Right Ventricular Subclinical Dysfunction in SLE Patients Correlates with Metabolomic Fingerprint and Organ Damage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Standard Echocardiography
2.2. The 3D Echocardiography
2.3. The 1H-NMR Spectroscopy
2.4. GC/MS
2.5. Multi-Variate Statistical Analysis
2.6. Univariate Statistical Analysis
3. Results
3.1. Standard and Advanced Echocardiography
3.2. Metabolomics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Kaplan, M.J. Cardiovascular disease in systemic lupus erythematosus: An update. Curr. Opin. Rheumatol. 2018, 30, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, Q.; Tian, Z.; Guo, X.; Lai, J.; Li, M.; Zhao, J.; Liu, Y.; Zeng, X.; Fang, Q. Right Ventricular Function is Associated With Quality of Life in Patients With Systemic Lupus Erythematosus Associated Pulmonary Arterial Hypertension. Heart Lung Circ. 2019, 28, 1655–1663. [Google Scholar] [CrossRef] [PubMed]
- Galiè, N.; Humbert, M.; Vachiery, J.L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Vonk Noordegraaf, A.; Beghetti, M.; et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur. Heart J. 2016, 37, 67–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buonauro, A.; Sorrentino, R.; Esposito, R.; Nappi, L.; Lobasso, A.; Santoro, C.; Rivellese, F.; Sellitto, V.; Rossi, F.W.; Liccardo, B.; et al. Three-dimensional echocardiographic evaluation of the right ventricle in patients with uncomplicated systemic lupus erythematosus. Lupus 2019, 28, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Tsokos, G.C. Autoimmunity and organ damage in systemic lupus erythematosus. Nat. Immunol. 2020, 21, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Dewachter, L.; Dewachter, C. Inflammation in right ventricular failure: Does it matter? Front. Physiol. 2018, 9, 1056. [Google Scholar] [CrossRef] [PubMed]
- Deidda, M.; Piras, C.; Bassareo, P.P.; Dessalvi, C.C.; Mercuro, G. Metabolomics, a promising approach to translational research in cardiology. IJC Metab. Endocr. 2015, 9, 31–38. [Google Scholar] [CrossRef]
- Deidda, M.; Piras, C.; Cadeddu Dessalvi, C.; Locci, E.; Barberini, L.; Orofino, S.; Musu, M.; Mura, M.N.; Manconi, P.E.; Finco, G.; et al. Distinctive metabolomic fingerprint in scleroderma patients with pulmonary arterial hypertension. Int. J. Cardiol. 2017, 241, 401–406. [Google Scholar] [CrossRef]
- Barberini, L.; Noto, A.; Fattuoni, C.; Satta, G.; Zucca, M.; Cabras, M.G.; Mura, E.; Cocco, P. The Metabolomic Profile of Lymphoma Subtypes: A Pilot Study. Molecules 2019, 24, 2367. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Wold, S. Scaling. In Introduction to Multi- and Megavariate Data Analysis Using Projection Methods (PCA & PLS); Umetrics: Umea, Sweden, 1999; pp. 213–225. [Google Scholar]
- Gladman, D.D.; Goldsmith, C.H.; Urowitz, M.B.; Bacon, P.; Fortin, P.; Ginzler, E.; Gordon, C.; Hanly, J.G.; Isenberg, D.A.; Petri, M.; et al. The Systemic Lupus International Collaborating Clinics/American College of Rheumatology (SLICC/ACR) Damage Index for systemic lupus erythematosus international comparison. J. Rheumatol. 2000, 27, 373–376. [Google Scholar]
- Gladman, D.; Ginzler, E.; Goldsmith, C.; Fortin, P.; Liang, M.; Urowitz, M.; Bacon, P.; Bombardieri, S.; Hanly, J.; Hay, E.; et al. The development and initial validation of the Systemic Lupus International Collaborating Clinics/American College of Rheumatology damage index for systemic lupus erythematosus. Arthritis Rheum. 1996, 39, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Gladman, D.D.; Ibanez, D.; Urowitz, M.B. Systemic lupus erythematosus disease activity index 2000. J. Rheumatol. 2002, 29, 288–291. [Google Scholar] [PubMed]
- Kaul, S.; Tei, C.; Hopkins, J.M.; Shah, P.M. Assessment of right ventricular function using two-dimensional echocardiography. Am. Heart J. 1984, 107, 526–531. [Google Scholar] [CrossRef]
- Ghio, S.; Raineri, C.; Scelsi, L.; Recusani, F.; D’armini, A.M.; Piovella, F.; Klersy, C.; Campana, C.; Viganò, M.; Tavazzi, L. Usefulness and limits of transthoracic echocardiography in the evaluation of patients with primary and chronic thromboembolic pulmonary hypertension. J. Am. Soc. Echocardiogr. 2002, 15, 1374–1380. [Google Scholar] [CrossRef] [PubMed]
- Altmann, K.; Printz, B.F.; Solowiejczyk, D.E.; Gersony, W.M.; Quaegebeur, J.; Apfel, H.D. Two-dimensional echocardiographic assessment of right ventricular function as a predictor of outcome in hypoplastic left heart syndrome. Am. J. Cardiol. 2000, 86, 964–968. [Google Scholar] [CrossRef]
- Lindström, L.; Wilkenshoff, U.M.; Larsson, H.; Wranne, B. Echocardiographic assessment of arrhythmogenic right ventricular cardiomyopathy. Heart 2001, 86, 31–38. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.; Farah, M.G.; Liner, A.; Fox, K.; Schluchter, M.; Hoit, B.D. The relation between quantitative right ventricular ejection fraction and indices of tricuspid annular motion and myocardial performance. J. Am. Soc. Echocardiogr. 2004, 17, 443–447. [Google Scholar] [CrossRef]
- Samad, B.A.; Alam, M.; Jensen-Urstad, K. Prognostic impact of right ventricular involvement as assessed by tricuspid annular motion in patients with acute myocardial infarction. Am. J. Cardiol. 2002, 90, 778–781. [Google Scholar] [CrossRef]
- Tektonidou, M.G.; Ioannidis, J.P.; Moyssakis, I.; Boki, K.A.; Vassiliou, V.; Vlachoyiannopoulos, P.G.; Kyriakidis, M.K.; Moutsopoulos, H.M. Right ventricular diastolic dysfunction in patients with anticardiolipin antibodies and antiphospholipid syndrome. Ann. Rheum. Dis. 2001, 60, 43–48. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, S.H.; Lee, C.Y.; Chang, S.M.; Lin, S.K.; Liu, C.P. Right Heart Function in Scleroderma: Insights from Myocardial Doppler Tissue Imaging. J. Am. Soc. Echocardiogr. 2006, 19, 507–514. [Google Scholar] [CrossRef]
- Leal, G.N.; Silva, K.F.; França, C.M.; Lianza, A.C.; Andrade, J.L.; Campos, L.M.; Bonfá, E.; Silva, C.A. Subclinical right ventricle systolic dysfunction in childhood-onset systemic lupus erythematosus: Insights from two-dimensional speckle-tracking echocardiography. Lupus 2015, 24, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Maffessanti, F.; Muraru, D.; Esposito, R.; Gripari, P.; Ermacora, D.; Santoro, C.; Tamborini, G.; Galderisi, M.; Pepi, M.; Badano, L.P. Age-, body size-, and sex-specific reference values for right ventricular volumes and ejection fraction by three-dimensional echocardiography: A multicenter echocardiographic study in 507 healthy volunteers. Circ. Cardiovasc. Imaging 2013, 6, 700–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Zhu, M.; Amacher, K.; Wu, X.; Sahn, D.J.; Ashraf, M. Non-invasive Evaluation of Right Ventricular Function with Real-Time 3-D Echocardiography. Ultrasound Med. Biol. 2017, 43, 2247–2255. [Google Scholar] [CrossRef] [PubMed]
- Vitarelli, A.; Barillà, F.; Capotosto, L.; D’Angeli, I.; Truscelli, G.; De Maio, M.; Ashurov, R. Right ventricular function in acute pulmonary embolism: A combined assessment by three-dimensional and speckle-tracking echocardiography. J. Am. Soc. Echocardiogr. 2014, 27, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Muraru, D.; Spadotto, V.; Cecchetto, G.; Aruta, P.; Ermacora, D.; Jenei, C.; Cucchini, U.; Iliceto, S.; Badano, L.P. New speckle-tracking algorithm for right ventricular volume analysis from three-dimensional echocardiographic data sets: Validation with cardiac magnetic resonance and comparison with the previous analysis tool. Eur. J. Echocardiogr. 2015, 17, 1279–1289. [Google Scholar] [CrossRef] [Green Version]
- Pieretti, J.; Roman, M.J.; Devereux, R.B.; Lockshin, M.D.; Crow, M.K.; Paget, S.A.; Schwartz, J.E.; Sammaritano, L.; Levine, D.M.; Salmon, J.E. Systemic lupus erythematosus predicts increased left ventricular mass. Circulation 2007, 116, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Lewis, R.A.; Johns, C.S.; Cogliano, M.; Capener, D.; Tubman, E.; Elliot, C.A.; Charalampopoulos, A.; Sabroe, I.; Thompson, A.A.R.; Billings, C.G.; et al. Identification of Cardiac Magnetic Resonance Imaging Thresholds for Risk Stratification in Pulmonary Arterial Hypertension. Am. J. Respir. Crit. Care Med. 2020, 201, 458–468. [Google Scholar] [CrossRef]
- Galloo, X.; Stassen, J.; Hirasawa, K.; Mertens, B.J.A.; Cosyns, B.; van der Bijl, P.; Delgado, V.; Ajmone Marsan, N.; Bax, J.J. Prognostic Implications of Right Ventricular Size and Function in Patients Undergoing Cardiac Resynchronization Therapy. Circ. Arrhythmia Electrophysiol. 2023, 16, e011676. [Google Scholar] [CrossRef]
- Kramer, D.G.; Trikalinos, T.A.; Kent, D.M.; Antonopoulos, G.V.; Konstam, M.A.; Udelson, J.E. Quantitative evaluation of drug or device effects on ventricular remodeling as predictors of therapeutic effects on mortality in patients with heart failure and reduced ejection fraction: A meta-analytic approach. J. Am. Coll. Cardiol. 2010, 56, 392–406. [Google Scholar] [CrossRef] [Green Version]
- Valli, F.; Bursi, F.; Santangelo, G.; Toriello, F.; Faggiano, A.; Rusconi, I.; Vella, A.M.; Carugo, S.; Guazzi, M. Long-Term Effects of Sacubitril-Valsartan on Cardiac Remodeling: A Parallel Echocardiographic Study of Left and Right Heart Adaptive Response. J. Clin. Med. 2023, 12, 2659. [Google Scholar] [CrossRef]
- Weckbach, L.T.; Stolz, L.; Chatfield, A.G.; Fam, N.P.; Stephan von Bardeleben, R.; Davidson, C.J.; Hahn, R.T.; Hausleiter, J. Right Ventricular Reverse Remodeling after Transcatheter Tricuspid Valve Replacement in Patients with Heart Failure. J. Am. Coll. Cardiol. 2023, 81, 708–710. [Google Scholar] [CrossRef] [PubMed]
- Dewachter, C.; Belhaj, A.; Rondelet, B.; Vercruyssen, M.; Schraufnagel, D.P.; Remmelink, M.; Brimioulle, S.; Kerbaul, F.; Naeije, R.; Dewachter, L. Myocardial inflammation in experimental acute right ventricular failure: Effects of prostacyclin therapy. J. Heart Lung Transplant. 2015, 34, 1334–1345. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.Y.; Nuñez, G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol. 2010, 10, 826–837. [Google Scholar] [CrossRef] [Green Version]
- Frieler, R.A.; Mortensen, R.M. Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation 2015, 131, 1019–1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mann, D.L. Innate immunity and the failing heart: The cytokine hypothesis revisited. Circ. Res. 2015, 116, 1254–1256. [Google Scholar] [CrossRef] [Green Version]
- Prabhu, S.D.; Frangogiannis, N.G. The biological basis for cardiac repair after myocardial infarction. Circ. Res. 2016, 119, 91–112. [Google Scholar] [CrossRef]
- Campian, M.E.; Hardziyenka, M.; de Bruin, K.; van Eck-Smit, B.L.; de Bakker, J.M.; Verberne, H.J.; Tan, H.L. Early inflammatory response during the development of right ventricular heart failure in a rat model. Eur. J. Heart Fail. 2010, 12, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Rondelet, B.; Dewachter, C.; Kerbaul, F.; Kang, X.; Fesler, P.; Brimioulle, S.; Naeije, R.; Dewachter, L. Prolonged overcirculation-induced pulmonary arterial hypertension as a cause of right ventricular failure. Eur. Heart J. 2012, 33, 1017–1026. [Google Scholar] [CrossRef] [Green Version]
- Deidda, M.; Piras, C.; Dessalvi, C.C.; Locci, E.; Barberini, L.; Torri, F.; Ascedu, F.; Atzori, L.; Mercuro, G. Metabolomic approach to profile functional and metabolic changes in heart failure. J. Transl. Med. 2015, 13, 297. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Ropero, A.; Santos-Gallego, C.G.; Zafar, M.U.; Badimon, J.J. Metabolism of the failing heart and the impact of SGLT2 inhibitors. Expert Opin. Drug Metab. Toxicol. 2019, 15, 275–285. [Google Scholar] [CrossRef]
- Ryan, J.J.; Archer, S.L. The Right Ventricle in Pulmonary Arterial Hypertension: Disorders of Metabolism, Angiogenesis and Adrenergic Signaling in Right Ventricular Failure. Circ. Res. 2014, 115, 176–188. [Google Scholar] [CrossRef] [Green Version]
- Piao, L.; Sidhu, V.K.; Fang, Y.H.; Ryan, J.J.; Parikh, K.S.; Hong, Z.; Toth, P.T.; Morrow, E.; Kutty, S.; Lopaschuk, G.D.; et al. FOXO1-mediated upregulation of pyruvate dehydrogenase kinase-4 (PDK4) decreases glucose oxidation and impairs right ventricular function in pulmonary hypertension: Therapeutic benefits of dichloroacetate. J. Mol. Med. 2013, 91, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Tchernyshyov, I.; Semenza, G.L.; Dang, C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006, 3, 177–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fowler, E.D.; Hauton, D.; Boyle, J.; Egginton, S.; Steele, D.S.; White, E. Energy Metabolism in the Failing Right Ventricle: Limitations of Oxygen Delivery and the Creatine Kinase System. Int. J. Mol. Sci. 2019, 20, 1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Meana, M.; Pina, P.; Garcia-Dorado, D.; Rodríguez-Sinovas, A.; Barba, I.; Miró-Casas, E.; Mirabet, M.; Soler-Soler, J. Glycine protects cardiomyocytes against lethal reoxygenation injury by inhibiting mitochondrial permeability transition. J. Physiol. 2004, 558 Pt 3, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Ost, M.; Keipert, S.; van Schothorst, E.M.; Donner, V.; van der Stelt, I.; Kipp, A.P.; Petzke, K.J.; Jove, M.; Pamplona, R.; Portero-Otin, M.; et al. Muscle mitohormesis promotes cellular survival via serine/glycine pathway flux. FASEB J. 2015, 29, 1314–1328. [Google Scholar] [CrossRef]
- Menendez-Montes, I.; Escobar, B.; Gomez, M.J.; Albendea-Gomez, T.; Palacios, B.; Bonzon-Kulichenko, E.; Izquierdo-Garcia, J.L.; Alonso, A.V.; Ferrarini, A.; Jimenez-Borreguero, L.J.; et al. Activation of amino acid metabolic program in cardiac HIF1-alpha-deficient mice. Iscience 2021, 24, 102124. [Google Scholar] [CrossRef]
- Zheng, H.K.; Zhao, J.H.; Yan, Y.; Lian, T.Y.; Ye, J.; Wang, X.J.; Wang, Z.; Jing, Z.C.; He, Y.Y.; Yang, P. Metabolic reprogramming of the urea cycle pathway in experimental pulmonary arterial hypertension rats induced by monocrotaline. Respir. Res. 2018, 19, 94. [Google Scholar] [CrossRef] [Green Version]
- Seta, Y.; Shan, K.; Bozkurt, B.; Oral, H.; Mann, D.L. Basic mechanisms in heart failure: The cytokine hypothesis. J. Card. Fail. 1996, 2, 243–249. [Google Scholar] [CrossRef]
- Italiani, P.; Manca, M.L.; Angelotti, F.; Melillo, D.; Pratesi, F.; Puxeddu, I.; Boraschi, D.; Migliorini, P. IL-1 family cytokines and soluble receptors in systemic lupus erythematosus. Arthritis Res. Ther. 2018, 20, 27. [Google Scholar] [CrossRef] [Green Version]
- Postal, M.; Appenzeller, S. The role of Tumor Necrosis Factor-alpha (TNF-α) in the pathogenesis of systemic lupus erythematosus. Cytokine 2011, 56, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Tackey, E.; Lipsky, P.E.; Illei, G.G. Rationale for interleukin-6 blockade in systemic lupus erythematosus. Lupus 2004, 13, 339–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Whole Population | SDI = 0 | SDI ≥ 3 | p-Value |
---|---|---|---|---|
Age (years) | 45.6 ± 12.2 | 42.9 ± 12.6 | 55.8 ± 10.6 | NS |
Male sex (%) | 10.3 | 12.5 | 20 | NS |
Height (cm) | 164 ± 7 | 165 ± 9 | 161 ± 7 | NS |
Weight (Kg) | 62.9 ± 11.4 | 64.7 ± 12.5 | 62.6 ± 12.2 | NS |
BMI (Kg/m2) | 23.4 ± 4.3 | 23.7 ± 4.5 | 24.1 ± 4.7 | NS |
CKD > stage 3 | 1 | 0 | 1 | NS |
Proteinuria | 3 | 3 | 0 | NS |
QRISK3 score | 11.7 ± 16.5 | 6.5 ± 4.0 | 24.8 ± 7.5 | 0.03 |
Prednisone (mg) | 9.2 ± 8.8 | 8.1 ± 11.4 | 10.1 ± 7.5 | NS |
SLEDAI | 6.0 ± 4.6 | 5.4 ± 5.1 | 5.8 ± 5.3 | NS |
Parameter | Whole Population | SDI = 0 | SDI ≥ 3 | p-Value |
---|---|---|---|---|
EDD (mm) | 44.9 ± 4.1 | 45.0 ± 0.7 | 43.4 ± 3.6 | NS |
IVS (mm) | 8.4 ± 1.1 | 8.4 ± 1.2 | 9.1 ± 0.8 | NS |
PW (mm) | 8.8 ± 1.3 | 8.5 ± 1.4 | 9.4 ± 1.1 | NS |
2D-LVEF (%) | 64.6 ± 4.4 | 64.5 ± 4.5 | 65.4 ± 5.6 | NS |
3D-EDVI (mL/m2) | 57.6 ± 4.7 | 57.3 ± 5.1 | 53.6 ± 4.9 | NS |
3D-ESVI (mL/m2) | 20.7 ± 3.9 | 20.9 ± 4.7 | 19.2 ± 4.2 | NS |
3D-LVEF (%) | 63.9 ± 5.1 | 63.5 ± 5.5 | 64.2 ± 4.8 | NS |
LAVI (mL/m2) | 26.9 ± 5.8 | 24.6 ± 5.4 | 30.7 ± 6.4 | NS |
E/E′ | 7.9 ± 1.5 | 7.8 ± 1.3 | 8.9 ± 1.2 | NS |
RV EDD (mm) | 30.8 ± 5.2 | 30.4 ± 2.8 | 35.5 ± 10.4 | NS |
RV EDV (mL) | 54.7 ± 14.1 | 54.3 ± 8.9 | 56.2 ± 26.2 | NS |
RV ESV (mL) | 24.6 ± 6.3 | 24.4 ± 3.9 | 27.5 ± 15.4 | NS |
RV S′ (cm/s) | 12.0 ± 2.3 | 12.7 ± 1.8 | 11.3 ± 2.6 | NS |
TAPSE (mm) | 20.9 ± 3.3 | 21.7 ± 3.1 | 18.0 ± 3.1 | <0.05 |
Right Atrium area (cm2) | 13.0 ± 2.8 | 12.6 ± 2.2 | 14.5 ± 4.6 | NS |
PAP (mmHg) | 25.2 ± 11.4 | 23.6 ± 5.4 | 36.7 ± 23.1 | NS |
SV/ESV | 1.28 ± 0.16 | 1.33 ± 0.14 | 1.11 ± 0.17 | <0.01 |
TAPSE/PAP (mm/mmHg) | 0.83 ± 0.13 | 0.92 ± 0.08 | 0.49 ± 0.26 | <0.01 |
Multi-Variate Statistical Models | RVEF | RVLS Septal | RVLS Free |
---|---|---|---|
R2X | 0.863 | 0.797 | 0.801 |
Q2 | 0.464 | 0.489 | 0.392 |
p-value (CV-ANOVA) | 0.01 | 0.005 | 0.022 |
Metabolite | VIP Value | p-Value |
---|---|---|
2,4-dihydroxybutyric acid | 1.23512 | ≤0.002 |
3,4-dihydroxybutyric acid | 1.53081 | ≤0.002 |
Citric acid | 1.15949 | ≤0.02 |
Glutamine | 1.0001 | ≤0.05 |
Glucose | 1.19069 | ≤0.001 |
Glycine | 1.46283 | ≤0.0001 |
Linoleic acid | 1.23842 | ≤0.0001 |
Oleic acid | 1.00864 | ≤0.0001 |
Phosphate | 1.13964 | ≤0.0001 |
Urea | 2.10386 | ≤0.02 |
Valine | 1.12079 | ≤0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deidda, M.; Noto, A.; Firinu, D.; Piras, C.; Cordeddu, W.; Depau, C.; Costanzo, G.; Del Giacco, S.; Atzori, L.; Mercuro, G.; et al. Right Ventricular Subclinical Dysfunction in SLE Patients Correlates with Metabolomic Fingerprint and Organ Damage. Metabolites 2023, 13, 781. https://doi.org/10.3390/metabo13070781
Deidda M, Noto A, Firinu D, Piras C, Cordeddu W, Depau C, Costanzo G, Del Giacco S, Atzori L, Mercuro G, et al. Right Ventricular Subclinical Dysfunction in SLE Patients Correlates with Metabolomic Fingerprint and Organ Damage. Metabolites. 2023; 13(7):781. https://doi.org/10.3390/metabo13070781
Chicago/Turabian StyleDeidda, Martino, Antonio Noto, Davide Firinu, Cristina Piras, William Cordeddu, Claudia Depau, Giulia Costanzo, Stefano Del Giacco, Luigi Atzori, Giuseppe Mercuro, and et al. 2023. "Right Ventricular Subclinical Dysfunction in SLE Patients Correlates with Metabolomic Fingerprint and Organ Damage" Metabolites 13, no. 7: 781. https://doi.org/10.3390/metabo13070781
APA StyleDeidda, M., Noto, A., Firinu, D., Piras, C., Cordeddu, W., Depau, C., Costanzo, G., Del Giacco, S., Atzori, L., Mercuro, G., & Cadeddu Dessalvi, C. (2023). Right Ventricular Subclinical Dysfunction in SLE Patients Correlates with Metabolomic Fingerprint and Organ Damage. Metabolites, 13(7), 781. https://doi.org/10.3390/metabo13070781