Differences Due to Sex and Sweetener on the Bioavailability of (Poly)phenols in Urine Samples: A Machine Learning Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Phase
2.2. Computational Phase
2.2.1. Dataset
2.2.2. Main Pipeline
- Preprocessing: normalization of data, descriptive statistics, and evaluation to check the suitability of the techniques applied afterward, presented in supplementary material (Table S2);
- Three-way paired ANOVA followed by multiple pairwise t-tests: this type of ANOVA calculates the effect of three factors (time, sex, and sweetener) on the mean value of a continuous variable (metabolite concentration), with no independence between groups, i.e., the groups correspond to different sampling times. The t-test compares pairwise every level of the factors to endorse ANOVA and obtain more information about the relationship between levels of factors. By plotting the data in a boxplot, the direction and magnitude of the factor effect over the different groups can be visualized;
- Data imputation: to perform feature selection and clustering analysis, all datasets were improved by multivariate data imputation techniques that fill the empty spaces using regression algorithms;
- Feature selection: for improving clustering performance, Boruta’s algorithm for feature selection [20] is applied, choosing the most important/significant variables. The selected variables are listed in Results, Section 3.2.1;
- Clustering: to describe interesting groups and search for patterns in data, clustering analysis is implemented. To tune clustering performance, the number of clusters and clustering technique are chosen via the R packages “NbClust” [21] and “clValid” [22]. The chosen parameters are compiled in Results, Section 3.2. To visualize the cluster distribution and the contribution of every variable to the cluster composition, a corresponding biplot has been charted.
3. Results
3.1. Effects of Experiment Factors over the Metabolite Concentration Values after Beverage Intake through ANoVa Technique
3.1.1. (Poly)phenol Metabolites Set
| Compounds | Factors and Interactions of Factors (p-Value) | |||
|---|---|---|---|---|
| Time | Sex–Time | Sweetener–Time | Pairwise t-Test | |
| CA * | 9.13 × 10−1 | 2.40 × 10−2 | 8.45 × 10−1 | F/SA(+),F(+) |
| DHPAA | 2.00 × 10−3 | 4.30 × 10−3 | 2.60 × 10−3 | ST/M(+++), ST/F(+), ST(++), F(+), T(++) |
| DHPAA-GS * | 6.34 × 10−1 | 1.52 × 10−1 | 3.00 × 10−2 | NR |
| Total DHPAA | 1.55 × 10−1 | 1.92 × 10−1 | 6.68 × 10−1 | F/SU(+) |
| VA | 2.50 × 10−2 | 9.70 × 10−2 | 5.50 × 10−1 | NR |
| VA-GS | 2.80 × 10−2 | 9.53 × 10−1 | 2.73 × 10−1 | F/SA(-), SA(-), T(-) |
| Total VA | 4.70 × 10−2 | 1.08 × 10−1 | 5.94 × 10−1 | NR |

3.1.2. Flavanone Metabolites Set
| Compounds | Factors and Interactions (p-Value) | |||
|---|---|---|---|---|
| Time | Sex–Time | Sweetener–Time | Pairwise t-Test | |
| E | 2.44 × 10−1 | 9.00 × 10−1 | 2.70 × 10−2 | F/SA(+), SA(++) |
| EG | 7.83 × 10−1 | 2.67 × 10−1 | 2.30 × 10−1 | M/SA(+) |
| ES | 5.42 × 10−1 | 1.20 × 10−2 | 2.80 × 10−2 | F/SA(+), F/ST(+), F(++), ST(+) |
| Total E | 7.61 × 10−1 | 2.48 × 10−1 | 2.28 × 10−1 | M/SA(+) |
| HE | 1.30 × 10−2 | 2.28 × 10−1 | 8.89 × 10−1 | M/SA(+), M/SU(+), M(++), SU(+). T(++) |
| HE-G | 1.00 × 10−3 | 4.76 × 10−1 | 7.00 × 10−1 | M/SA(+), M/ST(+), F/ST(++), M(+++), SA(+), ST(+++), T(++) |
| HE-GG | 8.00 × 10−3 | 8.10 × 10−1 | 9.03 × 10−1 | M(+), T(++) |
| Total HE | 6.66 × 10−4 | 5.73 × 10−1 | 7.65 × 10−1 | M/SA(+), M/ST(+), M/SU(+), F/ST(++), M(+++), F(+), SA(+), ST(+++), T(+++) |
| NG | 2.00 × 10−3 | 2.30 × 10−1 | 1.83 × 10−1 | M/SA(+), M/ST(+++), F/SA(+), F/ST(+), M(+), F(+). SA(++), ST(+++), T(++) |
| NS | 6.45 × 10−1 | 8.70 × 10−2 | 2.47 × 10−1 | M/SA(+), M/SU(+) |
| Total N | 3.00 × 10−3 | 2.21 × 10−1 | 2.00 × 10−1 | M/ST(+++), F/SA(+), F/ST(+), M(+), F(+), SA(++), ST(+++), T(++) |

3.2. Patterns and Groups of Interest Extracted from Experimental Data by Clustering Analysis Technique
3.2.1. Selection of Most Descriptive Metabolites to Improve Clustering Analysis Performance
3.2.2. (Poly)phenol Metabolites Set
| (Poly)phenol Metabolites at Initial Time (day 0) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cluster | 1 | 2 | 3 | 4 | 5 | 6 | ||||||||||||
| Sex # | M: 8 | F: 6 | M: 2 | F: 3 | M: 27 | F: 21 | M: 23 | F: 10 | M: 10 | F: 4 | M: 1 | F: 0 | ||||||
| High values | DHPAA-SS | DHPAA-SS, CA-G, Total CA | Total CA | DHPAA, Total DHPAA, TFA-S, Total TFA, Total VA | ||||||||||||||
| Low values | CA, CA-GS | TFA-G, DHPAA-G, Total VA | CA-G, DHPAA-SS | |||||||||||||||
| (Poly)phenol Metabolites at Final Time (day 60) | ||||||||||||||||||
| Cluster | 1 | 2 | 3 | 4 | 5 | 6 | ||||||||||||
| Sex # | M: 13 | F: 13 | M: 4 | F: 9 | M: 3 | F: 5 | M: 7 | F: 15 | M: 23 | F: 6 | M: 21 | F: 6 | ||||||
| Sweetener # SA/ST/SU | 5 | 9 | 12 | 2 | 6 | 5 | 0 | 4 | 4 | 13 | 5 | 4 | 11 | 12 | 6 | 11 | 5 | 11 |
| High values | Total CA | Total CA, DHPAA | CA, DHPAA, TFA-G | CA, DHPAA | Total CA | |||||||||||||
| Low values | CA | CA | All | All but Total CA | ||||||||||||||


3.2.3. Flavanone Metabolites Set
| Flavanone Metabolites at Initial Time (day 0) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cluster | 1 | 2 | 3 | 4 | 5 | 6 | ||||||||||||
| Sex # | M: 3 | F: 12 | M: 9 | F: 5 | M: 28 | F: 16 | M: 4 | F: 7 | M: 25 | F: 11 | M: 2 | F: 2 | ||||||
| High values | N and derivatives | HE, HE-GG | N and derivatives | HE, HE-GG | ||||||||||||||
| Low values | E and derivatives | E and derivatives, HE, HE-GG | ||||||||||||||||
| Metabolites from Flavanones at Final Time (day 60) | ||||||||||||||||||
| Cluster | 1 | 2 | 3 | 4 | 5 | 6 | ||||||||||||
| Sex # | M: 8 | F: 6 | M: 2 | F: 3 | M: 27 | F: 21 | M: 23 | F: 10 | M: 10 | F: 4 | M: 1 | F: 0 | ||||||
| Sweetener # SA/SU/ST | 7 | 13 | 7 | 8 | 4 | 5 | 4 | 11 | 12 | 10 | 9 | 12 | 6 | 3 | 5 | 7 | 1 | 1 |
| High values | HE, HE-GG | HE, HE-GG | HE, HE-GG | N-G, Total N, HE, HE-GG | E and derivatives | E and derivatives, NG, N-GG, and Total N | ||||||||||||
| Low values | N-G, Total N | |||||||||||||||||


4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calcaterra, V.; Cena, H.; Magenes, V.C.; Vincenti, A.; Comola, G.; Beretta, A.; Di Napoli, I.; Zuccotti, G. Sugar-Sweetened Beverages and Metabolic Risk in Children and Adolescents with Obesity: A Narrative Review. Nutrients 2023, 15, 702. [Google Scholar] [CrossRef]
- Tahmassebi, J.F.; BaniHani, A. Impact of Soft Drinks to Health and Economy: A Critical Review. Eur. Arch. Paediatr. Dent. 2020, 21, 109–117. [Google Scholar] [CrossRef]
- Šamec, D.; Urlić, B.; Salopek-Sondi, B. Kale (Brassica Oleracea Var. Acephala) as a Superfood: Review of the Scientific Evidence behind the Statement. Crit. Rev. Food Sci. Nutr. 2019, 59, 2411–2422. [Google Scholar] [CrossRef]
- Ilić, T.; Dodevska, M.; Marčetić, M.; Božić, D.; Kodranov, I.; Vidović, B. Chemical Characterization, Antioxidant and Antimicrobial Properties of Goji Berries Cultivated in Serbia. Foods 2020, 9, 1614. [Google Scholar] [CrossRef]
- Masoodi, H.; Villaño, D.; Zafrilla, P. A Comprehensive Review on Fruit Aristotelia Chilensis (Maqui) for Modern Health: Towards a Better Understanding. Food Funct. 2019, 10, 3057–3067. [Google Scholar] [CrossRef]
- Malik, V.S.; Hu, F.B. The Role of Sugar-Sweetened Beverages in the Global Epidemics of Obesity and Chronic Diseases. Nat. Rev. Endocrinol. 2022, 18, 205–218. [Google Scholar] [CrossRef]
- Domínguez-Perles, R.; Baenas, N.; García-Viguera, C. New Insights in (Poly)Phenolic Compounds: From Dietary Sources to Health Evidence. Foods 2020, 9, 543. [Google Scholar] [CrossRef]
- Agulló, V.; García-Viguera, C.; Domínguez-Perles, R. The Use of Alternative Sweeteners (Sucralose and Stevia) in Healthy Soft-Drink Beverages, Enhances the Bioavailability of Polyphenols Relative to the Classical Caloric Sucrose. Food Chem. 2022, 370, 131051. [Google Scholar] [CrossRef]
- Hernández-Prieto, D.; Fernández, P.S.; Agulló, V.; García-Viguera, C.; Egea, J.A. Bioactive Compounds in Plasma as a Function of Sex and Sweetener Resulting from a Maqui-Lemon Beverage Consumption Using Statistical and Machine Learning Techniques. Int. J. Mol. Sci. 2023, 24, 2140. [Google Scholar] [CrossRef] [PubMed]
- Zafrilla, P.; Masoodi, H.; Cerdá, B.; García-Viguera, C.; Villaño, D. Biological Effects of Stevia, Sucralose and Sucrose in Citrus–Maqui Juices on Overweight Subjects. Food Funct. 2021, 12, 8535–8543. [Google Scholar] [CrossRef]
- Marino, M.; Masella, R.; Bulzomi, P.; Campesi, I.; Malorni, W.; Franconi, F. Nutrition and Human Health from a Sex-Gender Perspective. Mol. Asp. Med. 2011, 32, 1–70. [Google Scholar] [CrossRef]
- Hamberg, K. Gender Bias in Medicine. Womens Health (Lond. Engl.) 2008, 4, 237–243. [Google Scholar] [CrossRef]
- Melero, R.; Navarro-Molina, C. Researchers’ Attitudes and Perceptions towards Data Sharing and Data Reuse in the Field of Food Science and Technology. Learn. Publ. 2020, 33, 163–179. [Google Scholar] [CrossRef]
- Tao, D.; Yang, P.; Feng, H. Utilization of Text Mining as a Big Data Analysis Tool for Food Science and Nutrition. Compr. Rev. Food Sci. Food Saf. 2020, 19, 875–894. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Bouzembrak, Y.; Zhou, J.; Liang, Q.; van den Bulk, L.M.; Gavai, A.; Liu, N.; van den Heuvel, L.J.; Hoenderdaal, W.; Marvin, H.J.P. Big Data in Food Safety- A Review. Curr. Opin. Food Sci. 2020, 36, 24–32. [Google Scholar] [CrossRef]
- Agulló, V.; García-Viguera, C.; Domínguez-Perles, R. Beverages Based on Second Quality Citrus Fruits and Maqui Berry, a Source of Bioactive (Poly)Phenols: Sorting Out Urine Metabolites upon a Longitudinal Study. Nutrients 2021, 13, 312. [Google Scholar] [CrossRef]
- Agulló, V.; Domínguez-Perles, R.; Moreno, D.A.; Zafrilla, P.; García-Viguera, C. Alternative Sweeteners Modify the Urinary Excretion of Flavanones Metabolites Ingested through a New Maqui-Berry Beverage. Foods 2020, 9, 41. [Google Scholar] [CrossRef] [PubMed]
- Agulló, V.; Villaño, D.; García-Viguera, C.; Domínguez-Perles, R. Anthocyanin Metabolites in Human Urine after the Intake of New Functional Beverages. Molecules 2020, 25, 371. [Google Scholar] [CrossRef] [PubMed]
- R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021.
- Kursa, M.B.; Rudnicki, W.R. Feature Selection with the Boruta Package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef]
- Brock, G.; Pihur, V.; Datta, S.; Datta, S. ClValid: An R Package for Cluster Validation. J. Stat. Softw. 2008, 25, 1–22. [Google Scholar] [CrossRef]
- Kay, C.D.; Pereira-Caro, G.; Ludwig, I.A.; Clifford, M.N.; Crozier, A. Anthocyanins and Flavanones Are More Bioavailable than Previously Perceived: A Review of Recent Evidence. Annu. Rev. Food Sci. Technol. 2017, 8, 155–180. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Villaño, D.; Masoodi, H.; Marhuenda, J.; García-Viguera, C.; Zafrilla, P. Stevia, Sucralose and Sucrose Added to a Maqui-Citrus Beverage and Their Effects on Glycemic Response in Overweight Subjects: A Randomized Clinical Trial. LWT 2021, 144, 111173. [Google Scholar] [CrossRef]
| Sample Time | (Poly)phenol Metabolites Selected |
|---|---|
| Initial | CA-G, CA-GS, DHPAA-SS, VA, Total VA |
| Final | CA, Total CA, DHPAA, TFA-G |
| Flavanone metabolites selected | |
| Initial | E, Total HE, N-GG, Total N |
| Final | E, HE, N-G, N-GG, Total N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Prieto, D.; Garre, A.; Agulló, V.; García-Viguera, C.; Egea, J.A. Differences Due to Sex and Sweetener on the Bioavailability of (Poly)phenols in Urine Samples: A Machine Learning Approach. Metabolites 2023, 13, 653. https://doi.org/10.3390/metabo13050653
Hernández-Prieto D, Garre A, Agulló V, García-Viguera C, Egea JA. Differences Due to Sex and Sweetener on the Bioavailability of (Poly)phenols in Urine Samples: A Machine Learning Approach. Metabolites. 2023; 13(5):653. https://doi.org/10.3390/metabo13050653
Chicago/Turabian StyleHernández-Prieto, Diego, Alberto Garre, Vicente Agulló, Cristina García-Viguera, and Jose A. Egea. 2023. "Differences Due to Sex and Sweetener on the Bioavailability of (Poly)phenols in Urine Samples: A Machine Learning Approach" Metabolites 13, no. 5: 653. https://doi.org/10.3390/metabo13050653
APA StyleHernández-Prieto, D., Garre, A., Agulló, V., García-Viguera, C., & Egea, J. A. (2023). Differences Due to Sex and Sweetener on the Bioavailability of (Poly)phenols in Urine Samples: A Machine Learning Approach. Metabolites, 13(5), 653. https://doi.org/10.3390/metabo13050653

