Phytocompounds and Regulation of Flavonoids in In Vitro-Grown Safflower Plant Tissue by Abiotic Elicitor CdCl2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Establishment of In Vitro Culture
2.2. Embryogenic Callus Induction and Shoot Regeneration
2.3. Metabolomic Profiling of Somatic Embryogenic Callus and Regenerated Shoot of Safflower: Extract Preparation and Derivatization for Gas Chromatography–Mass Spectrometry (GC–MS)
2.4. GC–MS Analysis and Data Processing
2.5. Preparation of Inflorescence Methanolic Extract for GC–MS Analysis and Identification of Phytochemicals
2.6. Sample Preparation for Flavonoid Quantification in CdCl2 Treated C. tinctorius Tissues by Ultra-High Pressure Liquid Chromatography–Tandem Mass Spectrometry (UHPLC–MS/MS)
2.7. Biochemical Analysis of CdCl2-Treated Plants
2.7.1. Protein Estimation
2.7.2. Proline Estimation
2.7.3. Sugar Estimation
2.7.4. Malondialdehyde (MDA) Estimation
2.7.5. Assessment of Anti-Oxidant Enzyme Activities
2.8. Statistical Analysis
3. Results
3.1. Embryogenic Callus Induction and Shoot Regeneration
3.2. GC–MS Profiling of Embryogenic Callus and Regenerated Shoot
3.3. Quantification of Flavonoids in Embryogenic Callus
3.4. Influence of CdCl2 on Flavonoid Accumulation in Regenerated Shoots
3.5. Amendment of CdCl2 and Protein, Proline, Sugar, and Malondialdehyde (MDA) Accumulation
3.6. Effect of CdCl2 on Anti-Oxidant Enzymatic Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitra, S.; Lami, M.S.; Uddin, T.M.; Das, R.; Islam, F.; Anjum, J.; Hossain, M.J.; Emran, T.B. Prospective Multifunctional Roles and Pharmacological Potential of Dietary Flavonoid Narirutin. Biomed. Pharmacother. 2022, 150, 112932. [Google Scholar] [CrossRef]
- Ciaramella, B.R.; Corinzia, S.A.; Cosentino, S.L.; Testa, G. Phytoremediation of Heavy Metal Contaminated Soils Using Safflower. Agronomy 2022, 12, 2302. [Google Scholar] [CrossRef]
- Tu, Y.; Xue, Y.; Guo, D.; Sun, L.; Guo, M. Carthami Flos: A Review of Its Ethnopharmacology, Pharmacology and Clinical Applications. Rev. Bras. Farmacognosia 2015, 25, 553–566. [Google Scholar] [CrossRef]
- Sivasubramanian, R.; Brindha, P. In vitro cytotoxic, antioxidant and GC-MS studies on Centratherum punctatum Cass. Int. J. Pharm. Pharm. Sci. 2013, 5, 364–367. [Google Scholar]
- Mamgain, J.; Mujib, A.; Bansal, Y.; Gulzar, B.; Zafar, N.; Syeed, R.; Alsughayyir, A.; Dewir, Y.H. Elicitation Induced α-Amyrin Synthesis in Tylophora indica In Vitro Cultures and Comparative Phytochemical Analyses of In Vivo and Micropropagated Plants. Plants 2024, 13, 122. [Google Scholar] [CrossRef]
- Faisal, M.; Qahtan, A.A.; Alatar, A.A. Thidiazuron Induced In Vitro Plant Regeneration, Phenolic Contents, Antioxidant Potential, GC-MS Profiles and Nuclear Genome Stabil-ity of Plectranthus amboinicus (Lour.) Spreng. Horticulturae 2023, 9, 277. [Google Scholar] [CrossRef]
- Hübschmann, H.J. Handbook of GC-MS: Fundamentals and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Bansal, Y.; Mujib, A.; Mamgain, J.; Dewir, Y.H.; Rihan, H.Z. Phytochemical Composition and Detection of Novel Bioactives in Anther Callus of Catharanthus roseus L. Plants 2023, 12, 2186. [Google Scholar] [CrossRef] [PubMed]
- Mamgain, J.; Mujib, A.; Syeed, R.; Ejaz, B.; Malik, M.Q.; Bansal, Y. Genome Size and Gas Chromatography-Mass Spectrometry (GC–MS) Analysis of Field-Grown and In Vitro Regenerated Pluchea lanceolata Plants. J. Appl. Genet. 2023, 64, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Arafa, N.M.; Girgis, N.; Ibrahem, M.; Mohamed, S.; El-Bahr, M.K. Phytochemical Profiling by GC-MS Analysis and Antimicrobial Activity Potential of In Vitro Derived Shoot Cultures of Some Egyptian Herbal Medicinal Plants. Egypt. J. Chem. 2022, 65, 155–169. [Google Scholar] [CrossRef]
- Satheesan, J.; Sabu, K.K. Endophytic Fungi for a Sustainable Production of Major Plant Bioactive Compounds. In Plant-Derived Bioactives; Swamy, M., Ed.; Springer: Berlin, Germany, 2020. [Google Scholar] [CrossRef]
- Mujib, A.; Tonk, D.; Gulzar, B.; Maqsood, M.; Ali, M. Quantification of Taxol by High-Performance Thin Layer Chromatography in Taxus Wallichiana Callus Cultivated In Vitro. Biotechnologia 2020, 101, 337–347. [Google Scholar] [CrossRef]
- Naik, P.M.; Al-Khayri, J.M. Impact of abiotic elicitors on in vitro production of plant secondary metabolites: A review. J. Adv. Res. Biotechnol. 2016. [Google Scholar] [CrossRef]
- Alcalde, M.A.; Perez-Matas, E.; Escrich, A.; Cusido, R.M.; Palazon, J.; Bonfill, M. Biotic Elicitors in Adventitious and Hairy Root Cultures: A Review from 2010 to 2022. Molecules 2022, 27, 5253. [Google Scholar] [CrossRef] [PubMed]
- Umnajkitikorn, K.; Faiyue, B.; Saengnil, K. Enhancing Antioxidant Properties of Germinated Thai Rice (Oryza sativa L.) cv. Kum Doi Saket with Salinity. J. Rice Res. 2013, 1, 10.4172. [Google Scholar] [CrossRef]
- Siddiqui, A.; Dixit, P.; Moid, H.; Afaq, U. Various Metabolites and Bioactive Compounds from Fruits, and Their Use in Nanoparticles Synthesis and Applications. In Nanomaterials from Agricultural and Horticultural Products. Smart Nanomaterials Technology; Husen, A., Ed.; Springer: Berlin, Germany, 2023; pp. 211–221. [Google Scholar] [CrossRef]
- Zhu, W.; Han, H.; Liu, A.; Guan, Q.; Kang, J.; David, L.; Dufresne, C.; Chen, S.; Tian, J. Combined Ultraviolet and Darkness Regulation of Medicinal Metabolites in Mahonia bealei Revealed by Proteomics and Metabolomics. J. Proteom. 2021, 233, 104081. [Google Scholar] [CrossRef] [PubMed]
- Perez de Souza, L.; Alseekh, S.; Scossa, F.; Fernie, A.R. Ultra-high-Performance Liquid Chromatography High-Resolution Mass Spectrometry Variants for Metabolomics Research. Nat. Methods 2021, 18, 733–746. [Google Scholar] [CrossRef]
- Araujo, N.M.P.; Arruda, H.S.; Dos Santos, F.N.; de Morais, D.R.; Pereira, G.A.; Pastore, G.M. LC-MS/MS Screening and Identification of Bioactive Compounds in Leaves, Pulp and Seed from Eugenia calycina Cambess. Food Res. Int. 2020, 137, 109556. [Google Scholar] [CrossRef] [PubMed]
- Vignesh, A.; Selvakumar, S.; Vasanth, K. Comparative LC-MS Analysis of Bioactive Compounds, Antioxidants and Antibacterial Activity from Leaf and Callus Extracts of Saraca asoca. Phytomed. Plus 2022, 2, 100167. [Google Scholar] [CrossRef]
- Śliwińska, A.; Naliwajski, M.R.; Pietrosiuk, A.; Sykłowska-Baranek, K. In Vitro Response of Polyscias filicifolia (Araliaceae) Shoots to Elicitation with Alarmone–Diadenosine Triphosphate, Methyl Jasmonate, and Salicylic Acid. Cells 2021, 10, 419. [Google Scholar] [CrossRef]
- Choudhury, F.K.; Rivero, R.M.; Blumwald, E.; Mittler, R. Reactive Oxygen Species, Abiotic Stress and Stress Combination. Plant J. 2017, 90, 856–867. [Google Scholar] [CrossRef]
- Dong, J.; Wan, G.; Liang, Z. Accumulation of Salicylic Acid-Induced Phenolic Compounds and Raised Activities of Secondary Metabolic and Antioxidative Enzymes in Salvia miltiorrhiza Cell Culture. J. Biotechnol. 2010, 148, 99–104. [Google Scholar] [CrossRef]
- Ejaz, B.; Mujib, A.; Mamgain, J.; Malik, M.Q.; Syeed, R.; Gulzar, B.; Bansal, Y. Comprehensive In Vitro Regeneration Study with SCoT Marker Assisted Clonal Stability Assessment and Flow Cytometric Genome Size Analysis of Carthamus tinctorius L.: An Important Medicinal Plant. Plant Cell Tiss. Organ Cult. 2022, 148, 403–418. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Kundu, A.; Mishra, S.; Vadassery, J. Spodoptera Litura-Mediated Chemical Defense Is Differentially Modulated in Older and Younger Systemic Leaves of Solanum lycopersicum. Planta 2018, 248, 981–997. [Google Scholar] [CrossRef]
- Talan, A.; Mujib, A.; Ejaz, B.; Bansal, Y.; Dewir, Y.H.; Magyar-Tábori, K. In Vitro Propagation and Phytochemical Composition of Centratherum punctatum Cass—A Medicinal Plant. Horticulturae 2023, 9, 1189. [Google Scholar] [CrossRef]
- Naik, J.; Rajput, R.; Pucker, B.; Stracke, R.; Pandey, A. The R2R3-MYB Transcription Factor MtMYB134 Orchestrates Flavonol Biosynthesis in Medicago truncatula. Plant Mol. Biol. 2021, 106, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid Determination of FreeProline of Water StressStudies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Dey, P.M. Oligosaccharides. In Methods in Plant Biochemistry; Academic Press: Cambridge, MA, USA, 1990; pp. 189–218. [Google Scholar] [CrossRef]
- Aebi, H. Catalase In Vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Nakano, Y.; Asada, K. Hydrogen Peroxide Is Scavenged by Ascorbate-Specific Peroxidase in Spinach Chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar] [CrossRef]
- Dhindsa, R.S.; Plumb-Dhindsa, P.A.; Thorpe, T.A. Leaf Senescence: Correlated with Increased Levels of Membrane Permeability and Lipid Peroxidation, and Decreased Levels of Superoxide Dismutase and Catalase. J. Exp. Bot. 1981, 32, 93–101. [Google Scholar] [CrossRef]
- Duncan, D.B. Multiple Range and Multiple F Tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Padma, M.; Ganesan, S.; Jayaseelan, T.; Azhagumadhavan, S.; Sasikala, P.; Senthilkumar, S.; Mani, P. Phytochemical screening and GC–MS analysis of bioactive compounds present in ethanolic leaves extract of Silybum marianum (L). J. Drug Deliv. Therap. 2019, 9, 85–89. [Google Scholar] [CrossRef]
- Jahan, I.; Tona, M.R.; Sharmin, S.; Sayeed, M.A.; Tania, F.Z.; Paul, A.; Chy, M.N.; Rakib, A.; Emran, T.B.; Simal-Gandara, J. GC-MS phytochemical profiling, pharmacological properties, and in silico studies of Chukrasia velutina leaves: A novel source for bioactive agents. Molecules 2020, 15, 3536. [Google Scholar] [CrossRef] [PubMed]
- Treml, J.; Šmejkal, K. Flavonoids as Potent Scavengers of Hydroxyl Radicals. Compr. Rev. Food Sci. Food Saf. 2016, 15, 720–738. [Google Scholar] [CrossRef]
- Kapoor, D.; Singh, M.P.; Kaur, S.; Bhardwaj, R.; Zheng, B.; Sharma, A. Modulation of the Functional Components of Growth, Photosynthesis, and Anti-oxidant Stress Markers in Cadmium Exposed Brassica juncea L. Plants 2019, 8, 260. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Chee Kong, Y.; Mohd Zain, N.A. Effect of Cadmium and Copper Exposure on Growth, Secondary Metabolites and Antioxidant Activity in the Medicinal Plant Sambung Nyawa (Gynura procumbens (Lour.) Merr). Molecules 2017, 22, 1623. [Google Scholar] [CrossRef]
- Rao, K.; Chodisetti, B.; Gandi, S.; Giri, A.; Kavi Kishor, P.B. Cadmium Chloride Elicitation of Abutilon indicum Cell Suspension Cultures for Enhanced Stigmasterol Production. Plant Biosyst. 2022, 156, 613–618. [Google Scholar] [CrossRef]
- Zafar, N.; Mujib, A.; Ali, M.; Tonk, D.; Gulzar, B.; Malik, M.Q.; Mamgain, J.; Sayeed, R. Cadmium Chloride (CdCl2) Elicitation Improves Reserpine and Ajmalicine Yield in Rauvolfia Serpentina as Revealed by High-Performance Thin-Layer Chromatography (HPTLC). 3Biotech 2020, 10, 344. [Google Scholar] [CrossRef]
- Malik, M.Q.; Mujib, A.; Gulzar, B.; Zafar, N.; Syeed, R.; Mamgain, J.; Ejaz, B.; Kanchan. Enrichment of Alliin in Different In Vitro Grown Tissues of Allium sativum through CdCl2 Elicitation as Revealed by High Performance Thin Layer Chromatography (HPTLC). Ind. Crops Prod. 2020, 158, 113007. [Google Scholar] [CrossRef]
- Tahmasi, S.; Garoosi, G.A.; Ahmadi, J. Cadmium Chloride and Silver Nitrate Affect the Gene Expression, Stevioside, and Rebaudioside: A Production in Stevia rebaudiana (Bert.). Indian J. Pharm. Sci. 2021, 83, 663–670. [Google Scholar] [CrossRef]
- Zaidun, N.H.; Thent, Z.C.; Latiff, A.A. Combating Oxidative Stress Disorders with Citrus Flavonoid: Naringenin. Life Sci. 2018, 208, 111–122. [Google Scholar] [CrossRef]
- Azeem, M.; Hanif, M.; Mahmood, K.; Ameer, N.; Chughtai, F.R.S.; Abid, U. An Insight into Anticancer, Antioxidant, Antimicrobial, Antidiabetic and Anti-Inflammatory Effects of Quercetin: A Review. Polym. Bull. 2023, 80, 241–262. [Google Scholar] [CrossRef]
- Song, X.; Tan, L.; Wang, M.; Ren, C.; Guo, C.; Yang, B.; Ren, Y.; Cao, Z.; Li, Y.; Pei, J. Myricetin: A Review of the Most Recent Research. Biomed. Pharmacother. 2021, 134, 111017. [Google Scholar] [CrossRef]
- Ren, J.; Lu, Y.; Qian, Y.; Chen, B.; Wu, T.; Ji, G. Recent Progress Regarding Kaempferol for the Treatment of Various Diseases. Review. Exp. Ther. Med. 2019, 18, 2759–2776. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.H.; Chiou, Y.S.; Wang, Y.J.; Ho, C.T.; Lin, J.K. Multistage Carcinogenesis Process as Molecular Targets in Cancer Chemoprevention by Epicatechin-3-Gallate. Food Funct. 2011, 2, 101–110. [Google Scholar] [CrossRef]
- Semwal, R.; Joshi, S.K.; Semwal, R.B.; Semwal, D.K. Health Benefits and Limitations of Rutin-A Natural Flavonoid with High Nutraceutical Value. Phytochem. Lett. 2021, 46, 119–128. [Google Scholar] [CrossRef]
- Vaiyapuri, M.; Thimmarayan, S.; Dhupal, M.; Rallabandi, H.R.; Mekapogu, M.; Vasamsetti, B.M.K.; Natesan, K. Pelargonidin, a Dietary Anthocyanidin in the Prevention of Colorectal Cancer and Its Chemoprotective Mechanisms. In Plant-Derived Bioactives: Chemistry and Mode of Action; Springer Nature: Singapore, 2020; pp. 119–135. [Google Scholar]
- Suantawee, T.; Thilavech, T.; Cheng, H.; Adisakwattana, S. Cyanidin Attenuates Methylglyoxal-Induced Oxidative Stress and Apoptosis in INS-1 Pancreatic β-Cells by Increasing glyoxalase-1 Activity. Nutrients 2020, 12, 1319. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, R.; Shi, W.; Li, L.; Liu, H.; Liu, Z.; Wu, L. The Multifunctional Benefits of Naturally Occurring Delphinidin and Its Glycosides. J. Agric. Food Chem. 2019, 67, 11288–11306. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Choi, H.K.; Kim, Y.K.; Lee, H.J. Delphinidin and Its Glycosides War on Cancer: Preclinical Perspectives. Int. J. Mol. Sci. 2021, 22, 11500. [Google Scholar] [CrossRef] [PubMed]
- Ogukwe, C.E.; Chris, O.A.; Brendan, O.E.; Henry, E.O. Evaluation of the Antitumour Agents in Annona muricata (Linn.) Leaves Using Column Chromatography and Gas Chromatography-Mass Spectrometry. World J. Pharm. Res. 2016, 5, 5–17. [Google Scholar]
- El-Beltagi, H.S.; Mohamed, H.I.; Sofy, M.R. Role of Ascorbic Acid, Glutathione and Proline Applied as Singly or in Sequence Combination in Improving Chickpea Plant through Physiological Change and Antioxidant Defense Under Different Levels of Irrigation Intervals. Molecules 2020, 25, 1702. [Google Scholar] [CrossRef]
- Dar, M.I.; Naikoo, M.I.; Rehman, F.; Naushin, F.; Khan, F.A. Proline Accumulation in Plants: Roles in Stress Tolerance and Plant Development. Osmolytes Plants Acclim. Changing Environ. 2016, 155–166. [Google Scholar]
- Azizi, I.; Esmaielpour, B.; Fatemi, H. Exogenous Nitric Oxide on Morphological, Biochemical and Antioxidant Enzyme Activity on Savory (Satureja hortensis L.) Plants Under Cadmium Stress. J. Saudi Soc. Agric. Sci. 2021, 20, 417–423. [Google Scholar] [CrossRef]
- Hosseinifard, M.; Stefaniak, S.; Ghorbani Javid, M.; Soltani, E.; Wojtyla, Ł.; Garnczarska, M. Contribution of Exogenous Proline to Abiotic Stresses Tolerance in Plants: A Review. Int. J. Mol. Sci. 2022, 23, 5186. [Google Scholar] [CrossRef] [PubMed]
- Gugale, G.S.; Bhusare, B.P.; Ambawade, M.S.; Kshatriya, A.S.; Barwant, M.M.; Mhaske, A.K. Effect of Cadmium Chloride on Seed Germination, Seedling Growth Parameters, and Proline Content in Maize (Zea mays). Int. All J. Res. Educ. Sci. Meth. 2021, 9, 1818–1822. [Google Scholar]
- Georgiadou, E.C.; Kowalska, E.; Patla, K.; Kulbat, K.; Smolińska, B.; Leszczyńska, J.; Fotopoulos, V. Influence of Heavy Metals (Ni, Cu, and Zn) on Nitro-Oxidative Stress Responses, Proteome Regulation and Allergen Production in Basil (Ocimum basilicum L.). Plants. Front. Plant Sci. 2018, 9, 862. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.A.; Kumar, V.; Burritt, D.J.; Fujita, M.; Mäkelä, P. Proline Metabolism and Its Functions in Development and Stress Tolerance. In Osmoprotectant-Mediated Abiotic Stress Tolerance in Plantsa; Springer: Berlin, Germany, 2019; pp. 41–72. [Google Scholar]
- Anjitha, K.S.; Sameena, P.P.; Puthur, J.T. Functional Aspects of Plant Secondary Metabolites in Metal Stress Tolerance and Their Importance in Pharmacology. Plant Stress 2021, 2, 100038. [Google Scholar] [CrossRef]
- Corpas, F.J.; Barroso, J.B. Lead-Induced Stress, Which Triggers the Production of Nitric Oxide (NO) and Superoxide Anion (O2·−) in Arabidopsis Peroxisomes, Affects Catalase Activity. Nitric Oxide 2017, 68, 103–110. [Google Scholar] [CrossRef]
- Sachdev, S.; Ansari, S.A.; Ansari, M.I.; Fujita, M.; Hasanuzzaman, M. Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants 2021, 10, 277. [Google Scholar] [CrossRef]
- de Morais Cardoso, L.; Pinheiro, S.S.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Sorghum (Sorghum bicolor L.): Nutrients, Bioactive Compounds, and Potential Impact on Human Health. Crit. Rev. Food Sci. Nutr. 2017, 57, 372–390. [Google Scholar] [CrossRef]
- Jawad Hassan, M.; Ali Raza, M.; Ur Rehman, S.; Ansar, M.; Gitari, H.; Khan, I.; Wajid, M.; Ahmed, M.; Abbas Shah, G.; Peng, Y.; et al. Effect of Cadmium Toxicity on Growth, Oxidative Damage, Antioxidant Defense System and Cadmium Accumulation in Two Sorghum Cultivars. Plants 2020, 9, 1575. [Google Scholar] [CrossRef] [PubMed]
- Alyemeni, M.N.; Ahanger, M.A.; Wijaya, L.; Alam, P.; Ahmad, P. Contrasting Tolerance Among Soybean Genotypes Subjected to Different Levels of Cadmium Stress. Pak. J. Bot. 2017, 49, 903–911. [Google Scholar]
- Kamalvand, A.A.; Hosseini Sarghein, S.; Karamian, R. Impact of Cadmium Stress on Growth and Physiological Responses of Fenugreek (Trigonella foenum-Graecum L.). J. Plant Physiol. Breed 2022, 12, 51–65. [Google Scholar]
- Zhu, L.-J.; Deng, X.-G.; Zou, L.-J.; Zhang, D.-W.; Lin, H.-H. Enhancement of Stress Tolerance in Cucumber Seedlings by Proanthocyanidins. Biol. Plant. 2017, 61, 323–332. [Google Scholar] [CrossRef]
F-MS Medium + PGRs (µM) | Embryogenesis % (after 8-Week of Subculturing) | Mean No. of Somatic Embryos per Callus Clump (100 mg) | |||
---|---|---|---|---|---|
BAP | TDZ | NAA | |||
2.2 | 5.4 | 2.27 | 40 ± 1.15 c | 10.33 ± 0.88 b | |
2.2 | 8.0 | 2.27 | 49.33 ± 1.76 b | 13.33 ± 1.76 b | |
2.2 | 5.4 | 4.54 | 75.6 ± 2.60 a | 20 ± 1.15 a | |
Germination frequency (%) of somatic embryos | |||||
2.2 | 5.4 | - | ½ MS + 0.29 | 27.60 ± 0.88 b | |
2.2 | 5.4 | - | ½ MS + 1.40 | 34.00 ± 2.31 a | |
2.2 | 5.4 | - | 1.40 | 21.33 ± 1.76 b | |
No. of somatic embryo regenerated shoots | Mean no. of flower buds per plantlet | ||||
- | 0.54 | 4.54 | 5.33 ± 0.88 b | 0 c | |
- | 0.54 | 9.08 | 11 ± 0.57 a | 3 ± 0.57 a | |
2.2 | 0.54 | 4.54 | 6.33 ± 0.33 b | 1.33 ± 0.33 b |
S.No. | Retention Time (Rt) | m/z | Organic Acids | Area% Callus | Area % Plantlet |
---|---|---|---|---|---|
1 | 5.78 | 73 | Lactic Acid, 2TMS | 0.836 | 0.391 |
2 | 5.865 | 73 | α-Hydroxyisobutyric acid, 2TMS | 0.062 | - |
3 | 6.148 | 147 | Glycolic acid, 2TMS | 0.543 | 0.248 |
4 | 7.563 | 125 | 2-Furoic acid, 1TMS | 0.0203 | - |
5 | 7.672 | 73 | Oxalic acid, 2TMS | 0.165 | 0.182 |
6 | 7.774 | 147 | Hydracrylic acid, 2TMS | 0.259 | 0.163 |
7 | 8.170 | 147 | 3-Hydroxybutyric acid, 2TMS | 0.079 | - |
8 | 9.279 | 147 | Propanedioic acid, 2TMS | 1.973 | 1.586 |
9 | 9.431 | 147 | 3-Hydroxyisovaleric acid, 2TMS | 0.079 | - |
10 | 10.124 | 147 | 4-Hydroxybutanoic acid, 2TMS | 0.055 | - |
11 | 12.154 | 147 | Butanedioic acid, 2TMS | 0.827 | 0.410 |
12 | 12.452 | 147 | Methyl succinic acid, 2TMS | 0.020 | 0.028 |
13 | 12.562 | 73 | Glyceric acid, 3TMS | 0.451 | 0.371 |
14 | 12.866 | 147 | Itaconic acid, 2TMS | 0.392 | 0.160 |
15 | 13.595 | 84 | Malic acid, 3TMS | 10.18 | 13.54 |
16 | 16.095 | 73 | D-(−)-Citramalic acid, 3TMS | 0.136 | 6.881 |
17 | 16.768 | 84 | Pyroglutamic acid, TMS | 0.200 | 0.102 |
18 | 17.523 | 174 | 4-Aminobutanoic acid, 3TMS | 0.293 | 4.850 |
19 | 18.742 | 73 | 3-Phenyllactic acid, 2TMS | 0.313 | - |
20 | 19.815 | 73 | 4-Hydroxybenzoic acid, 2TMS | 1.215 | - |
21 | 20.062 | 73 | 4-Hydroxybenzene acetic acid, 2TMS | 0.051 | - |
22 | 23.550 | 75 | Azelaic acid, 2TMS | 0.413 | 0.099 |
23 | 23.995 | 73 | Citric acid, 4TMS | 0.798 | 9.294 |
24 | 24.792 | 73 | Quininic acid, 5TMS | 1.009 | 8.198 |
S. No. | Retention Time | m/z | Sugar Alcohol | Area % Callus | Area % Plant |
---|---|---|---|---|---|
1 | 16.866 | 73 | L-Threitol, 4 TMS | 0.534 | 0.2679 |
2 | 17.749 | 73 | 1-Deoxypentitol, 4 TMS | 2.710 | 0.100 |
3 | 21.387 | 73 | Xylitol, 5TMS | 3.04 | 1.596 |
4 | 23.281 | 73 | D-Fucitol, 5 TMS | 0.789 | - |
5 | 23.424 | 73 | 3-Deoxyhexitol, 5TMS | - | 0.123 |
6 | 25.439 | 73 | D-Glucitol, 6TMS | - | 4.551 |
7 | 29.235 | 73 | Myo-inositol, 6TMS | 2.307 | 8.637 |
8 | 40.174 | 73 | D-Mannitol, 6TMS | 0.374 | - |
9 | 40.353 | 73 | D-Sorbitol, 6TMS | 0.264 | - |
10 | 41.150 | 73 | D-Galactitol, 6TMS | 0.348 | - |
S.No. | Retention Time | m/z | Fatty Acid | Area % Callus | Area % Plant |
---|---|---|---|---|---|
1 | 28.494 | 73 | Palmitic acid, 1TMS | 1.179 | 0.600 |
2 | 31.442 | 73 | Oleic acid, 1TMS | 1.623 | 1.144 |
3 | 31.562 | 73 | Linoleic acid, 1TMS | 3.383 | 1.959 |
4 | 32.039 | 117 | Stearic acid, 1TMS | 0.421 | 0.188 |
5 | 34.561 | 343 | 1-Monomyristin, 2TMS | 0.152 | - |
6 | 37.771 | 371 | 1-Monopalmitin, 2TMS | 4.7069 | 2.087 |
7 | 38.722 | 117 | Behenic acid, 1TMS | 0.2879 | - |
S.No. | Retention Time | m/z | Sugar | Area % Callus | Area % Plant |
---|---|---|---|---|---|
1 | 20.249 | 73 | α-D-Arabinopyranose, 4TMS | - | 0.171 |
2 | 23.899 | 73 | L-Sorbopyranose, 5TMS | 1.160 | - |
4 | 25.694 | 204 | α-D-(+)-Talopyranose, 5TMS | - | 0.340 |
5 | 28.194 | 73 | Glucopyranose, 5TMS | 1.77 | 9.465 |
6 | 28.817 | 204 | α-D-Glactopyranose, 5TMS | - | 0.362 |
7 | 29.360 | 73 | N-Acetyl-D-galactosamine, 4TMS | 1.708 | 0.168 |
8 | 32.156 | 204 | D-Galactose, 5TMS | 0.326 | 0.229 |
9 | 34.392 | 73 | Ribose, 4 TMS | 0.126 | - |
10 | 36.474 | 73 | D-Xylopyranose, 4TMS | 0.093 | 0.210 |
11 | 39.852 | 204 | Lactose, 8TMS | 0.269 | 2.171 |
12 | 41.040 | 73 | D-Trehalose, 7 TMS | 1.242 | 0.693 |
13 | 42.479 | 73 | β-D-Allopyranose, 5TMS | - | 0.2725 |
14 | 45.028 | 73 | Sedoheptulose, 6TMS | - | 0.277 |
S.No. | Retention Time | m/z | Sugar Acid | Area % Callus | Area % Plant |
---|---|---|---|---|---|
1 | 12.562 | 73 | Glyceric acid, 3TMS | 0.451 | 0.371 |
2 | 19.096 | 73 | Tartaric acid, 4TMS | 0.429 | - |
3 | 27.716 | 73 | Galactaric acid, 6TMS | 0.893 | 1.447 |
4 | 27.554 | 73 | D-Gluconic acid, 6TMS | 5.916 | 10.92 |
5 | 37.252 | 73 | D-Galacturonic acid, 5TMS | - | 0.4294 |
6 | 45.803 | 73 | β-D-Glucopyranuronic acid, 5TMS | 0.4838 | - |
S.No. | Retention Time | m/z | Amino Acid | Area % Callus | Area % Plant |
---|---|---|---|---|---|
1 | 6.46 | 72 | L-Valine, TMS | 0.110 | 0.098 |
2 | 6.767 | 248 | L-Alanine, 3TMS | - | 2.405 |
3 | 8.545 | 70 | L-Proline, TMS | 0.053 | 0.758 |
4 | 8.609 | 86 | L-Isoleucine, TMS | 0.104 | 0.052 |
5 | 10.642 | 73 | L-Serine, 2TMS | 0.252 | 0.313 |
6 | 13.591 | 73 | L-Citrulline, 4TMS | - | 0.183 |
7 | 13.993 | 73 | L-Threonine, 3TMS | 0.227 | 2.037 |
8 | 14.934 | 73 | L-Aspartic acid, 2TMS | 0.206 | 0.210 |
9 | 15.026 | 248 | Beta-Alanine, 3TMS | 0.080 | 0.221 |
10 | 16.768 | 84 | Pyroglutamic acid, TMS | 0.200 | 0.102 |
11 | 19.125 | 44 | L-Asparagine, 2TMS | - | 4.265 |
12 | 19.568 | 73 | L-Ornithine, 3TMS | - | 0.339 |
13 | 19.685 | 246 | L-Glutamic acid, 3TMS | - | 1.818 |
14 | 19.725 | 73 | Phenylalanine, 2TMS | 0.789 | 2.845 |
15 | 23.038 | 156 | L-Glutamine, 3TMS | - | 2.708 |
16 | 26.08 | 73 | L-Lysine, 4TMS | 0.499 | 2.246 |
17 | 26.383 | 218 | L-Tyrosine, 3TMS | - | 3.363 |
S.No. | Retention Time | Area % | Phytocompound |
---|---|---|---|
1 | 12.530 | 3.72 | Deca-4,6-diyn-1-yl 3-methylbutanoate |
2 | 12.732 | 4.07 | (E)-Deca-8-en-4,6-diyn-1-yl 3-methylbutanoate |
3 | 13.580 | 2.76 | Hexadecanoic acid, methyl ester |
4 | 14.698 | 6.65 | Palmitic Acid, TMS derivative |
5 | 15.199 | 3.51 | 9,12-Octadecadienoic acid (Z,Z)-, methyl ester |
6 | 15.257 | 2.87 | 9-Octadecenoic acid (Z)-, methyl ester |
7 | 15.312 | 0.18 | 11-Octadecenoic acid, methyl ester |
8 | 15.491 | 1.40 | N-Octadecanoic acid methyl ester |
9 | 16.273 | 2.11 | 9,12-Octadecadienoic acid (Z,Z)-, TMS derivative |
10 | 16.471 | 0.28 | Stearic acid, TMS derivative |
11 | 17.009 | 5.98 | Heneicosane |
12 | 17.684 | 6.99 | Nonacosane-6,8-dione |
13 | 18.897 | 0.27 | Docosanoic acid, methyl ester |
14 | 19.935 | 1.84 | Eicosyl trifluoroacetate |
15 | 20.828 | 1.69 | Pentacosane-6,8-dione |
16 | 20.890 | 1.52 | Hexacosane-4,6-dione |
17 | 20.997 | 0.31 | Squalene |
18 | 21.361 | 3.06 | 1-eicosanol |
19 | 22.240 | 6.60 | Heptacosane-6,8-dione |
20 | 22.304 | 0.54 | Tricosane-4,6-dione |
21 | 22.476 | 0.39 | Ergost-4,7,22-trien-3.alpha.-ol |
22 | 22.756 | 0.33 | 1-Heptacosanol |
23 | 22.818 | 0.21 | 1-Docosanol |
24 | 23.102 | 0.17 | 1-Eicosanol |
25 | 23.375 | 1.17 | Vitamin E |
26 | 23.866 | 5.09 | Nonacosane-6,8-dione |
27 | 24.467 | 1.47 | Isotomatidine, N-acetyl- |
28 | 24.693 | 2.37 | Stigmasta-5,22-dien-3-ol |
29 | 25.353 | 2.65 | gamma.-Sitosterol |
30 | 25.909 | 2.14 | beta.-Amyrin |
31 | 26.514 | 1.21 | Methyl commate d |
32 | 26.946 | 1.91 | Olean-12-en-3-ol, acetate, (3.beta.)- |
33 | 27.438 | 0.85 | Phytyl palmitate |
34 | 27.620 | 0.44 | 24-Norursa-3,12-diene |
35 | 27.928 | 0.81 | Lupeol |
32 | 26.946 | 1.91 | Olean-12-en-3-ol, acetate, (3.beta.)- |
33 | 27.438 | 0.85 | Phytyl palmitate |
35 | 27.928 | 0.81 | Lupeol |
36 | 28.206 | 4.49 | Phytyl tetradecanoate |
37 | 31.798 | 0.47 | Isopropyl lineolate |
38 | 32.240 | 1.49 | Bicyclo[10.8.0]eicosan, trans- |
S. No. | Flavonoid Subclass | Flavonoids | m/z (Da) for Q1/Q3 | Retention Time | Concentration of Analyte (ng/mg) in Callus Extract |
---|---|---|---|---|---|
1 | Flavanone | Naringenin | 273/153 | 4.65 | 0.01 |
2 | Flavonols | Quercetin | 303/153 | 4.28 | ND |
3 | Flavonols | Myricetin | 319/153 | 3.97 | 0.021 |
4 | Flavonols | Kaempferol | 287/153 | 4.74 | 0.002 |
5 | Flavan-3-ols | Epicatechin gallate | 443/139 | 2.99 | 0.048 |
6 | Flavonol glycoside | Rutin | 611/303 | 3.36 | 0.011 |
7 | Anthocyanidin | Pelargonidin | 271/197 | 3.65 | 0.316 |
8 | Anthocyanidin | Peonidin | 301/286 | 3.49 | 0.024 |
9 | Anthocyanidin | Cyanidin | 287/213 | 4.74 | ND |
10 | Anthocyanidin | Delphinidin | 303/257 | 4.23 | 0.078 |
S.No | Flavonoids | Rt | Analyte Concentration (ng/mg) | Fold Increase in Analyte Concentration | ||||
---|---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T3 | T4 | Tmax/T0 | |||
1 | Naringenin | 4.65 | 1.30 | 6.40 | 6.74 | 8.68 | 7.53 | 6.67 |
2 | Quercetin | 4.28 | 1.86 | 2.38 | 2.54 | 3.67 | 7.07 | 3.80 |
3 | Myricetin | 3.97 | 0.16 | 0.33 | 0.35 | 0.45 | 0.46 | 2.875 |
4 | Kaempferol | 4.18 | 0.54 | 0.60 | 0.86 | 1.05 | 0.83 | 1.94 |
5 | Epicatechin gallate | 2.99 | 0.06 | 0.07 | 0.19 | 0.20 | 0.15 | 3.33 |
6 | Rutin | 3.36 | 0.07 | 1.05 | 1.36 | 1.63 | 1.81 | 25.857 |
7 | Pelargonidin | 3.65 | 0.80 | 0.96 | 1.07 | 1.65 | 1.42 | 2.06 |
8 | Peonidin | 3.49 | 0.93 | 1.06 | 1.08 | 1.12 | 7.44 | 8.00 |
9 | Cyanidin | 4.74 | 0.55 | 0.57 | 1.01 | 1.03 | 0.76 | 1.87 |
10 | Delphinidin | 4.23 | 1.76 | 2.43 | 2.60 | 7.77 | 3.52 | 4.415 |
CdCl2 Treatment | Protein (mg g−1 FW) | Proline (µg g−1 FW) | Sugar (mg g−1 FW) |
---|---|---|---|
Callus | 2.21 ± 0.036 f | 1.07 ± 0.04 f | 5.32 ± 0.144 f |
T0 | 5.56 ± 0.072 e | 5.326 ± 0.263 e | 7.106 ± 0.206 e |
T1 | 7.063 ± 0.131 d | 8.353 ± 0.389 d | 10.373 ± 0.287 d |
T2 | 9.53 ± 0.44 c | 11.613 ± 0.357 c | 13.166 ± 0.22 c |
T3 | 11.51 ± 0.158 b | 14.28 ± 0.601 b | 15.716 ± 0.116 b |
T4 | * 13.26 ± 0.29 a | * 16.26 ± 0.29 a | * 17.16 ± 0.375 a |
S.No. | Flavonoid | Pharmacological Uses | References |
---|---|---|---|
1 | Naringenin | Anti-atherosclerosis, cardioprotective, anti-inflammatory, anti-oxidant, anti-hyperglycemic, anticancer, antifibrosis | [45] |
2 | Quercetin | Antidiabetic, anticancer, antifungal, anti-oxidant, anti-obesity, anti-viral, anti-inflammatory, antibacterial | [46] |
3 | Myricetin | Immunomodulatory activity, cardio-cerebrovascular protection, anti-neurodegenerative, antidiabetic, antimicrobial, Inhibition of pulmonary fibrosis and gastric acid secretion, hepatoprotective, strengthens bones, anti-obesity | [47] |
4 | Kaempferol | Protection of heart function, vascular endothelium, cranial nerve, against liver injury and metabolic disorders, anti-inflammation, anticancer, treatment for fibroproliferative disorders | [48] |
5 | Epicatechin gallate | Anti-inflammation, anti-oxidant, growth inhibition, suppress metastasis | [49] |
6 | Rutin | Anti-inflammatory, anticancer, antidiabetic, anti-allergic, cardioprotective | [50] |
7 | Pelargonidin | Anti-oxidant, anticancer, anti-inflammatory, detoxification, cardiovascular protection, | [51] |
8 | Peonidin | Chemopreventive, anti-inflammatory, anti-oxidant | [50] |
9 | Cyanidin | Anti-oxidant, radical-scavenging activity, anticancer, anti-hyperglycemic, anti-inflammatory | [52] |
10 | Delphinidin | Anti-inflammatory, anti-oxidation, antimicrobial, antidiabetic, cardiovascular protection, neuroprotection, anticancer, anti-adipogenesis | [53,54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ejaz, B.; Mujib, A.; Syeed, R.; Mamgain, J.; Malik, M.Q.; Birat, K.; Dewir, Y.H.; Magyar-Tábori, K. Phytocompounds and Regulation of Flavonoids in In Vitro-Grown Safflower Plant Tissue by Abiotic Elicitor CdCl2. Metabolites 2024, 14, 127. https://doi.org/10.3390/metabo14020127
Ejaz B, Mujib A, Syeed R, Mamgain J, Malik MQ, Birat K, Dewir YH, Magyar-Tábori K. Phytocompounds and Regulation of Flavonoids in In Vitro-Grown Safflower Plant Tissue by Abiotic Elicitor CdCl2. Metabolites. 2024; 14(2):127. https://doi.org/10.3390/metabo14020127
Chicago/Turabian StyleEjaz, Bushra, Abdul Mujib, Rukaya Syeed, Jyoti Mamgain, Moien Qadir Malik, Kanchan Birat, Yaser Hassan Dewir, and Katalin Magyar-Tábori. 2024. "Phytocompounds and Regulation of Flavonoids in In Vitro-Grown Safflower Plant Tissue by Abiotic Elicitor CdCl2" Metabolites 14, no. 2: 127. https://doi.org/10.3390/metabo14020127
APA StyleEjaz, B., Mujib, A., Syeed, R., Mamgain, J., Malik, M. Q., Birat, K., Dewir, Y. H., & Magyar-Tábori, K. (2024). Phytocompounds and Regulation of Flavonoids in In Vitro-Grown Safflower Plant Tissue by Abiotic Elicitor CdCl2. Metabolites, 14(2), 127. https://doi.org/10.3390/metabo14020127