Comparison of Black Tea Waste and Legume Roughages: Methane Mitigation and Rumen Fermentation Parameters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Method
2.3. Statistical Analysis
3. Results
3.1. Chemical Composition
3.2. In Vitro Gas (mL) and Methane Production (mL, %)
3.3. MP, OMD, ME, and NEL Levels of Feeds
3.4. DMD, DMI, and RFV Results of Feeds
3.5. The Effect of Feeds on Rumen Volatile Fatty Acid Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salami, S.A.; Luciano, G.; O’Grady, M.N.; Biondi, L.; Newbold, C.J.; Kerry, J.P.; Priolo, A. Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Anim. Feed Sci. Technol. 2019, 251, 37–55. [Google Scholar] [CrossRef]
- Georganas, A.; Giamouri, E.; Pappas, A.C.; Papadomichelakis, G.; Galliou, F.; Manios, T.; Zervas, G. Bioactive compounds in food waste: A review on the transformation of food waste to animal feed. Foods 2020, 9, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondo, M.; Hirano, Y.; Ikai, N.; Kita, K.; Jayanegara, A.; Yokota, H.O. Assessment of anti-nutritive activity of tannins in tea by-products based on in vitro rumen fermentation. Asian-Australas. J. Anim. Sci. 2014, 27, 1571–1576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, M.A.S.; Karslı, M.A. The Effects of Some Feed Additives in Nutrition of Ruminant Animals. Int. J. Vet. Anim. Res. 2022, 5, 107–112. [Google Scholar]
- Wang, C.; Zhang, C.; Yan, T.; Chang, S.; Zhu, W.; Wanapat, M.; Hou, F. Increasing roughage quality by using alfalfa hay as a substitute for concentrate mitigates CH4 emissions and urinary N and ammonia excretion from dry ewes. J. Anim. Physiol. Anim. Nut. 2020, 104, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Abbood, H.N.; Hasnawi, S.F.; Hassain, A.S. The use of consumed black tea waste as natural adsorbent in removing the methylene blue dye. Plant Arch. 2020, 20, 2525–2529. [Google Scholar]
- Çelebi, Ş.; Kaya, A.; Kaya, H.; Gül, M.; Yıldırım, B.A.; Macit, M. The effects of black tea factory waste supplementation into laying hen diets on performance, egg quality, yolk peroxidation, and blood parameters. Kafkas Üni. Vet. Fak. Derg. 2014, 20, 375–382. [Google Scholar] [CrossRef]
- Nasehi, M.M.; Torbatinejad, N.M.; Rezaie, M.; Ghoorchi, T. Effect of polyethylene glycol addition on nutritive value of green and black tea co-products in ruminant nutrition. Asian J. Anim. Vet. Adv. 2017, 12, 254–260. [Google Scholar] [CrossRef] [Green Version]
- Canbolat, Ö.; Kalkan, H.; Karaman, Ş.; Filya, İ. Esansiyel yağların sindirim, rumen fermantasyonu ve mikrobiyal protein üretimi üzerine etkileri. Kafkas Üni. Vet. Fak. Derg. 2011, 17, 557–565. [Google Scholar]
- Besharati, M.; Palangi, V.; Salem, A.Z.M.; De Palo, P.; Lorenzo, J.M.; Maggiolino, A. Substitution of raw lucerne with raw citrus lemon by-product in silage: In vitro apparent digestibility and gas production. Front. Vet. Sci. 2022, 9, 1672. [Google Scholar] [CrossRef]
- Koenig, K.M.; Beauchemin, K.A. Effect of feeding condensed tannins in high protein finishing diets containing corn distillers grains on ruminal fermentation, nutrient digestibility, and route of nitrogen excretion in beef cattle. J. Anim. Sci. 2018, 96, 4398–4413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smeriglio, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Proanthocyanidins and hydrolysable tannins: Occurrence, dietary intake and pharmacological effects. Br. J. Pharmacol. 2017, 174, 1244–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gheshlagh, N.S.; Paya, H.; Taghizadeh, A.; Mohammadzadeh, H.; Palangi, V.; Mehmannavaz, Y. Comparative effects of extracted polyphenols from black and green tea wastes on in-vitro fermentability of feed ingredients. Semin. Ciências Agrárias 2021, 42, 2005–2022. [Google Scholar] [CrossRef]
- Petlum, A.; Paengkoum, P.; Liang, J.B.; Vasupen, K. Molecular weight of condensed tannins of some tropical feed-leaves and their effect on in vitro gas and methane production. Anim. Prod. Sci. 2019, 59, 2154. [Google Scholar] [CrossRef]
- Mehansho, H.; Butler, L.G.; Carlson, D.M. Dietary tannins and salivary proline-rich proteins: Interactions, induction, and defense mechanisms. Annu. Rev. Nutr. 1987, 7, 423–440. [Google Scholar] [CrossRef] [PubMed]
- Palangi, V.; Macit, M. Indictable Mitigation of Methane Emission Using Some Organic Acids as Additives towards a Clean-er Ecosystem. Waste Biomass Valori. 2021, 12, 4825–4834. [Google Scholar] [CrossRef]
- Denninger, T.; Schwarm, A.; Birkinshaw, A.; Terranova, M.; Dohme-Meier, F.; Münger, A.; Eggerschwiler, L.; Bapst, B.; Wegmann, S.; Clauss, M.; et al. Immediate effect of Acacia mearnsii tannins on methane emissions and milk fatty acid pro-files of dairy cows. Anim. Feed Sci. Technol. 2020, 261, 114388. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in ration to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Goel, G.; Makkar, H.P.S.; Becker, K. Effect of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenum-graecum L.) seeds and their extract on partitioning of nutrients from roughage-and concentrate-based feeds to methane. Anim. Feed Sci. Technol. 2008, 147, 72–89. [Google Scholar] [CrossRef]
- Rohweder, D.A.; Barnes, R.F.; Jorgensen, N. Proposed hay grading standards based on laboratory analyses for evaluating quality. J Anim Sci. 1978, 47, 747–759. [Google Scholar] [CrossRef]
- Blümmel, M.; Ørskov, E.R. Comparison of in vitro gas production and nylon bag degradability of roughages in predicting of food intake in cattle. Anim. Feed Sci. Technol. 1993, 40, 109–119. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Blummel, M.; Becker, K. Formation of complexes between polyvinyl pyrrolidone or polyethylene glycols and tannins and their implication in gas production and true digestibility in in vitro techniques. Br. J. Nut. 1995, 73, 897–913. [Google Scholar] [CrossRef] [Green Version]
- Makkar, H.P.S.; Blümmel, M.; Becker, K. In vitro rumen apparent and true digestibilities of tannin-rich forages. Anim. Feed Sci. Technol. 1997, 67, 245–251. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Sharma, O.P.; Dawra, R.K.; Negi, S.S. Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 1982, 65, 2170–2173. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J.; Robertson, J.B. A Laboratory Manual for Animal Science 612; Cornell University: Ithaca, NY, USA, 1985. [Google Scholar]
- Canbolat, Ö. Yemlerin Bulundukları Yere Göre Örnek Alma ve Yem Analizleri. In Yem Analiz Yöntemleri ve Yem Değerlendirme, 1; Bakı Medyay Kitapevi: Bursa, Türkiye, 2019. [Google Scholar]
- Wiedmeier, R.D.; Arambell, M.J.; Walters, J.L. Effect of orally administered pilocarpine on ruminal characteristics and nutrient digestibility in cattle. J. Dairy Sci. 1987, 70, 284–289. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W. Statistical Methods; The Iowa State University Press: Ames, IA, USA, SPSS for windows release 17.0; SPSS Inc.: Chicago, IL, USA, 1976. [Google Scholar]
- Filya, İ.; Karabulut, A.; Canbolat, Ö.; Değirmencioğlu, T.; Kalkan, H. Bursa bölgesinde yetiştirilen yem hammaddelerinin besleme değeri ve hayvansal organizmada optimum değerlendirilme koşullarının in vivo ve in vitro yöntemlerle saptanması üzerinde araştırmalar. Uludağ Üni. Ziraat Fak. Bilim. Araşt. İncele. Ser. 2002, 25, 1–16. [Google Scholar]
- Blümmel, M.; Zerbini, E.; Reddy, B.V.S.; Hash, C.T.; Bidinger, F.; Khan, A.A. Improving the production and utilization of sorghum and pearl millet as livestock feed: Progress towards dual-purpose genotypes. Field Crops Res. 2003, 84, 143–158. [Google Scholar] [CrossRef] [Green Version]
- Canbolat, Ö.; Kara, H.; Filya, İ. Bazı baklagil kaba yemlerinin in vitro gaz üretimi, metabolik enerji, organik madde sindirimi ve mikrobiyal protein üretimlerinin karşılaştırılması. Uludağ Üni. Ziraat Fak. Derg. 2013, 27, 71–81. [Google Scholar]
- Kamalak, A.; Canbolat, Ö.; Gürbüz, Y.; Özay, O.; Erer, M.; Özkan, Ç.Ö. Kondense taninin rumimant hayvanlar üzerindeki etkileri hakkında bir inceleme. KSÜ Fen Müh Derg. 2005, 8, 132–137. [Google Scholar]
- Palangi, V.; Taghizadeh, A.; Abachi, S.; Lackner, M. Strategies to mitigate enteric methane emissions in ruminants: A Review. Sustainability 2022, 14, 13229. [Google Scholar] [CrossRef]
- Kamalak, A.; Canbolat, O.; Gürbüz, Y.; Erol, A.; Ozay, O. Variation in metabolizable energy content of forages estimated using in vitro gas production technique. Pak. J. Bio. Sci. 2004, 7, 601–605. [Google Scholar]
- Karabulut, A.; Canbolat, O.; Kalkan, H.; Gurbuzol, F.; Sucu, E.; Filya, I. Comparison of in vitro gas production, metabolizable energy, organic matter digestibility and microbial protein production of some legume hays. Asian-Australas. J. Anim. Sci. 2007, 20, 517–522. [Google Scholar] [CrossRef]
- Canbolat, Ö.; Karaman, Ş. Comparison of in vitro gas production, organic matter digestibility, relative feed value and metabolizable energy contents of some legume forages. J. Agric. Sci. 2009, 15, 188–195. [Google Scholar]
- Redfearn, D.; Zhang, H.; Caddel, J.; Forage Quality Interpretations. Oklahoma Cooperative Extension Service F2117. 2017. Available online: http://pods.dasnr.okstate.edu/docushare/dsweb/Get/Document-2557/F-2117web.pdf.2006 (accessed on 30 August 2022).
- Adesogan, A.T.; Sollenberger, L.E.; Moore, J.E. Forage Quality. In Florida Forages Handbook; Chambliss, C.G., Adjei, M.B., Eds.; University of Florida: Gainesville, FL, USA, 2006; Cooperative Extension Services. [Google Scholar]
- Olijhoek, D.W.; Hellwing, A.L.F.; Brask, M.; Weisbjerg, M.R.; Højberg, O.; Larsen, M.K.; Dijkstra, J.; Erlandsen, E.J.; Lund, P. Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows. J. Dairy Sci. 2016, 99, 6191–6205. [Google Scholar] [CrossRef] [Green Version]
- Derix, J. The Effect of High Tannin Concentrations in Feed on Protein Digestion: Grazers Versus Intermediate Browsers; Ghent University: Ghent, Belgium, 2017. [Google Scholar]
- Samal, L.; Chaudhary, L.C.; Agarwal, N.; Kamra, D.N. Impact of phytogenic feed additives on growth performance, nutrient digestion and methanogenesis in growing buffaloes. Anim. Prod. Sci. 2018, 58, 1056–1063. [Google Scholar] [CrossRef]
- Adejoro, F.A.; Hassen, A.; Akanmu, A.M. Effect of lipid-encapsulated acacia tannin extract on feed intake, nutrient digestibility and methane emission in sheep. Animals 2019, 9, 863. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhang, Y.; Li, Z.; Zhang, C.; Tan, X.; Liu, X.; Lee, D.J. Anaerobic co-digestion of food waste/excess sludge: Substrates-products transformation and role of NADH as an indicator. J. Environ. Man. 2019, 232, 197–206. [Google Scholar] [CrossRef]
- Costa, E.D.S.; Ribiero, C.V.D.M.; Silva, T.M.; Ribeiro, R.D.X.; Vieira, J.F.; Lima, A.D.O.; Oliveira, R.L. Intake, nutrient digestibility, nitrogen balance, serum metabolites and growth performance of lambs supplemented with Acacia mearnsii condensed tannin extract. Anim. Feed Sci. Technol. 2021, 272, 114744. [Google Scholar] [CrossRef]
- Besharati, M.; Maggiolino, A.; Palangi, V.; Kaya, A.; Jabbar, M.; Eseceli, H.; Lorenzo, J.M. Tannin in Ruminant Nutrition. Molecules 2022, 27, 8273. [Google Scholar] [CrossRef] [PubMed]
- Mueller-Harvey, I.; McAllan, A.B. Tannins: Their biochemistry and nutritional properties. Adv. Plant Cell Biochem. Biotechnol. 1992, 1, 151–217. [Google Scholar]
- Scalbert, A. Antimicrobial properties of tannins. Phytochemistry 1991, 30, 3875–3883. [Google Scholar] [CrossRef]
Feed | DM | CA | CP | EE | NDF | ADF | ADL |
---|---|---|---|---|---|---|---|
BTW | 92.19 | 4.59 d | 16.51 b | 1.35 b | 60.21 ab | 43.29 a | 26.98 a |
Sainfoin | 92.05 | 7.24 b | 15.97 bc | 1.86 b | 63.99 a | 35.67 b | 15.99 b |
Clover | 92.16 | 6.86 c | 14.34 c | 1.98 ab | 58.60 b | 32.57 c | 14.27 b |
Alfalfa | 91.96 | 14.77 a | 22.48 a | 2.73 a | 48.77 c | 21.64 d | 8.87 c |
SEM | 0.11 | 0.05 | 0.60 | 0.24 | 1.19 | 0.37 | 0.72 |
p | 0.450 | <0.001 | <0.001 | 0.020 | <0.001 | <0.001 | <0.001 |
Feed | GP (mL) | Methane (mL) | Methane (%) |
---|---|---|---|
BTW | 28.44 c | 3.44 c | 12.09 b |
Sainfoin | 59.04 a | 8.46 a | 14.34 a |
Clover | 54.00 a | 8.03 ab | 14.89 a |
Alfalfa | 42.84 b | 6.88 b | 15.95 a |
SEM | 2.15 | 0.44 | 0.52 |
p | <0.001 | <0.001 | 0.005 |
Feeds | OMD (%) | ME (MJ/kg DM) | NEL (MJ/kg DM) | MP (mg/mL) | IVTOMD (%) |
---|---|---|---|---|---|
BTW | 40.71 c | 7.01 c | 3.87 c | 108.49 b | 46.87 c |
Sainfoin | 66.72 a | 11.13 a | 6.99 a | 118.17 b | 57.83 b |
Clover | 62.34 a | 10.36 a | 6.41 ab | 154.03 a | 54.65 b |
Alfalfa | 53.93 b | 9.32 b | 5.78 b | 115.10 b | 62.93 a |
SEM | 1.82 | 0.29 | 0.22 | 4.37 | 1.30 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Feeds | DMD (%) | DMI | RFV (%) | FC |
---|---|---|---|---|
BTW | 55.18 d | 2.36 a | 101.10 bc | 3 |
Sainfoin | 61.11 c | 2.02 b | 95.58 c | 3 |
Clover | 63.53 b | 2.20 ab | 108.22 ab | 2 |
Alfalfa | 72.04 a | 2.12 b | 118.61 a | 2 |
SEM | 0.29 | 0.06 | 3.29 | |
p | <0.001 | 0.024 | 0.006 |
Feed | AA mmol/L | PA mmol/L | BA mmol/L | AA % | PA % | BA % | TVFAmmol/lt |
---|---|---|---|---|---|---|---|
BTW | 46.82 c | 10.85 d | 6.96 c | 69.58 a | 16.12 b | 10.34 b | 67.29 c |
Sainfoin | 52.36 b | 13.46 c | 10.37 b | 65.71 b | 16.87 b | 13.01 a | 79.71 b |
Clover | 57.00 a | 15.06 b | 12.43 a | 65.23 b | 17.24 b | 14.22 a | 87.38 a |
Alfalfa | 56.60 a | 17.20 a | 9.79 b | 63.56 c | 19.31 a | 11.00 b | 89.05 a |
SEM | 0.58 | 0.43 | 0.40 | 0.40 | 0.41 | 0.46 | 0.92 |
p | <0.001 | <0.001 | <0.001 | <0.001 | 0.003 | 0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sezmis, G.; Kaya, A.; Kaya, H.; Macit, M.; Erten, K.; Palangi, V.; Lackner, M. Comparison of Black Tea Waste and Legume Roughages: Methane Mitigation and Rumen Fermentation Parameters. Metabolites 2023, 13, 731. https://doi.org/10.3390/metabo13060731
Sezmis G, Kaya A, Kaya H, Macit M, Erten K, Palangi V, Lackner M. Comparison of Black Tea Waste and Legume Roughages: Methane Mitigation and Rumen Fermentation Parameters. Metabolites. 2023; 13(6):731. https://doi.org/10.3390/metabo13060731
Chicago/Turabian StyleSezmis, Gurkan, Adem Kaya, Hatice Kaya, Muhlis Macit, Kadir Erten, Valiollah Palangi, and Maximilian Lackner. 2023. "Comparison of Black Tea Waste and Legume Roughages: Methane Mitigation and Rumen Fermentation Parameters" Metabolites 13, no. 6: 731. https://doi.org/10.3390/metabo13060731
APA StyleSezmis, G., Kaya, A., Kaya, H., Macit, M., Erten, K., Palangi, V., & Lackner, M. (2023). Comparison of Black Tea Waste and Legume Roughages: Methane Mitigation and Rumen Fermentation Parameters. Metabolites, 13(6), 731. https://doi.org/10.3390/metabo13060731