Differences Due to Sex and Sweetener on the Bioavailability of (Poly)phenols in Urine Samples: A Machine Learning Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Phase
2.2. Computational Phase
2.2.1. Dataset
2.2.2. Main Pipeline
- Preprocessing: normalization of data, descriptive statistics, and evaluation to check the suitability of the techniques applied afterward, presented in supplementary material (Table S2);
- Three-way paired ANOVA followed by multiple pairwise t-tests: this type of ANOVA calculates the effect of three factors (time, sex, and sweetener) on the mean value of a continuous variable (metabolite concentration), with no independence between groups, i.e., the groups correspond to different sampling times. The t-test compares pairwise every level of the factors to endorse ANOVA and obtain more information about the relationship between levels of factors. By plotting the data in a boxplot, the direction and magnitude of the factor effect over the different groups can be visualized;
- Data imputation: to perform feature selection and clustering analysis, all datasets were improved by multivariate data imputation techniques that fill the empty spaces using regression algorithms;
- Feature selection: for improving clustering performance, Boruta’s algorithm for feature selection [20] is applied, choosing the most important/significant variables. The selected variables are listed in Results, Section 3.2.1;
- Clustering: to describe interesting groups and search for patterns in data, clustering analysis is implemented. To tune clustering performance, the number of clusters and clustering technique are chosen via the R packages “NbClust” [21] and “clValid” [22]. The chosen parameters are compiled in Results, Section 3.2. To visualize the cluster distribution and the contribution of every variable to the cluster composition, a corresponding biplot has been charted.
3. Results
3.1. Effects of Experiment Factors over the Metabolite Concentration Values after Beverage Intake through ANoVa Technique
3.1.1. (Poly)phenol Metabolites Set
Compounds | Factors and Interactions of Factors (p-Value) | |||
---|---|---|---|---|
Time | Sex–Time | Sweetener–Time | Pairwise t-Test | |
CA * | 9.13 × 10−1 | 2.40 × 10−2 | 8.45 × 10−1 | F/SA(+),F(+) |
DHPAA | 2.00 × 10−3 | 4.30 × 10−3 | 2.60 × 10−3 | ST/M(+++), ST/F(+), ST(++), F(+), T(++) |
DHPAA-GS * | 6.34 × 10−1 | 1.52 × 10−1 | 3.00 × 10−2 | NR |
Total DHPAA | 1.55 × 10−1 | 1.92 × 10−1 | 6.68 × 10−1 | F/SU(+) |
VA | 2.50 × 10−2 | 9.70 × 10−2 | 5.50 × 10−1 | NR |
VA-GS | 2.80 × 10−2 | 9.53 × 10−1 | 2.73 × 10−1 | F/SA(-), SA(-), T(-) |
Total VA | 4.70 × 10−2 | 1.08 × 10−1 | 5.94 × 10−1 | NR |
3.1.2. Flavanone Metabolites Set
Compounds | Factors and Interactions (p-Value) | |||
---|---|---|---|---|
Time | Sex–Time | Sweetener–Time | Pairwise t-Test | |
E | 2.44 × 10−1 | 9.00 × 10−1 | 2.70 × 10−2 | F/SA(+), SA(++) |
EG | 7.83 × 10−1 | 2.67 × 10−1 | 2.30 × 10−1 | M/SA(+) |
ES | 5.42 × 10−1 | 1.20 × 10−2 | 2.80 × 10−2 | F/SA(+), F/ST(+), F(++), ST(+) |
Total E | 7.61 × 10−1 | 2.48 × 10−1 | 2.28 × 10−1 | M/SA(+) |
HE | 1.30 × 10−2 | 2.28 × 10−1 | 8.89 × 10−1 | M/SA(+), M/SU(+), M(++), SU(+). T(++) |
HE-G | 1.00 × 10−3 | 4.76 × 10−1 | 7.00 × 10−1 | M/SA(+), M/ST(+), F/ST(++), M(+++), SA(+), ST(+++), T(++) |
HE-GG | 8.00 × 10−3 | 8.10 × 10−1 | 9.03 × 10−1 | M(+), T(++) |
Total HE | 6.66 × 10−4 | 5.73 × 10−1 | 7.65 × 10−1 | M/SA(+), M/ST(+), M/SU(+), F/ST(++), M(+++), F(+), SA(+), ST(+++), T(+++) |
NG | 2.00 × 10−3 | 2.30 × 10−1 | 1.83 × 10−1 | M/SA(+), M/ST(+++), F/SA(+), F/ST(+), M(+), F(+). SA(++), ST(+++), T(++) |
NS | 6.45 × 10−1 | 8.70 × 10−2 | 2.47 × 10−1 | M/SA(+), M/SU(+) |
Total N | 3.00 × 10−3 | 2.21 × 10−1 | 2.00 × 10−1 | M/ST(+++), F/SA(+), F/ST(+), M(+), F(+), SA(++), ST(+++), T(++) |
3.2. Patterns and Groups of Interest Extracted from Experimental Data by Clustering Analysis Technique
3.2.1. Selection of Most Descriptive Metabolites to Improve Clustering Analysis Performance
3.2.2. (Poly)phenol Metabolites Set
(Poly)phenol Metabolites at Initial Time (day 0) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cluster | 1 | 2 | 3 | 4 | 5 | 6 | ||||||||||||
Sex # | M: 8 | F: 6 | M: 2 | F: 3 | M: 27 | F: 21 | M: 23 | F: 10 | M: 10 | F: 4 | M: 1 | F: 0 | ||||||
High values | DHPAA-SS | DHPAA-SS, CA-G, Total CA | Total CA | DHPAA, Total DHPAA, TFA-S, Total TFA, Total VA | ||||||||||||||
Low values | CA, CA-GS | TFA-G, DHPAA-G, Total VA | CA-G, DHPAA-SS | |||||||||||||||
(Poly)phenol Metabolites at Final Time (day 60) | ||||||||||||||||||
Cluster | 1 | 2 | 3 | 4 | 5 | 6 | ||||||||||||
Sex # | M: 13 | F: 13 | M: 4 | F: 9 | M: 3 | F: 5 | M: 7 | F: 15 | M: 23 | F: 6 | M: 21 | F: 6 | ||||||
Sweetener # SA/ST/SU | 5 | 9 | 12 | 2 | 6 | 5 | 0 | 4 | 4 | 13 | 5 | 4 | 11 | 12 | 6 | 11 | 5 | 11 |
High values | Total CA | Total CA, DHPAA | CA, DHPAA, TFA-G | CA, DHPAA | Total CA | |||||||||||||
Low values | CA | CA | All | All but Total CA |
3.2.3. Flavanone Metabolites Set
Flavanone Metabolites at Initial Time (day 0) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cluster | 1 | 2 | 3 | 4 | 5 | 6 | ||||||||||||
Sex # | M: 3 | F: 12 | M: 9 | F: 5 | M: 28 | F: 16 | M: 4 | F: 7 | M: 25 | F: 11 | M: 2 | F: 2 | ||||||
High values | N and derivatives | HE, HE-GG | N and derivatives | HE, HE-GG | ||||||||||||||
Low values | E and derivatives | E and derivatives, HE, HE-GG | ||||||||||||||||
Metabolites from Flavanones at Final Time (day 60) | ||||||||||||||||||
Cluster | 1 | 2 | 3 | 4 | 5 | 6 | ||||||||||||
Sex # | M: 8 | F: 6 | M: 2 | F: 3 | M: 27 | F: 21 | M: 23 | F: 10 | M: 10 | F: 4 | M: 1 | F: 0 | ||||||
Sweetener # SA/SU/ST | 7 | 13 | 7 | 8 | 4 | 5 | 4 | 11 | 12 | 10 | 9 | 12 | 6 | 3 | 5 | 7 | 1 | 1 |
High values | HE, HE-GG | HE, HE-GG | HE, HE-GG | N-G, Total N, HE, HE-GG | E and derivatives | E and derivatives, NG, N-GG, and Total N | ||||||||||||
Low values | N-G, Total N |
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Calcaterra, V.; Cena, H.; Magenes, V.C.; Vincenti, A.; Comola, G.; Beretta, A.; Di Napoli, I.; Zuccotti, G. Sugar-Sweetened Beverages and Metabolic Risk in Children and Adolescents with Obesity: A Narrative Review. Nutrients 2023, 15, 702. [Google Scholar] [CrossRef]
- Tahmassebi, J.F.; BaniHani, A. Impact of Soft Drinks to Health and Economy: A Critical Review. Eur. Arch. Paediatr. Dent. 2020, 21, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Šamec, D.; Urlić, B.; Salopek-Sondi, B. Kale (Brassica Oleracea Var. Acephala) as a Superfood: Review of the Scientific Evidence behind the Statement. Crit. Rev. Food Sci. Nutr. 2019, 59, 2411–2422. [Google Scholar] [CrossRef]
- Ilić, T.; Dodevska, M.; Marčetić, M.; Božić, D.; Kodranov, I.; Vidović, B. Chemical Characterization, Antioxidant and Antimicrobial Properties of Goji Berries Cultivated in Serbia. Foods 2020, 9, 1614. [Google Scholar] [CrossRef]
- Masoodi, H.; Villaño, D.; Zafrilla, P. A Comprehensive Review on Fruit Aristotelia Chilensis (Maqui) for Modern Health: Towards a Better Understanding. Food Funct. 2019, 10, 3057–3067. [Google Scholar] [CrossRef]
- Malik, V.S.; Hu, F.B. The Role of Sugar-Sweetened Beverages in the Global Epidemics of Obesity and Chronic Diseases. Nat. Rev. Endocrinol. 2022, 18, 205–218. [Google Scholar] [CrossRef]
- Domínguez-Perles, R.; Baenas, N.; García-Viguera, C. New Insights in (Poly)Phenolic Compounds: From Dietary Sources to Health Evidence. Foods 2020, 9, 543. [Google Scholar] [CrossRef]
- Agulló, V.; García-Viguera, C.; Domínguez-Perles, R. The Use of Alternative Sweeteners (Sucralose and Stevia) in Healthy Soft-Drink Beverages, Enhances the Bioavailability of Polyphenols Relative to the Classical Caloric Sucrose. Food Chem. 2022, 370, 131051. [Google Scholar] [CrossRef]
- Hernández-Prieto, D.; Fernández, P.S.; Agulló, V.; García-Viguera, C.; Egea, J.A. Bioactive Compounds in Plasma as a Function of Sex and Sweetener Resulting from a Maqui-Lemon Beverage Consumption Using Statistical and Machine Learning Techniques. Int. J. Mol. Sci. 2023, 24, 2140. [Google Scholar] [CrossRef] [PubMed]
- Zafrilla, P.; Masoodi, H.; Cerdá, B.; García-Viguera, C.; Villaño, D. Biological Effects of Stevia, Sucralose and Sucrose in Citrus–Maqui Juices on Overweight Subjects. Food Funct. 2021, 12, 8535–8543. [Google Scholar] [CrossRef]
- Marino, M.; Masella, R.; Bulzomi, P.; Campesi, I.; Malorni, W.; Franconi, F. Nutrition and Human Health from a Sex-Gender Perspective. Mol. Asp. Med. 2011, 32, 1–70. [Google Scholar] [CrossRef]
- Hamberg, K. Gender Bias in Medicine. Womens Health (Lond. Engl.) 2008, 4, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Melero, R.; Navarro-Molina, C. Researchers’ Attitudes and Perceptions towards Data Sharing and Data Reuse in the Field of Food Science and Technology. Learn. Publ. 2020, 33, 163–179. [Google Scholar] [CrossRef]
- Tao, D.; Yang, P.; Feng, H. Utilization of Text Mining as a Big Data Analysis Tool for Food Science and Nutrition. Compr. Rev. Food Sci. Food Saf. 2020, 19, 875–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, C.; Bouzembrak, Y.; Zhou, J.; Liang, Q.; van den Bulk, L.M.; Gavai, A.; Liu, N.; van den Heuvel, L.J.; Hoenderdaal, W.; Marvin, H.J.P. Big Data in Food Safety- A Review. Curr. Opin. Food Sci. 2020, 36, 24–32. [Google Scholar] [CrossRef]
- Agulló, V.; García-Viguera, C.; Domínguez-Perles, R. Beverages Based on Second Quality Citrus Fruits and Maqui Berry, a Source of Bioactive (Poly)Phenols: Sorting Out Urine Metabolites upon a Longitudinal Study. Nutrients 2021, 13, 312. [Google Scholar] [CrossRef]
- Agulló, V.; Domínguez-Perles, R.; Moreno, D.A.; Zafrilla, P.; García-Viguera, C. Alternative Sweeteners Modify the Urinary Excretion of Flavanones Metabolites Ingested through a New Maqui-Berry Beverage. Foods 2020, 9, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agulló, V.; Villaño, D.; García-Viguera, C.; Domínguez-Perles, R. Anthocyanin Metabolites in Human Urine after the Intake of New Functional Beverages. Molecules 2020, 25, 371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021.
- Kursa, M.B.; Rudnicki, W.R. Feature Selection with the Boruta Package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Brock, G.; Pihur, V.; Datta, S.; Datta, S. ClValid: An R Package for Cluster Validation. J. Stat. Softw. 2008, 25, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Kay, C.D.; Pereira-Caro, G.; Ludwig, I.A.; Clifford, M.N.; Crozier, A. Anthocyanins and Flavanones Are More Bioavailable than Previously Perceived: A Review of Recent Evidence. Annu. Rev. Food Sci. Technol. 2017, 8, 155–180. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Villaño, D.; Masoodi, H.; Marhuenda, J.; García-Viguera, C.; Zafrilla, P. Stevia, Sucralose and Sucrose Added to a Maqui-Citrus Beverage and Their Effects on Glycemic Response in Overweight Subjects: A Randomized Clinical Trial. LWT 2021, 144, 111173. [Google Scholar] [CrossRef]
Sample Time | (Poly)phenol Metabolites Selected |
---|---|
Initial | CA-G, CA-GS, DHPAA-SS, VA, Total VA |
Final | CA, Total CA, DHPAA, TFA-G |
Flavanone metabolites selected | |
Initial | E, Total HE, N-GG, Total N |
Final | E, HE, N-G, N-GG, Total N |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Prieto, D.; Garre, A.; Agulló, V.; García-Viguera, C.; Egea, J.A. Differences Due to Sex and Sweetener on the Bioavailability of (Poly)phenols in Urine Samples: A Machine Learning Approach. Metabolites 2023, 13, 653. https://doi.org/10.3390/metabo13050653
Hernández-Prieto D, Garre A, Agulló V, García-Viguera C, Egea JA. Differences Due to Sex and Sweetener on the Bioavailability of (Poly)phenols in Urine Samples: A Machine Learning Approach. Metabolites. 2023; 13(5):653. https://doi.org/10.3390/metabo13050653
Chicago/Turabian StyleHernández-Prieto, Diego, Alberto Garre, Vicente Agulló, Cristina García-Viguera, and Jose A. Egea. 2023. "Differences Due to Sex and Sweetener on the Bioavailability of (Poly)phenols in Urine Samples: A Machine Learning Approach" Metabolites 13, no. 5: 653. https://doi.org/10.3390/metabo13050653
APA StyleHernández-Prieto, D., Garre, A., Agulló, V., García-Viguera, C., & Egea, J. A. (2023). Differences Due to Sex and Sweetener on the Bioavailability of (Poly)phenols in Urine Samples: A Machine Learning Approach. Metabolites, 13(5), 653. https://doi.org/10.3390/metabo13050653