Novel Expression of GLUT3, GLUT6 and GLUT10 in Equine Gluteal Muscle Following Glycogen-Depleting Exercise: Impact of Dietary Starch and Fat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Diet Composition and Intake
2.3. Blood Glucose
2.4. Muscle Biopsies
2.5. Glycogen Assay
2.6. Transcriptomic Analysis
2.6.1. RNA Extraction and Sequencing
2.6.2. Mapping and Assembling
2.6.3. RNA-Seq Count Normalization and Transformation
2.6.4. DE of Genes Impacting GLUT4 Translocation and Transcription
2.6.5. DE of All Genes Encoding Glucose Transporters
2.6.6. Impact of Diet on Glucose Transporter Transcript Expression
3. Statistical Analysis
4. Results
4.1. Glycemic Index and Horses
4.2. Blood Glucose
4.3. Muscle Glycogen Concentrations
4.4. Transcriptomics
4.4.1. Differential Expression Analyses
4.4.2. Differential Expression of Genes Impacting GLUT4 Translocation
4.4.3. Differential Expression of Genes Impacting GLUT4 Transcriptional Activation or Repression
4.4.4. Differential Expression of Other Glucose Transporters
4.4.5. Glucose Transporter Expression
5. Discussion
5.1. GLUT4 Translocation
5.2. GLUT4 Expression
5.3. Limitations to Glycogen Repletion in Horses
5.4. Expression of Other Glucose Transporter
5.5. Effect of Diet
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costill, D.; Sherman, W.; Fink, W.; Maresh, C.; Witten, M.; Miller, J. The role of dietary carbohydrates in muscle glycogen resynthesis after strenuous running. Am. J. Clin. Nutr. 1981, 34, 1831–1836. [Google Scholar] [CrossRef] [PubMed]
- Richter, E.A.; Hargreaves, M. Exercise, GLUT4, and Skeletal Muscle Glucose Uptake. Physiol. Rev. 2013, 93, 993–1017. [Google Scholar] [CrossRef] [PubMed]
- Hingst, J.R.; Bruhn, L.; Hansen, M.B.; Rosschou, M.F.; Birk, J.B.; Fentz, J.; Foretz, M.; Viollet, B.; Sakamoto, K.; Færgeman, N.J. Exercise-induced molecular mechanisms promoting glycogen supercompensation in human skeletal muscle. Mol. Metab. 2018, 16, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Ryder, J.W.; Yang, J.; Galuska, D.; Rincon, J.; Björnholm, M.; Krook, A.; Lund, S.; Pedersen, O.; Wallberg-Henriksson, H.; Zierath, J.R. Use of a novel impermeable biotinylated photolabeling reagent to assess insulin-and hypoxia-stimulated cell surface GLUT4 content in skeletal muscle from type 2 diabetic patients. Diabetes 2000, 49, 647–654. [Google Scholar] [CrossRef]
- Flores-Opazo, M.; McGee, S.L.; Hargreaves, M. Exercise and GLUT4. Exerc. Sport Sci. Rev. 2020, 48, 110–118. [Google Scholar] [CrossRef]
- Hussey, S.; McGee, S.L.; Garnham, A.; McConell, G.; Hargreaves, M. Exercise increases skeletal muscle GLUT4 gene expression in patients with type 2 diabetes. Diabetes Obes. Metab. 2012, 14, 768–771. [Google Scholar] [CrossRef]
- Kuo, C.; Browning, K.; Ivy, J. Regulation of GLUT4 protein expression and glycogen storage after prolonged exercise. Acta Physiol. Scand. 1999, 165, 193–201. [Google Scholar] [CrossRef]
- Snow, D.; Harris, R. Effects of daily exercise on muscle glycogen in the Thoroughbred racehorse. Equine Exerc. Physiol. 1991, 3, 299–304. [Google Scholar]
- Hyyppä, S.; Räsänen, L.A.; Pösö, A.R. Resynthesis of glycogen in skeletal muscle from standardbred trotters after repeated bouts of exercise. Am. J. Vet. Res. 1997, 58, 162–166. [Google Scholar]
- Lacombe, V.A.; Hinchcliff, K.W.; Kohn, C.W.; Devor, S.T.; Taylor, L.E. Effects of feeding meals with various soluble-carbohydrate content on muscle glycogen synthesis after exercise in horses. Am. J. Vet. Res. 2004, 65, 916–923. [Google Scholar] [CrossRef]
- Lacombe, V.A.; Hinchcliff, K.W.; Geor, R.J.; Baskin, C.R. Muscle glycogen depletion and subsequent replenishment affect anaerobic capacity of horses. J. Appl. Physiol. 2001, 91, 1782–1790. [Google Scholar] [CrossRef]
- Davie, A.; Evans, D.; Hodgson, D.; Rose, R. Effects of intravenous dextrose infusion on muscle glycogen resynthesis after intense exercise. Equine Vet. J. 1995, 27, 195–198. [Google Scholar] [CrossRef]
- Duehlmeier, R.; Hacker, A.; Widdel-Bigdely, A.; von Engelhardt, W.; Sallmann, H.-P. Insulin stimulates GLUT4 translocation in the semitendinosus muscle of Shetland ponies. Vet. J. 2010, 184, 176–181. [Google Scholar] [CrossRef]
- de Laat, M.; Clement, C.; Sillence, M.; McGowan, C.; Pollitt, C.; Lacombe, V. The impact of prolonged hyperinsulinaemia on glucose transport in equine skeletal muscle and digital lamellae. Equine Vet. J. 2015, 47, 494–501. [Google Scholar] [CrossRef]
- Uldry, M.; Thorens, B. The SLC2 family of facilitated hexose and polyol transporters. Pflügers Arch. 2004, 447, 480–489. [Google Scholar] [CrossRef]
- Joost, H.-G.; Thorens, B. The extended GLUT-family of sugar/polyol transport facilitators: Nomenclature, sequence characteristics, and potential function of its novel members. Mol. Membr. Biol. 2001, 18, 247–256. [Google Scholar] [CrossRef]
- Waller, A.; Burns, T.; Mudge, M.; Belknap, J.; Lacombe, V. Insulin resistance selectively alters cell-surface glucose transporters but not their total protein expression in equine skeletal muscle. J. Vet. Intern. Med. 2011, 25, 315–321. [Google Scholar] [CrossRef]
- Lacombe, V.A. Expression and regulation of facilitative glucose transporters in equine insulin-sensitive tissue: From physiology to pathology. Int. Sch. Res. Not. 2014, 2014, 409547. [Google Scholar] [CrossRef]
- Valberg, S.; Essen-Gustavsson, B.; Lindholm, A.; Persson, S. Energy metabolism in relation to skeletal muscle fibre properties during treadmill exercise. Equine Vet. J. 1985, 17, 439–444. [Google Scholar] [CrossRef]
- Williams, Z.J.; Velez-Irizarry, D.; Petersen, J.L.; Ochala, J.; Finno, C.J.; Valberg, S.J. Candidate gene expression and coding sequence variants in Warmblood horses with myofibrillar myopathy. Equine Vet. J. 2021, 53, 306–315. [Google Scholar] [CrossRef]
- Smeds, L.; Künstner, A. ConDeTri-a content dependent read trimmer for Illumina data. PLoS ONE 2011, 6, e26314. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.; Li, M.; Zou, Y.; Wu, F.-X.; Pan, Y.; Wang, J. An efficient trimming algorithm based on multi-feature fusion scoring model for NGS data. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 17, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Pertea, G.; Trapnell, C.; Pimentel, H.; Kelley, R.; Salzberg, S.L. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013, 14, R36. [Google Scholar] [CrossRef] [PubMed]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Genome Project Data Processing, S. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Law, C.W.; Chen, Y.; Shi, W.; Smyth, G.K. voom: Precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014, 15, R29. [Google Scholar] [CrossRef]
- Liu, R.; Holik, A.Z.; Su, S.; Jansz, N.; Chen, K.; Leong, H.S.; Blewitt, M.E.; Asselin-Labat, M.L.; Smyth, G.K.; Ritchie, M.E. Why weight? Modelling sample and observational level variability improves power in RNA-seq analyses. Nucleic Acids Res. 2015, 43, e97. [Google Scholar] [CrossRef]
- Robinson, M.D.; Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010, 11, R25. [Google Scholar] [CrossRef]
- McCarthy, D.J.; Chen, Y.; Smyth, G.K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012, 40, 4288–4297. [Google Scholar] [CrossRef]
- Ho, K. A critically swift response: Insulin-stimulated potassium and glucose transport in skeletal muscle. Clin. J. Am. Soc. Nephrol. 2011, 6, 1513–1516. [Google Scholar] [CrossRef]
- Taniguchi, C.M.; Emanuelli, B.; Kahn, C.R. Critical nodes in signalling pathways: Insights into insulin action. Nat. Rev. Mol. Cell Biol. 2006, 7, 85–96. [Google Scholar] [CrossRef]
- Im, S.S.; Kwon, S.K.; Kim, T.H.; Kim, H.i.; Ahn, Y.H. Regulation of glucose transporter type 4 isoform gene expression in muscle and adipocytes. IUBMB Life 2007, 59, 134–145. [Google Scholar] [CrossRef]
- Michael, L.F.; Wu, Z.; Cheatham, R.B.; Puigserver, P.; Adelmant, G.; Lehman, J.J.; Kelly, D.P.; Spiegelman, B.M. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc. Natl. Acad. Sci. USA 2001, 98, 3820–3825. [Google Scholar] [CrossRef]
- Karnieli, E.; Armoni, M. Transcriptional regulation of the insulin-responsive glucose transporter GLUT4 gene: From physiology to pathology. Am. J. Physiol.-Endocrinol. Metab. 2008, 295, E38–E45. [Google Scholar] [CrossRef]
- Harriet Wallberg-Henriksson, J.R.Z. GLUT4: A key player regulating glucose homeostasis? Insights from transgenic and knockout mice. Mol. Membr. Biol. 2001, 18, 205–211. [Google Scholar] [CrossRef]
- McMillin, S.L.; Schmidt, D.L.; Kahn, B.B.; Witczak, C.A. GLUT4 Is Not Necessary for Overload-Induced Glucose Uptake or Hypertrophic Growth in Mouse Skeletal Muscle. Diabetes 2017, 66, 1491–1500. [Google Scholar] [CrossRef]
- Ren, J.-M.; Semenkovich, C.F.; Gulve, E.A.; Gao, J.; Holloszy, J.O. Exercise induces rapid increases in GLUT4 expression, glucose transport capacity, and insulin-stimulated glycogen storage in muscle. J. Biol. Chem. 1994, 269, 14396–14401. [Google Scholar] [CrossRef]
- MacLean, P.S.; Zheng, D.; Jones, J.P.; Olson, A.L.; Dohm, G.L. Exercise-induced transcription of the muscle glucose transporter (GLUT 4) gene. Biochem. Biophys. Res. Commun. 2002, 292, 409–414. [Google Scholar] [CrossRef]
- Dela, F.; Handberg, A.; Mikines, K.; Vinten, J.; Galbo, H. GLUT 4 and insulin receptor binding and kinase activity in trained human muscle. J. Physiol. 1993, 469, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Kraniou, G.N.; Cameron-Smith, D.; Hargreaves, M. Acute exercise and GLUT4 expression in human skeletal muscle: Influence of exercise intensity. J. Appl. Physiol. 2006, 101, 934–937. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, T.H., IV; Brozinick, J.T., Jr.; Larkin, L.M.; Cushman, S.W. Transient enhancement of GLUT-4 levels in rat epitrochlearis muscle after exercise training. J. Appl. Physiol. 2000, 88, 2240–2245. [Google Scholar] [CrossRef] [PubMed]
- Nout, Y.S.; Hinchcliff, K.W.; Jose-Cunilleras, E.; Dearth, L.R.; Sivko, G.S.; DeWille, J.W. Effect of moderate exercise immediately followed by induced hyperglycemia on gene expression and content of the glucose transporter-4 protein in skeletal muscles of horses. Am. J. Vet. Res. 2003, 64, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
- McCutcheon, L.; Geor, R.; Hinchcliff, K. Changes in skeletal muscle GLUT4 content and muscle membrane glucose transport following 6 weeks of exercise training. Equine Vet. J. 2002, 34, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Oshel, K.M.; Knight, J.B.; Cao, K.T.; Thai, M.V.; Olson, A.L. Identification of a 30-base pair regulatory element and novel DNA binding protein that regulates the human GLUT4 promoter in transgenic mice. J. Biol. Chem. 2000, 275, 23666–23673. [Google Scholar] [CrossRef]
- Thai, M.V.; Guruswamy, S.; Cao, K.T.; Pessin, J.E.; Olson, A.L. Myocyte Enhancer Factor 2 (MEF2)-Binding Site Is Required forGLUT4 Gene Expression in Transgenic Mice: Regulation of MEF2 DNA binding activity in insulin deficient diabetes. J. Biol. Chem. 1998, 273, 14285–14292. [Google Scholar] [CrossRef]
- Albuquerque, A.L.H.; Delfiol, D.J.Z.; Andrade, D.G.A.; Albertino, L.G.; Sonne, L.; Borges, A.S.; Valberg, S.J.; Finno, C.J.; Oliveira-Filho, J.P. Prevalence of the E321G MYH1 variant in Brazilian Quarter Horses. Equine Vet. J. 2021, 54, 952–957. [Google Scholar] [CrossRef]
- Ribeiro, W.P.; Valberg, S.J.; Pagan, J.D.; Gustavsson, B.E. The effect of varying dietary starch and fat content on serum creatine kinase activity and substrate availability in equine polysaccharide storage myopathy. J. Vet. Intern. Med. 2004, 18, 887–894. [Google Scholar] [CrossRef]
- McKenzie, E.C.; Valberg, S.J.; Godden, S.M.; Pagan, J.D.; MacLeay, J.M.; Geor, R.J.; Carlson, G.P. Effect of dietary starch, fat, and bicarbonate content on exercise responses and serum creatine kinase activity in equine recurrent exertional rhabdomyolysis. J. Vet. Intern. Med. 2003, 17, 693–701. [Google Scholar] [CrossRef]
- Pollitt, C.C.; Visser, M.B. Carbohydrate alimentary overload laminitis. Vet. Clin. Equine Pract. 2010, 26, 65–78. [Google Scholar] [CrossRef]
- Zierath, J.R.; Houseknecht, K.L.; Gnudi, L.; Kahn, B.B. High-Fat Feeding Impairs Insulin-Stimulated GLUT4 Recruitment via an Early Insulin-Signaling Defect. Diabetes 1997, 46, 215–223. [Google Scholar] [CrossRef]
- Ryder, J.W.; Kawano, Y.; Galuska, D.; Fahlman, R.; Wallberg-Henriksson, H.; Charron, M.J.; Zierath, J.R. Postexercise glucose uptake and glycogen synthesis in skeletal muscle from GLUT4-deficient mice. FASEB J. 1999, 13, 2246–2256. [Google Scholar] [CrossRef]
- Kahn, B.B.; Pedersen, O. Suppression of GLUT4 expression in skeletal muscle of rats that are obese from high fat feeding but not from high carbohydrate feeding or genetic obesity. Endocrinology 1993, 132, 13–22. [Google Scholar] [CrossRef]
- Lee, J.; Bruce, C.; Tunstall, R.; Cameron-Smith, D.; Hügel, H.; Hawley, J. Interaction of exercise and diet on GLUT-4 protein and gene expression in Type I and Type II rat skeletal muscle. Acta Physiol. Scand. 2002, 175, 37–44. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valberg, S.J.; Velez-Irizarry, D.; Williams, Z.J.; Pagan, J.D.; Mesquita, V.; Waldridge, B.; Maresca-Fichter, H. Novel Expression of GLUT3, GLUT6 and GLUT10 in Equine Gluteal Muscle Following Glycogen-Depleting Exercise: Impact of Dietary Starch and Fat. Metabolites 2023, 13, 718. https://doi.org/10.3390/metabo13060718
Valberg SJ, Velez-Irizarry D, Williams ZJ, Pagan JD, Mesquita V, Waldridge B, Maresca-Fichter H. Novel Expression of GLUT3, GLUT6 and GLUT10 in Equine Gluteal Muscle Following Glycogen-Depleting Exercise: Impact of Dietary Starch and Fat. Metabolites. 2023; 13(6):718. https://doi.org/10.3390/metabo13060718
Chicago/Turabian StyleValberg, Stephanie J., Deborah Velez-Irizarry, Zoe J. Williams, Joe D. Pagan, Vanesa Mesquita, Brian Waldridge, and Hailey Maresca-Fichter. 2023. "Novel Expression of GLUT3, GLUT6 and GLUT10 in Equine Gluteal Muscle Following Glycogen-Depleting Exercise: Impact of Dietary Starch and Fat" Metabolites 13, no. 6: 718. https://doi.org/10.3390/metabo13060718
APA StyleValberg, S. J., Velez-Irizarry, D., Williams, Z. J., Pagan, J. D., Mesquita, V., Waldridge, B., & Maresca-Fichter, H. (2023). Novel Expression of GLUT3, GLUT6 and GLUT10 in Equine Gluteal Muscle Following Glycogen-Depleting Exercise: Impact of Dietary Starch and Fat. Metabolites, 13(6), 718. https://doi.org/10.3390/metabo13060718