Metabolic Profile Analysis of Designer Benzodiazepine Etizolam in Zebrafish and Human Liver Microsomes
Abstract
:1. Introduction
2. Experimental Section
2.1. Instruments and Reagents
2.2. Chromatographic Condition
2.3. Mass Spectrometry Conditions
2.4. Establishment of Zebrafish In Vivo Metabolism Model
2.5. Establishment of Human Liver Microsome Metabolism Model
2.6. Identification Strategy
3. Results and Discussion
3.1. Selection and Optimization of Experimental Methods
3.1.1. Selection and Optimization of NCE Value for Instrumentation
3.1.2. Selection of Pre-Treatment Methods for Zebrafish Experiment
3.2. Etizolam Fragmentation
3.3. Identification of Etizolam metabolites
3.3.1. Monohydroxylation
3.3.2. Dihydroxylation
3.3.3. Hydration and Desaturation
3.3.4. Methylation and Oxidative Deamination to Form Alcohols
3.3.5. Hydration and Acetylation
3.4. Exploration of the Metabolism Pattern of Etizolam
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moore, C.; Hammers, J.; Marshall, P. Clonazolam Intoxication Case Report: Danger of Designer Benzodiazepines. Am. J. Forensic Med. Pathol. 2022, 43, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Greenblatt, H.K.; Greenblatt, D.J. Designer Benzodiazepines: An Update. Expert Rev. Clin. Pharmacol. 2023, 16, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Mérette, S.A.M.; Thériault, S.; Piramide, L.E.C.; Davis, M.D.; Shapiro, A.M. Bromazolam Blood Concentrations in Postmortem Cases—A British Columbia Perspective. J. Anal. Toxicol. 2023, 47, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Grover, C.; How, J.; Close, R. Fentanyl, etizolam, and beyond: A feasibility study of a community partnership using handheld Raman spectrometry to identify substances in the local illicit drug supply. J. Public Health Res. 2023, 12, 22799036231166313. [Google Scholar] [CrossRef]
- Axelsson, M.A.B.; Lövgren, H.; Kronstrand, R.; Green, H.; Bergström, M.A. Retrospective Identification of New Psychoactive Substances in Patient Samples Submitted for Clinical Drug Analysis. Basic Clin. Pharmacol. Toxicol. 2022, 131, 420–434. [Google Scholar] [CrossRef]
- Sarker, A.; Al-Garadi, M.A.; Ge, Y.; Nataraj, N.; McGlone, L.; Jones, C.M.; Sumner, S.A. Evidence of the Emergence of Illicit Benzodiazepines from Online Drug Forums. Eur. J. Public Health 2022, 32, 939–941. [Google Scholar] [CrossRef]
- El Balkhi, S.; Chaslot, M.; Picard, N.; Dulaurent, S.; Delage, M.; Mathieu, O.; Saint-Marcoux, F. Characterization and Identification of Eight Designer Benzodiazepine Metabolites by Incubation with Human Liver Microsomes and Analysis by a Triple Quadrupole Mass Spectrometer. Int. J. Leg. Med. 2017, 131, 979–988. [Google Scholar] [CrossRef]
- Johnson, E.; Heemst, J.; Benavides, J.; Gray, B. Metabolism and Excretion of the Benzodiazepine Analogue Etizolam in the Horse. Drug Test. Anal. 2021, 13, 583–594. [Google Scholar] [CrossRef]
- Al Bahri, A.A.; Hamnett, H.J. Etizolam and Its Major Metabolites: A Short Review. J. Anal. Toxicol. 2023, 47, 216–226. [Google Scholar] [CrossRef]
- Zawilska, J.B.; Wojcieszak, J. An Expanding World of New Psychoactive Substances—Designer Benzodiazepines. NeuroToxicology 2019, 73, 8–16. [Google Scholar] [CrossRef]
- Yang, C.-A.; Tsai, C.-Y.; Liu, H.-C.; Liu, R.H.; Lin, D.-L. Designer Benzodiazepines and Their Metabolites in Post- and Antemortem Specimens: Quantitation by UHPLC-MS/MS and Findings in Taiwan. Toxicol. Anal. Clin. 2022, 34, S180. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Z.; Luo, W.; Pei, X.; She, Z.; Sha, Z.; Guan, Y.; Ming, D.; Liang, J. Simultaneous Quantitation of Anlotinib and Osimertinib by Isotope-Labeled UHPLC–MS/MS in Human Plasma: Application in NSCLC Patients. J. Chromatogr. Sci. 2023, bmad024. [Google Scholar] [CrossRef]
- Yeh, Y.; Wang, S. Quantitative Determination and Metabolic Profiling of Synthetic Cathinone Eutylone in Vitro and in Urine Samples by Liquid Chromatography Tandem Quadrupole Time-of-flight Mass Spectrometry. Drug Test. Anal. 2022, 14, 1325–1337. [Google Scholar] [CrossRef] [PubMed]
- Wagmann, L.; Meyer, M.R. Reviewing Toxicokinetics with a Focus on Metabolism of New Psychoactive Substances in the Zebrafish (Larvae) Model. WIREs Forensic Sci. 2022, 4, e1454. [Google Scholar] [CrossRef]
- Kirla, K.T.; Erhart, C.; Groh, K.J.; Stadnicka-Michalak, J.; Eggen, R.I.L.; Schirmer, K.; Kraemer, T. Zebrafish Early Life Stages as Alternative Model to Study ‘Designer Drugs’: Concordance with Mammals in Response to Opioids. Toxicol. Appl. Pharmacol. 2021, 419, 115483. [Google Scholar] [CrossRef]
- Wagmann, L.; Frankenfeld, F.; Park, Y.M.; Herrmann, J.; Fischmann, S.; Westphal, F.; Müller, R.; Flockerzi, V.; Meyer, M.R. How to Study the Metabolism of New Psychoactive Substances for the Purpose of Toxicological Screenings—A Follow-Up Study Comparing Pooled Human Liver S9, HepaRG Cells, and Zebrafish Larvae. Front. Chem. 2020, 8, 539. [Google Scholar] [CrossRef]
- Hong, Y.; Kim, Y.-H.; Lee, J.-M.; Yoo, H.H.; Choi, S.-O.; Kang, M.S. Characterization of in Vitro Phase I Metabolites of Methamnetamine in Human Liver Microsomes by Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry. Int. J. Leg. Med. 2021, 135, 1471–1476. [Google Scholar] [CrossRef]
- Lopes, B.T.; Caldeira, M.J.; Gaspar, H.; Antunes, A.M.M. Metabolic Profile of Four Selected Cathinones in Microsome Incubations: Identification of Phase I and II Metabolites by Liquid Chromatography High Resolution Mass Spectrometry. Front. Chem. 2021, 8, 609251. [Google Scholar] [CrossRef]
- Carlier, J.; Diao, X.; Giorgetti, R.; Busardò, F.P.; Huestis, M.A. Pyrrolidinyl Synthetic Cathinones α-PHP and 4F-α-PVP Metabolite Profiling Using Human Hepatocyte Incubations. Int. J. Mol. Sci. 2020, 22, 230. [Google Scholar] [CrossRef]
- Kong, R.; Zhao, J.; Zhai, W.; Chen, Z.; Yang, S.; Chen, M.; Lin, J.; Wu, L.; Liu, W.; Xiang, P. Metabolic Profiling of Clonazolam in Human Liver Microsomes and Zebrafish Models Using Liquid Chromatography Quadrupole Orbitrap Mass Spectrometry. J. Chromatogr. B 2023, 1216, 123583. [Google Scholar] [CrossRef]
- Cai, Y.; Li, L.; Zhang, J.; Li, Z.; Zhang, F.; Xu, Y.; Tai, Z. Development of a MOF-Based SPE Method Combined with GC–MS for Simultaneous Determination of Alachlor, Acetochlor and Pretilachlor in Field Soil. Environ. Monit. Assess. 2023, 195, 569. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; Qi, X.; Zhao, L.; Zhang, Y.; Zhuge, R.; Hao, Z.; Liu, C. Development, Validation, and Use of a Monitoring Method for Fipronil and Its Metabolites in Chicken Eggs by QuEChERS with Online-SPE-LC-Q/Orbitrap Analysis. Rapid Commun. Mass Spectrom. 2023, 13, e9518. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Liu, W.; Xiang, P.; Hang, T.; Shi, Y.; Yue, L.; Yan, H. Metabolism of ADB-4en-PINACA in Zebrafish and Rat Liver Microsomes Determined by Liquid Chromatography–High Resolution Mass Spectrometry. J. Anal. Chem. 2022, 77, 1036–1046. [Google Scholar] [CrossRef]
- Yıldırım, S.; Fikarová, K.; Pilařová, V.; Nováková, L.; Solich, P.; Horstkotte, B. Lab-in-Syringe Automated Protein Precipitation and Salting-out Homogenous Liquid-Liquid Extraction Coupled Online to UHPLC-MS/MS for the Determination of Beta-Blockers in Serum. Anal. Chim. Acta 2023, 1251, 340966. [Google Scholar] [CrossRef] [PubMed]
- Laimou-Geraniou, M.; Heath, D.; Heath, E. Analytical Methods for the Determination of Antidepressants, Antipsychotics, Benzodiazepines and Their Metabolites through Wastewater-Based Epidemiology. Trends Environ. Anal. Chem. 2023, 37, e00192. [Google Scholar] [CrossRef]
- López-García, E.; Mastroianni, N.; Ponsà-Borau, N.; Barceló, D.; Postigo, C.; López De Alda, M. Drugs of Abuse and Their Metabolites in River Sediments: Analysis, Occurrence in Four Spanish River Basins and Environmental Risk Assessment. J. Hazard. Mater. 2021, 401, 123312. [Google Scholar] [CrossRef]
- Chavant, A.; Willeman, T.; Tonini, J.; Fonrose, X.; Boyer, J.C.; Cohen, S.; Guitton, J.; Stanke-Labesque, F. Cross-Reactivity of Nefopam and Its Metabolites on Three Different Urine Benzodiazepines Immunoassay Screenings: A Comparative Study. Toxicol. Anal. Clin. 2020, 32, 253–257. [Google Scholar] [CrossRef]
- Watanabe, S.; Vikingsson, S.; Åstrand, A.; Auwärter, V.; Gréen, H.; Kronstrand, R. Metabolism of the Benzodiazepines Norflurazepam, Flurazepam, Fludiazepam and Cinolazepam by Human Hepatocytes Using High-Resolution Mass Spectrometry and Distinguishing Their Intake in Authentic Urine Samples. Forensic Toxicol. 2020, 38, 79–94. [Google Scholar] [CrossRef]
- Shin, Y.; Kong, T.Y.; Cheong, J.C.; Kim, J.Y.; Lee, J.I.; Lee, H.S. Simultaneous Determination of 75 Abuse Drugs Including Amphetamines, Benzodiazepines, Cocaine, Opioids, Piperazines, Zolpidem and Metabolites in Human Hair Samples Using Liquid Chromatography–Tandem Mass Spectrometry. Biomed. Chromatog. 2019, 33, e4600. [Google Scholar] [CrossRef]
ID | Biotransformation | SPE | PPT |
---|---|---|---|
M1 | Monohydroxylation | Y | Y |
M2 | Monohydroxylation | Y | N |
M3 | Monohydroxylation | Y | N |
M4 | Monohydroxylation | Y | Y |
M5 | Monohydroxylation | Y | Y |
M6 | Monohydroxylation | Y | Y |
M7 | Monohydroxylation | Y | N |
M8 | Monohydroxylation | Y | Y |
M9 | Monohydroxylation | Y | N |
M10 | Dihydroxylation | Y | Y |
M11 | Dihydroxylation | Y | N |
M12 | Dihydroxylation | Y | N |
M13 | Dihydroxylation | Y | Y |
M14 | Dihydroxylation | Y | Y |
M15 | Dihydroxylation | Y | Y |
M16 | Hydration | Y | N |
M17 | Hydration | Y | N |
M18 | Desaturation | Y | Y |
M19 | Desaturation | Y | Y |
M20 | Methylation | Y | N |
M21 | Oxidative deamination to alcohol | Y | N |
M22 | Reduction + Acetylation | Y | Y |
M23 | Monohydroxylation + Desaturation | Y | N |
M24 | Dihydroxylation + Desaturation | Y | N |
M25 | Oxidation + Reduction + Acetylation | Y | Y |
M26 | Glucuronide | Y | N |
M27 | Monohydroxylation + Glucuronide | Y | Y |
M28 | Monohydroxylation + Glucuronide | Y | N |
RT(min) | [M + H]+(m/z) | Formula | Error (ppm) | MS2 Fragments | Zebrafish Homogenate | Urine and Feces of Zebrafish | HLM | References [7,8] |
---|---|---|---|---|---|---|---|---|
14.74 | 359.07248 | C17H15ClN4OS | −0.863 | 341, 315, 178, 154 | √ | √ | √ | √ |
17.384 | 359.07275 | C17H15ClN4OS | −0.111 | 341, 331, 314,300 | √ | √ | √ | √ |
14.54 | 359.07227 | C17H15ClN4OS | −1.448 | 341, 314, 224, 154 | √ | √ | √ | √ |
16.626 | 359.07303 | C17H15ClN4OS | 0.668 | 341, 286, 138 | √ | √ | √ | / |
17.82 | 359.073 | C17H15ClN4OS | 0.585 | 341, 258, 238, 223,138 | √ | √ | √ | / |
15.795 | 359.07242 | C17H15ClN4OS | −1.030 | 342, 327, 305, 287 | / | √ | √ | / |
18.401 | 359.0723 | C17H15ClN4OS | −1.365 | 341, 314, 114 | √ | √ | √ | √ |
17.176 | 359.07278 | C17H15ClN4OS | −0.028 | 341, 330, 275, 138 | √ | √ | √ | / |
16.226 | 359.07278 | C17H15ClN4OS | −0.028 | 342, 327, 315 | / | √ | √ | / |
15.188 | 375.06754 | C17H15ClN4O2S | −0.427 | 357, 343, 314, 178 | / | √ | / | √ |
13.648 | 375.06598 | C17H15ClN4O2S | −4.586 | 357, 244, 185, 152 | / | √ | / | √ |
10.846 | 375.06793 | C17H15ClN4O2S | 0.613 | 344, 315, 282, 246 | / | √ | / | / |
13.407 | 375.06732 | C17H15ClN4O2S | −1.013 | 357, 330, 316, 258 | / | √ | / | √ |
17.777 | 375.06732 | C17H15ClN4O2S | −1.013 | 341, 329, 323, 231 | √ | √ | / | / |
17.33 | 375.06781 | C17H15ClN4O2S | 0.293 | 357, 332, 314, 138 | / | √ | / | / |
14.98 | 361.08853 | C17H15ClN4OS | 0.249 | 344, 332, 314, 281, 179 | / | √ | √ | √ |
16.492 | 361.08884 | C17H17ClN4OS | 1.108 | 344, 332, 125, 114 | / | √ | √ | √ |
19.025 | 341.06207 | C17H13ClN4S | −0.088 | 305, 272, 237 | / | √ | √ | √ |
17.381 | 341.0621 | C17H13ClN4S | 0.000 | 300, 291, 273, 258 | / | √ | √ | / |
23.479 | 357.09375 | C18H17ClN4S | 0.644 | 328, 309, 259, 223, 165 | / | √ | √ | √ |
15.02 | 344.06158 | C17H14ClN3OS | −0.901 | 315, 268, 253, | / | √ | / | / |
17.409 | 403.09824 | C19H19ClN4O2S | −1.885 | 361, 344, 332, | / | √ | / | / |
15.324 | 357.0571 | C17H13ClN4OS | −0.112 | 315, 282, 253, 246 | √ | √ | √ | √ |
14.227 | 373.05265 | C17H13ClN4O2S | 1.608 | 355, 344, 316, 287 | √ | √ | / | √ |
18.586 | 360.05624 | C17H14ClN3O2S | −1.555 | 332, 316, 138 | √ | √ | / | / |
13.07 | 519.11017 | C23H23ClN4O6S | 0.405 | 343, 314, 289 | √ | √ | √ | / |
12.6 | 535.10497 | C23H23ClN4O7S | 0.187 | 359, 341, 315, 282 | / | √ | / | / |
16.06 | 535.10497 | C23H23ClN4O7S | 0.187 | 359, 341, 314, 258 | √ | √ | √ | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jie, Z.; Qin, S.; Zhang, W.; Wang, J.; Lu, J.; Qin, G.; Hou, X.; Xu, P. Metabolic Profile Analysis of Designer Benzodiazepine Etizolam in Zebrafish and Human Liver Microsomes. Metabolites 2023, 13, 699. https://doi.org/10.3390/metabo13060699
Jie Z, Qin S, Zhang W, Wang J, Lu J, Qin G, Hou X, Xu P. Metabolic Profile Analysis of Designer Benzodiazepine Etizolam in Zebrafish and Human Liver Microsomes. Metabolites. 2023; 13(6):699. https://doi.org/10.3390/metabo13060699
Chicago/Turabian StyleJie, Zhaowei, Shiyang Qin, Wenfang Zhang, Jifen Wang, Jianghai Lu, Ge Qin, Xiaolong Hou, and Peng Xu. 2023. "Metabolic Profile Analysis of Designer Benzodiazepine Etizolam in Zebrafish and Human Liver Microsomes" Metabolites 13, no. 6: 699. https://doi.org/10.3390/metabo13060699
APA StyleJie, Z., Qin, S., Zhang, W., Wang, J., Lu, J., Qin, G., Hou, X., & Xu, P. (2023). Metabolic Profile Analysis of Designer Benzodiazepine Etizolam in Zebrafish and Human Liver Microsomes. Metabolites, 13(6), 699. https://doi.org/10.3390/metabo13060699