Pharmacokinetics of Danofloxacin in Gushi Chickens after Single Oral and Intravenous Administration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drugs and Reagents
2.2. Animals
2.3. Experimental Design and Sample Collection
2.4. Determination of Drug Concentrations
2.5. Pharmacokinetic Analysis
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, P.; Zhao, Y.; Li, H.; Li, S.; Fan, S.; Zhai, B.; Li, Y.; Han, R.; Liu, X.; Tian, Y.; et al. CircRNAs related to breast muscle development and their interaction regulatory network in Gushi chicken. Genes 2022, 13, 1974. [Google Scholar] [CrossRef] [PubMed]
- Zhai, B.; Zhao, Y.; Fan, S.; Yuan, P.; Li, H.; Li, S.; Li, Y.; Zhang, Y.; Huang, H.; Li, H.; et al. Differentially expressed lncRNAs related to the development of abdominal fat in Gushi chickens and their interaction regulatory network. Front. Genet. 2021, 12, 802857. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Xiao, Z.; Fan, X.; Zhuang, H.; Li, Y.; Zhu, J.; Zhao, D.; Paerhati, M.; Suo, D. Multiresidue determination of 26 quinolones in poultry feathers using UPLC-MS/MS and their application in residue monitoring. Molecules 2023, 28, 3738. [Google Scholar] [CrossRef] [PubMed]
- Corum, O.; Durna Corum, D.; Atik, O.; Eser Faki, H.; Altan, F.; Uney, K. Pharmacokinetics and bioavailability of danofloxacin in chukar partridge (Alectoris chukar) following intravenous, intramuscular, subcutaneous, and oral administrations. J. Vet. Pharmacol. Ther. 2019, 42, 207–213. [Google Scholar] [CrossRef]
- Ural, M.N.; Uney, K. Pharmacokinetic behavior and Pharmacokinetic/Pharmacodynamic integration of danofloxacin following single or co-administration with meloxicam in healthy lambs and lambs with respiratory infections. Antibiotics 2021, 10, 1190. [Google Scholar] [CrossRef]
- Tian, E.; Chen, C.; Hu, W.; Miao, Y.; Muhammad, I.; Zhang, Q.; Liu, Y.; Xu, L.; Bao, J.; Ding, L.; et al. Population pharmacokinetics for danofloxacin in the intestinal contents of healthy and infected chickens. J. Vet. Pharmacol. Ther. 2019, 42, 556–563. [Google Scholar] [CrossRef]
- Wang, S.; Huang, A.; Gu, Y.; Li, J.; Huang, L.; Wang, X.; Tao, Y.; Liu, Z.; Wu, C.; Yuan, Z.; et al. Rational use of danofloxacin for treatment of mycoplasma gallisepticum in chickens based on the clinical breakpoint and lung microbiota shift. Antibiotics 2022, 11, 403. [Google Scholar] [CrossRef]
- Felczak, A.; Kalinowska-Lis, U.; Kusz, J.; Chęcińska, L. Zwitterionic versus neutral molecules of fluoroquinolones: Crystal structure of danofloxacin dihydrate. Acta Crystallogr. Sect. C-Struct. Chem. 2022, 78, 722–729. [Google Scholar] [CrossRef]
- Schmitt, T.L.; Nollens, H.H.; Simeone, C.A.; Papich, M.G. Population pharmacokinetics of danofloxacin after single intramuscular dose administration in California brown pelicans (pelecanus occidentalis californicus). J. Avian Med. Surg. 2019, 33, 361–368. [Google Scholar] [CrossRef]
- Dimitrova, D.J.; Haritova, A.M.; Dinev, T.D.; Moutafchieva, R.G.; Lashev, L.D. Comparative pharmacokinetics of danofloxacin in common pheasants, guinea fowls and Japanese quails after intravenous and oral administration. Br. Poult. Sci. 2014, 55, 120–125. [Google Scholar] [CrossRef]
- Sartini, I.; łebkowska-Wieruszewska, B.; Lisowski, A.; Poapolathep, A.; Giorgi, M. Danofloxacin pharmacokinetics and tissue residues in Bilgorajska geese. Res. Vet. Sci. 2021, 136, 11–17. [Google Scholar] [CrossRef]
- Chen, J.C.; Kang, J.J.; Zhang, M.; Shao, H.T.; Song, Z.W.; Ma, K.L.; Yang, F.; Yang, F. Pharmacokinetics of danofloxacin after single oral and intravenous administration in non-laying hens. J. Vet. Pharmacol. Ther. 2023, 46, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Mclean, A.K.; Falt, T.; Abdelfattah, E.M.; Middlebrooks, B.; Gretler, S.; Spier, S.; Turoff, D.; Navas Gonzalez, F.J.; Knych, H.K. Transdermal flunixin meglumine as a pain relief in donkeys: A pharmacokinetics pilot study. Metabolites 2023, 13, 776. [Google Scholar] [CrossRef] [PubMed]
- Jo, S.J.; Bae, S.H.; Huang, Z.; Lee, S.; Lee, C.B.; Chae, S.U.; Park, J.B.; Kwon, M.; Chung, H.K.; Bae, S.K. Benzisothiazolinone: Pharmacokinetics, tissue distribution, and mass balance studies in rats. Metabolites 2023, 13, 584. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Yang, F.; Wang, G.; Kong, T.; Liu, B. Pharmacokinetics of florfenicol and its metabolite florfenicol amine in crucian carp (Carassius auratus) at three temperatures after single oral administration. Aquaculture 2019, 503, 446–451. [Google Scholar] [CrossRef]
- Yang, P.; Wang, H.; Li, L.; Zhang, N.; Ma, Y. Determination and evaluation of bioavailability of vitamins from different multivitamin supplements using a pig model. Agriculture 2021, 11, 418. [Google Scholar] [CrossRef]
- Zhou, Y.; Sun, Z.; Wang, R.; Li, J.; Niu, C.; Li, X.; Feng, Y.; Sun, J.; Liu, Y.; Liao, X. Comparison of PK/PD targets and cutoff values for danofloxacin against Pasteurella multocida and haemophilus parasuis in piglets. Front. Vet. Sci. 2022, 9, 811967. [Google Scholar] [CrossRef] [PubMed]
- Goudah, A.; Mouneir, S.M. Disposition kinetics and tissue residues of danofloxacin in Muscovy ducks. Br. Poult. Sci. 2009, 50, 613–619. [Google Scholar] [CrossRef]
- Zeng, Z.; Deng, G.; Shen, X.; Rizwan-Ul-Haq, M.; Zeng, D.; Ding, H. Plasma and tissue pharmacokinetics of danofloxacin in healthy and in experimentally infected chickens with Pasteurella multocida. J. Vet. Pharmacol. Ther. 2011, 34, 101–104. [Google Scholar] [CrossRef]
- Knoll, U.; Glunder, G.; Kietzmann, M. Comparative study of the plasma pharmacokinetics and tissue concentrations of danofloxacin and enrofloxacin in broiler chickens. J. Vet. Pharmacol. Ther. 1999, 22, 239–246. [Google Scholar] [CrossRef]
- Wang, H.; Yang, F.; Song, Z.W.; Shao, H.T.; Bai, D.Y.; Ma, Y.B.; Kong, T.; Yang, F. The influence of immune stress induced by Escherichia coli lipopolysaccharide on the pharmacokinetics of danofloxacin in broilers. Poult. Sci. 2022, 101, 101629. [Google Scholar] [CrossRef] [PubMed]
- Haritova, A.M.; Rusenova, N.V.; Parvanov, P.R.; Lashev, L.D.; Fink-Gremmels, J. Pharmacokinetic-Pharmacodynamic modelling of danofloxacin in turkeys. Vet. Res. Commun. 2006, 30, 775–789. [Google Scholar] [CrossRef]
- Kum, C.; Gokbulut, C.; Sekkin, S.; Boyacioglu, M. Pharmacokinetics of danofloxacin following intravenous and intramuscular administration in donkeys. J. Vet. Pharmacol. Ther. 2009, 32, 105–108. [Google Scholar] [CrossRef]
- Escudero, E.; Cárceles, C.M.; Fernandez-Varon, E.; Marin, P.; Benchaoui, H. Pharmacokinetics of danofloxacin 18% in lactating sheep and goats. J. Vet. Pharmacol. Ther. 2007, 30, 572–577. [Google Scholar] [CrossRef]
- Haritova, A.; Dimitrova, D.; Dinev, T.; Moutafchieva, R.; Lashev, L. Comparative pharmacokinetics of enrofloxacin, danofloxacin, and marbofloxacin after intravenous and oral administration in Japanese quail (Coturnix coturnix japonica). J. Avian Med. Surg. 2013, 27, 23–31. [Google Scholar] [CrossRef]
- Corum, O.; Altan, F.; Yildiz, R.; Ider, M.; Ok, M.; Uney, K. Pharmacokinetics of enrofloxacin and danofloxacin in premature calves. J. Vet. Pharmacol. Ther. 2019, 42, 6. [Google Scholar] [CrossRef]
- Nix, D.E.; Goodwin, S.D.; Peloquin, C.A.; Rotella, D.L.; Schentag, J.J. Antibiotic tissue penetration and its relevance: Impact of tissue penetration on infection response. Antimicrob. Agents. Chemother. 1991, 35, 1953–1959. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Lan, W.; Wang, Y.; Jiang, L.; Jiang, Y.; Wang, Z. Comparative pharmacokinetics of danofloxacin in healthy and Pasteurella multocida infected ducks. J. Vet. Pharmacol. Ther. 2018, 41, 912–918. [Google Scholar] [CrossRef]
- Lynch, M.J.; Rice, J.R.; Ericson, J.F.; Mosher, F.R.; Millas, W.J.; Harran, L.P.; Frame, G.M.; Illyes, E.F.; Mcguirk, P.R.; Jefson, M.R.; et al. Residue depletion studies on danofloxacin in the chicken. J. Agric. Food Chem. 1994, 42, 289–294. [Google Scholar] [CrossRef]
- Corum, D.D.; Corum, O.; Tekeli, I.O.; Turk, E.; Kirgiz, F.C.; Uney, K. Pharmacokinetics and bioavailability of danofloxacin in swan geese (Anser cygnoides) following intravenous, intramuscular, subcutaneous, and oral administrations. J. Vet. Pharmacol. Ther. 2022, 45, 570–577. [Google Scholar] [CrossRef]
- Kroes, R. Book Review: Toxicological Evaluation of Certain Veterinary Drug Residues in Food Prepared by the Forty-eighth Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). WHO Food Additives. Hum. Exp. Toxicol. 1999, 18, 188–189. [Google Scholar] [CrossRef]
- Ozawa, M.; Baba, K.; Shimizu, Y.; Asai, T. Comparison of in vitro activities and pharmacokinetics/pharmacodynamics estimations of veterinary fluoroquinolones against avian pathogenic Escherichia coli isolates. Microb. Drug. Resist. 2010, 16, 327–332. [Google Scholar] [CrossRef]
Parameters | Unit | PO (All) | PO (Male) | PO (Female) | IV (All) | IV (Male) | IV (Female) |
---|---|---|---|---|---|---|---|
λz | 1/h | 0.07 ± 0.02 A | 0.06 ± 0.02 a | 0.07 ± 0.02 a | 0.08 ± 0.03 A | 0.08 ± 0.03 a | 0.08 ± 0.03 a |
t1/2λz | h | 11.24 ± 3.90 A | 12.30 ± 3.35 a | 10.17 ± 4.33 a | 10.17 ± 3.72 A | 10.12 ± 3.92 a | 10.23 ± 3.78 a |
Tmax | h | 4 | 4 a | 4 a | NA | NA | NA |
Cmax | µg/mL | 0.53 ± 0.19 | 0.50 ± 0.19 a | 0.57 ± 0.20 a | NA | NA | NA |
C0 | µg/mL | NA | NA | NA | 4.67 ± 1.15 | 5.03 ± 0.74 a | 4.32 ± 1.42 a |
AUC0-∞ | h·µg/mL | 4.72 ± 1.86 A | 3.82 ± 1.33 a | 5.62 ± 2.07 a | 11.76 ± 3.25 B | 11.02 ± 2.48 b | 12.50 ± 3.90 b |
AUC% | % | 2.34 ± 1.28 A | 2.60 ± 1.32 a | 2.08 ± 1.27 a | 1.29 ± 1.18 B | 1.20 ± 0.88 a | 1.39 ± 1.48 a |
AUMC0-∞ | h2·µg/mL | 49.94 ± 29.66 A | 37.14 ± 12.67 a | 62.74 ± 36.74 ab | 88.03 ± 60.99 B | 75.94 ± 21.52 b | 100.11 ± 84.69 b |
MRT | h | 10.20 ± 2.47 A | 9.81 ± 1.91 ab | 10.58 ± 3.02 a | 7.05 ± 1.97 B | 6.83 ± 0.66 bc | 7.26 ± 2.78 c |
Cl | mL/h/kg | NA | NA | NA | 446.86 ± 89.05 | 470.00 ± 91.03 a | 423.75 ± 86.51 a |
VZ | mL/kg | NA | NA | NA | 6590.63 ± 2900.10 | 7056.25 ± 3354.05 a | 6125.00 ± 2505.47 a |
VSS | mL/kg | NA | NA | NA | 3035.00 ± 428.84 | 3193.57 ± 528.39 a | 2876.25 ± 239.34 a |
MAT | h | 3.15 ± 2.47 | 2.15 ± 1.25 a | 4.18 ± 2.64 a | NA | NA | NA |
Ka | h | 0.32 ± 0.26 | 0.39 ± 0.32 a | 0.24 ± 0.14 a | NA | NA | NA |
t1/2ka | h | 2.37 ± 1.60 | 1.92 ± 1.32 a | 2.88 ± 1.83 a | NA | NA | NA |
F | % | 40.12 ± 15.83. | 32.45 ± 9.60 a | 47.78 ± 17.62 a | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.-C.; Yang, F.; Li, G.-H.; Duan, M.-H.; Li, Z.-E.; Dai, Y.; Zhang, M.; Yang, F. Pharmacokinetics of Danofloxacin in Gushi Chickens after Single Oral and Intravenous Administration. Metabolites 2023, 13, 906. https://doi.org/10.3390/metabo13080906
Chen J-C, Yang F, Li G-H, Duan M-H, Li Z-E, Dai Y, Zhang M, Yang F. Pharmacokinetics of Danofloxacin in Gushi Chickens after Single Oral and Intravenous Administration. Metabolites. 2023; 13(8):906. https://doi.org/10.3390/metabo13080906
Chicago/Turabian StyleChen, Jun-Cheng, Fang Yang, Guang-Hui Li, Ming-Hui Duan, Ze-En Li, Yan Dai, Mei Zhang, and Fan Yang. 2023. "Pharmacokinetics of Danofloxacin in Gushi Chickens after Single Oral and Intravenous Administration" Metabolites 13, no. 8: 906. https://doi.org/10.3390/metabo13080906
APA StyleChen, J. -C., Yang, F., Li, G. -H., Duan, M. -H., Li, Z. -E., Dai, Y., Zhang, M., & Yang, F. (2023). Pharmacokinetics of Danofloxacin in Gushi Chickens after Single Oral and Intravenous Administration. Metabolites, 13(8), 906. https://doi.org/10.3390/metabo13080906