrossRef]
- Kim, M.H.; Kim, H.N.; Choi, W.S. The association between subclinical inflammation and abnormal glucose and lipid metabolisms in normal-weight Korean individuals. Nutr. Metab. Cardiovasc. Dis. NMCD 2018, 28, 1106–1113. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.H.; Lee, Y.J.; Lee, Y.A.; Kim, J.H.; Lee, S.Y.; Shin, C.H. High-Sensitivity C-Reactive Protein Is Associated with Prediabetes and Adiposity in Korean Youth. Metab. Syndr. Relat. Disord. 2020, 18, 47–55. [Google Scholar] [CrossRef] [PubMed]
- National Health Insurance Service. Health Medical Examination Guide. Available online: https://www.nhis.or.kr/nhis/healthin/wbhaca04500m01.do (accessed on 22 January 2024).
- Al Amri, T.; Bahijri, S.; Al-Raddadi, R.; Ajabnoor, G.; Al Ahmadi, J.; Jambi, H.; Borai, A.; Tuomilehto, J. The Association Between Prediabetes and Dyslipidemia Among Attendants of Primary Care Health Centers in Jeddah, Saudi Arabia. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 2735–2743. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.J.; Zou, S.F.; Xu, Y.; Li, Y.; Yang, S.S. The influence of intensive lifestyle intervention on patients with isolated impaired fasting glucose: A meta-analysis. J. Adv. Nurs. 2016, 72, 2587–2597. [Google Scholar] [CrossRef]
- Athyros, V.G.; Doumas, M.; Imprialos, K.P.; Stavropoulos, K.; Georgianou, E.; Katsimardou, A.; Karagiannis, A. Diabetes and lipid metabolism. Hormones 2018, 17, 61–67. [Google Scholar] [CrossRef]
- Dixit, A.K.; Dey, R.; Suresh, A.; Chaudhuri, S.; Panda, A.K.; Mitra, A.; Hazra, J. The prevalence of dyslipidemia in patients with diabetes mellitus of ayurveda Hospital. J. Diabetes Metab. Disord. 2014, 13, 58. [Google Scholar] [CrossRef] [PubMed]
- Nathan, D.M. Diabetes: Advances in Diagnosis and Treatment. JAMA 2015, 314, 1052–1062. [Google Scholar] [CrossRef] [PubMed]
- Ilonen, J.; Lempainen, J.; Veijola, R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat. Rev. Endocrinol. 2019, 15, 635–650. [Google Scholar] [CrossRef] [PubMed]
- Shahwan, M.J.; Jairoun, A.A.; Farajallah, A.; Shanabli, S. Prevalence of dyslipidemia and factors affecting lipid profile in patients with type 2 diabetes. Diabetes Metab. Syndr. 2019, 13, 2387–2392. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.J.; Lee, J.W.; Kang, H.T. Secular Trends in Lipid Profiles in Korean Adults Based on the 2005-2015 KNHANES. Int. J. Environ. Res. Public Health 2019, 16, 2555. [Google Scholar] [CrossRef] [PubMed]
- Shakya, P.; Shrestha, A.; Karmacharya, B.M.; Shrestha, A.; Kulseng, B.E.; Skovlund, E.; Sen, A. Prevalence of prediabetes and associated factors of prediabetic stages: A cross-sectional study among adults in Nepal. BMJ Open 2022, 12, e064516. [Google Scholar] [CrossRef]
- World Health Organization. Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus: Abbreviated Report of a WHO Consultation; WHO: Geneva, Switzerland, 2011. [Google Scholar]
Characteristics | Dyslipidemia | p Value | ||||
---|---|---|---|---|---|---|
Yes | No | |||||
Unweighted No. | Weighted % (SE) | Unweighted No. | Weighted % (SE) | |||
Age (years) + | 2080 | 59.05 (0.36) | 9569 | 45.13 (0.28) | <0.001 | |
Sex | Male | 817 | 46.16 (1.27) | 4334 | 51.06 (0.53) | 0.001 |
Female | 1263 | 53.84 (1.27) | 5235 | 48.94 (0.53) | ||
Marital status | Yes | 2001 | 94.16 (0.77) | 7847 | 75.00 (0.76) | <0.001 |
No | 79 | 5.84 (0.77) | 1722 | 25.00 (0.76) | ||
Education | ≤Elementary school | 737 | 30.68 (1.31) | 1604 | 12.01 (0.53) | <0.001 |
Middle school | 328 | 15.62 (0.95) | 804 | 7.73 (0.36) | ||
High school | 503 | 26.68 (1.17) | 2898 | 35.12 (0.80) | ||
≥University | 432 | 27.02 (1.51) | 3761 | 45.13 (1.02) | ||
Occupation | WC worker | 258 | 16.14 (1.12) | 2514 | 30.74 (0.79) | <0.001 |
PC worker | 221 | 12.10 (0.88) | 1125 | 13.05 (0.48) | ||
BC worker | 182 | 11.73 (0.92) | 958 | 12.40 (0.51) | ||
AL worker | 332 | 14.92 (1.00) | 1123 | 10.24 (0.50) | ||
unemployed | 1008 | 45.10 (1.33) | 3343 | 33.57 (0.69) | ||
Household income | Lowest | 578 | 23.97 (1.31) | 1654 | 14.10 (0.70) | <0.001 |
Lower middle | 549 | 24.07 (1.18) | 2263 | 22.89 (0.71) | ||
Upper middle | 480 | 25.51 (1.30) | 2714 | 30.43 (0.82) | ||
Highest | 462 | 26.46 (1.50) | 2906 | 32.58 (1.11) | ||
Residential area | Urban | 1667 | 83.57 (1.87) | 7798 | 84.82 (1.71) | 0.255 |
Rural | 413 | 16.43 (1.87) | 1771 | 15.18 (1.71) | ||
Drinking | No | 353 | 14.86 (0.99) | 952 | 7.85 (0.35) | <0.001 |
Yes | 1709 | 85.14 (0.99) | 8497 | 92.15 (0.35) | ||
Smoking | No | 1296 | 57.98 (1.28) | 5602 | 55.89 (0.64) | 0.163 |
Yes | 765 | 42.02 (1.28) | 3837 | 44.11 (0.64) | ||
BMI | Normal | 1079 | 50.90 (1.25) | 6018 | 62.42 (0.60) | <0.001 |
Overweight | 831 | 40.82 (1.17) | 2653 | 27.95 (0.56) | ||
Obesity | 156 | 7.62 (0.70) | 460 | 5.07 (0.28) | ||
Underweight | 13 | 0.66 (0.20) | 423 | 4.56 (0.26) | ||
Diabetes | No | 1524 | 74.35 (1.15) | 8977 | 95.40 (0.27) | <0.001 |
Yes | 556 | 25.65 (1.15) | 592 | 4.60 (0.3) | ||
HbA1c + | 2080 | 6.09 (0.03) | 9569 | 5.56 (0.01) | <0.001 | |
Fasting blood sugar + | 2080 | 110.57 (0.89) | 9569 | 98.34 (0.30) | <0.001 | |
Total cholesterol + | 2080 | 188.28 (1.17) | 9569 | 194.46 (0.49) | <0.001 | |
Triglycerides + | 2080 | 168.63 (4.49) | 9569 | 135.81 (1.78) | <0.001 | |
HDL-C + | 2080 | 48.88 (0.31) | 9569 | 51.49 (0.17) | <0.001 | |
LDL-C + | 461 | 111.79 (2.12) | 1394 | 121.36 (1.08) | <0.001 | |
Current dyslipidemia treatment status | No | 672 | 35.93 (1.27) | <0.001 | ||
Yes | 1408 | 64.07 (1.27) |
Characteristics | HbA1c (Weighted % (SE)) | p Value | |||
---|---|---|---|---|---|
HbA1c < 5.7 (n = 7219) | 5.7 ≤ HbA1c < 6.5 (n = 3274) | HbA1c ≥ 6.5 (n = 1156) | |||
Age (years) + | 42.47 (0.28) | 56.00 (0.34) | 60.07 (0.52) | <0.001 | |
Sex | Male | 49.81 (0.63) | 50.25 (0.92) | 54.57 (1.61) | 0.033 |
Female | 50.19 (0.63) | 49.75 (0.92) | 45.43 (1.61) | ||
Marital status | Yes | 70.51 (0.90) | 92.22 (0.64) | 95.58 (0.81) | <0.001 |
No | 29.49 (0.90) | 7.78 (0.64) | 4.42 (0.81) | ||
Education | ≤Elementary school | 9.36 (0.48) | 24.14 (1.03) | 32.52 (1.77) | <0.001 |
Middle school | 6.62 (0.38) | 12.84 (0.75) | 16.32 (1.26) | ||
High school | 35.18 (0.86) | 30.91 (1.13) | 31.43 (1.80) | ||
≥University | 48.85 (1.06) | 32.11 (1.36) | 19.73 (1.62) | ||
Occupation | WC worker | 33.14 (0.87) | 20.89 (0.98) | 13.13 (1.26) | <0.001 |
PC worker | 12.96 (0.53) | 12.86 (0.72) | 12.53 (1.33) | ||
BC worker | 11.30 (0.55) | 13.68 (0.82) | 16.31 (1.51) | ||
AL worker | 9.01 (0.47) | 15.01(0.89) | 14.78 (1.48) | ||
unemployed | 33.59 (0.75) | 37.55 (1.07) | 43.24 (1.79) | ||
Household income | Lowest | 11.80 (0.67) | 21.55 (1.09) | 28.90 (1.63) | <0.001 |
Lower middle | 22.46 (0.79) | 24.57 (1.02) | 23.59 (1.51) | ||
Upper middle | 31.58 (0.90) | 25.90 (1.01) | 25.54 (1.49) | ||
Highest | 34.17 (1.18) | 27.99 (1.26) | 21.97 (1.54) | ||
Residential area | Urban | 86.36 (1.61) | 81.56 (2.06) | 79.71 (2.40) | <0.001 |
Rural | 13.64 (1.61) | 18.44 (2.06) | 20.29 (2.40) | ||
Drinking | No | 6.41 (0.33) | 12.84 (0.68) | 17.82 (1.33) | <0.001 |
Yes | 93.59 (0.33) | 87.16 (0.68) | 82.18 (1.33) | ||
Smoking | No | 57.77 (0.72) | 53.73 (1.02) | 50.84 (1.75) | <0.001 |
Yes | 42.23 (0.72) | 46.27 (1.02) | 49.16 (1.75) | ||
BMI | Normal | 66.16 (0.67) | 51.22 (1.05) | 43.98 (1.63) | <0.001 |
Overweight | 25.14 (0.65) | 38.99 (1.02) | 41.79 (1.56) | ||
Obesity | 3.64 (0.27) | 7.62 (0.56) | 13.81 (1.16) | ||
Underweight | 5.06 (0.31) | 2.17 (0.28) | 0.42 (0.20) | ||
Dyslipidemia | No | 91.59 (0.38) | 74.87 (0.90) | 58.19 (1.87) | <0.001 |
Yes | 8.41 (0.38) | 25.13 (0.90) | 41.81 (1.87) |
Total | Age Groups | ||||||
---|---|---|---|---|---|---|---|
20s | 30s | 40s | 50s | 60s | 70+ | ||
Model 1 | |||||||
HbA1c < 5.7 | |||||||
Ref | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
5.7 ≤ HbA1c < 6.5 | |||||||
OR | 1.932 | 0.888 | 2.548 | 1.877 | 1.973 | 1.609 | 1.395 |
95% CI | 1.716–2.175 | 0.102–7.721 | 1.433–4.534 | 1.319–2.672 | 1.581–2.462 | 1.301–1.989 | 1.099–1.769 |
p-value | <0.001 | 0.914 | 0.001 | <0.001 | <0.001 | <0.001 | 0.006 |
HbA1c ≥ 6.5 | |||||||
OR | 3.446 | 3.535 | 3.207 | 7.217 | 4.381 | 2.627 | 2.126 |
95% CI | 2.959–4.012 | 0.311–40.124 | 1.007–10.218 | 4.654–11.192 | 3.226–5.951 | 2.008–3.436 | 1.612–2.803 |
p-value | <0.001 | 0.308 | 0.049 | <0.001 | <0.001 | <0.001 | <0.001 |
Model 2 | |||||||
HbA1c<5.7 | |||||||
Ref | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
5.7 ≤ HbA1c < 6.5 | |||||||
OR | 1.915 | 2.020 | 2.812 | 1.786 | 1.994 | 1.558 | 1.378 |
95% CI | 1.696–2.163 | 0.223–18.272 | 1.566–5.049 | 1.239–2.575 | 1.588–2.504 | 1.253–1.936 | 1.075–1.766 |
p-value | <0.001 | 0.531 | 0.001 | 0.002 | <0.001 | <0.001 | 0.011 |
HbA1c ≥ 6.5 | |||||||
OR | 3.533 | 11.643 | 2.329 | 6.787 | 4.528 | 2.740 | 2.237 |
95% CI | 3.019–4.134 | 0.723–187.513 | 0.628–8.631 | 4.264–10.802 | 3.298–6.217 | 2.075–3.619 | 1.676–2.986 |
p-value | <0.001 | 0.083 | 0.206 | <0.001 | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, P.; Kim, K.Y.; Shin, H.Y. Association between Dyslipidemia and Glycated Hemoglobin in a Population-Based Study. Metabolites 2024, 14, 92. https://doi.org/10.3390/metabo14020092
Kang P, Kim KY, Shin HY. Association between Dyslipidemia and Glycated Hemoglobin in a Population-Based Study. Metabolites. 2024; 14(2):92. https://doi.org/10.3390/metabo14020092
Chicago/Turabian StyleKang, Purum, Ka Young Kim, and Hye Young Shin. 2024. "Association between Dyslipidemia and Glycated Hemoglobin in a Population-Based Study" Metabolites 14, no. 2: 92. https://doi.org/10.3390/metabo14020092
APA StyleKang, P., Kim, K. Y., & Shin, H. Y. (2024). Association between Dyslipidemia and Glycated Hemoglobin in a Population-Based Study. Metabolites, 14(2), 92. https://doi.org/10.3390/metabo14020092