Determination of Indolepropionic Acid and Related Indoles in Plasma, Plasma Ultrafiltrate, and Saliva
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
4.1. Comparison to Prior Reports
4.2. General Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agus, A.; Planchais, J.; Sokol, H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe 2018, 23, 716–724. [Google Scholar] [CrossRef][Green Version]
- Bosi, A.; Banfi, D.; Bistoletti, M.; Giaroni, C.; Baj, A. Tryptophan metabolites along the microbiota-gut-brain axis: An interkingdom communication system influencing the gut in health and disease. Int. J. Tryptophan Res. 2020, 13, 1178646920928984. [Google Scholar] [CrossRef]
- Donia, M.S.; Fischbach, M.A. Small molecules from the human microbiota. Science 2015, 24, 1254766. [Google Scholar] [CrossRef][Green Version]
- Cryan, J.F.; Boehme, M.; Dinan, T.G. Is the fountain of youth in the gut microbiome? J. Physiol. 2019, 597, 2323–2324. [Google Scholar] [CrossRef]
- Galligan, J.J. Beneficial actions of microbiota-derived tryptophan metabolites. Neurogastroenterol. Motil. 2018, 30, e13283. [Google Scholar] [CrossRef]
- Gao, K.; Mu, C.L.; Farzi, A.; Zhu, W.Y. Tryptophan Metabolism: A Link between the Gut Microbiota and Brain. Adv. Nutr. 2020, 11, 709–723. [Google Scholar] [CrossRef] [PubMed]
- Gheorghe, C.E.; Martin, J.A.; Manriquez, F.V.; Dinan, T.G.; Cryan, J.F.; Clark, G. Focus on the essentials: Tryptophan metabolism and the microbiome-gut-brain axis. Curr. Opin. Pharmacol. 2019, 48, 137–145. [Google Scholar] [CrossRef]
- Konopelski, P.; Ufnal, M. Indoles—Gut bacteria metabolites of tryptophan with pharmacotherapeutic potential. Curr. Drug Metab. 2018, 19, 883–890. [Google Scholar] [CrossRef]
- Roager, H.M.; Licht, T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018, 17, 3294. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sekirov, I.; Russell, S.L.; Antunes, L.C.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev. 2010, 90, 859–904. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sherwin, E.; Bordenstein, S.R.; Quinn, J.L.; Dinan, T.G.; Cryan, J.F. Microbiota and the social brain. Science 2019, 366, eaar2016. [Google Scholar] [CrossRef]
- Sonowal, R.; Swimm, A.; Sahoo, A.; Luo, L.; Matsunaga, Y.; Wu, Z.; Bhingarde, J.A.; Ejzak, E.A.; Ranawade, A.; Qadoat, H. Indoles from commensal bacteria extend healthspan. Proc. Natl. Acad. Sci. USA 2017, 114, E7506–E7515. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wikoff, W.R.; Anfora, A.T.; Liu, J.; Schultz, P.G.; Lesley, S.A.; Peters, E.C.; Siuzdak, G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 2009, 106, 3698–3703. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Anderson, G.M. The quantitative determination of indolic microbial tryptophan metabolites in human and rodent samples: A systematic review. J. Chromatogr. B 2021, 1186, 123008. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Wood, T.K.; Lee, J. Roles of indole as an interspecies and interkingdom signaling molecule. Trends Microbiol. 2015, 23, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Zelante, T.; Iannitti, R.G.; Cunha, C.; De Luca, A.; Giovannini, G.; Pieraccini, G.; Zecchi, R.; D’Angelo, C.; Massi-Benedetti, C.; Fallarino, F. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013, 39, 372–385. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Konopelski, P.; Mogilnicka, I. Biological Effects of Indole-3-Propionic Acid, a Gut Microbiota-Derived Metabolite, and Its Precursor Tryptophan in Mammals’ Health and Disease. Int. J. Mol. Sci. 2022, 23, 1222. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, F.G.; Cole, S.W. A contribution to the chemistry of proteids: Part II. The constitution of tryptophane, and the action of bacteria upon it. J. Physiol. 1903, 29, 451–466. [Google Scholar] [CrossRef] [PubMed]
- Ward, F.W. The fate of indolepropionic acid in the animal organism. Biochem. J. 1923, 17, 907–915. [Google Scholar] [CrossRef][Green Version]
- Dodd, D.; Spitzer, M.H.; Van Treuren, W.; Merrill, B.D.; Hryckowian, A.J.; Higginbottom, S.K.; Le, A.; Cowan, T.M.; Nolan, G.P.; Fischbach, M.A. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 2017, 551, 648–652. [Google Scholar] [CrossRef][Green Version]
- Jennis, M.; Cavanaugh, C.R.; Leo, G.C.; Mabus, J.R.; Lenhard, J.; Hornby, P.J. Microbiota-derived tryptophan indoles increase after gastric bypass surgery and reduce intestinal permeability in vitro and in vivo. Neurogastroenterol. Motil. 2018, 30, e13178. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, T.; Vidova, V.; Bienertova-Vasku, J.; Janku, P.; Almasi, M.; Klanova, J.; Spacil, Z. Urinary intermediates of tryptophan as indicators of the gut microbial metabolism. Anal. Chim. Acta 2017, 987, 72–80. [Google Scholar] [CrossRef]
- Bendheim, P.E.; Poeggeler, B.; Neria, E.; Ziv, V.; Pappolla, M.A.; Chain, D.G. Development of indole-3-propionic acid (OXIGON) for Alzheimer’s disease. J. Mol. Neurosci. 2002, 19, 213–217. [Google Scholar] [CrossRef]
- Hwang, I.K.; Yoo, K.Y.; Li, H.; Park, O.K.; Lee, C.H.; Choi, J.H.; Jeong, Y.G.; Lee, Y.L.; Kim, Y.M.; Kwon, Y.G.; et al. Indole-3-propionic acid attenuates neuronal damage and oxidative stress in the ischemic hippocampus. J. Neurosci. Res. 2009, 87, 2126–2137. [Google Scholar] [CrossRef]
- Karbownik, M.; Reiter, R.J.; Garcia, J.J.; Cabrera, J.; Burkhardt, S.; Osuna, C.; Lewiński, A. Indole-3-propionic acid, a melatonin-related molecule, protects hepatic microsomal membranes from iron-induced oxidative damage: Relevance to cancer reduction. J. Cell Biochem. 2001, 81, 507–513. [Google Scholar] [CrossRef]
- Poeggeler, B.; Pappolla, M.A.; Hardeland, R.R.; Rassoulpour, A.; Hodgkins, P.S.; Guidetti, P.; Schwarcz, R. Indole-3-propionate: A potent hydroxyl radical scavenger in rat brain. Brain Res. 1999, 815, 382–388. [Google Scholar] [CrossRef]
- Guijas, C.; Horton, L.E.; Hoang, L.; Domingo-Almenara, X.; Billings, E.M.; Ware, B.C.; Sullivan, B.; Siuzdak, G. Microbial Metabolite 3-Indolepropionic Acid Mediates Immunosuppression. Metabolites 2022, 12, 645. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.Y.; Lin, C.J.; Pan, H.C.; Lee, C.C.; Lu, S.C.; Hsieh, Y.T.; Huang, S.Y.; Huang, H.Y. Clinical association between the metabolite of healthy gut microbiota, 3-indolepropionic acid and chronic kidney disease. Clin. Nutr. 2019, 38, 2945–2948. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Zampino, M.; Moaddel, R.; Chen, T.K.; Tian, Q.; Ferrucci, L.; Semba, R.D. Plasma metabolites associated with chronic kidney disease and renal function in adults from the Baltimore Longitudinal Study of Aging. Metabolomics 2021, 17, 9. [Google Scholar] [CrossRef] [PubMed]
- Cason, C.A.; Dolan, K.T.; Sharma, G.; Tao, M.; Kulkarni, R.; Helenowski, I.B.; Doane, B.M.; Avram, M.J.; McDermott, M.M.; Ho, K.J.; et al. Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes. J. Vasc. Surg. 2018, 68, 1552–1562.e7. [Google Scholar] [CrossRef]
- Sehgal, R.; de Mello, V.D.; Männistö, V.; Lindström, J.; Tuomilehto, J.; Pihlajamäki, J.; Uusitupa, M. Indolepropionic Acid, a Gut Bacteria-Produced Tryptophan Metabolite and the Risk of Type 2 Diabetes and Non-Alcoholic Fatty Liver Disease. Nutrients 2022, 14, 4695. [Google Scholar] [CrossRef]
- Tuomainen, M.; Lindström, J.; Lehtonen, M.; Auriola, S.; Pihlajamäki, J.; Peltonen, M.; Tuomilehto, J.; Uusitupa, M.; de Mello, V.D.; Hanhineva, K. Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals. Nutr. Diabetes 2018, 8, 35. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lécuyer, L.; Dalle, C.; Micheau, P.; Lécuyer, L.; Dalle, C.; Micheau, P.; Pétéra, M.; Centeno, D.; Lyan, B.; Lagree, M.; et al. Untargeted plasma metabolomic profiles associated with overall diet in women from the SU.VI.MAX cohort. Eur. J. Nutr. 2020, 59, 3425–3439. [Google Scholar] [CrossRef] [PubMed]
- Guertin, K.A.; Moore, S.C.; Sampson, J.N.; Huang, W.Y.; Xiao, Q.; Stolzenberg-Solomon, R.Z.; Sinha, R.; Cross, A.J. Metabolomics in nutritional epidemiology: Identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations. Am. J. Clin. Nutr. 2014, 100, 208–217. [Google Scholar] [CrossRef][Green Version]
- Anderson, G.M. Quantitation of tryptophan metabolites in rat feces by thin-layer chromatography. J. Chromatogr. 1975, 105, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Gryp, T.; De Paepe, K.; Vanholder, R.; Kerckhof, F.M.; Van Biesen, W.; Van de Wiele, T.; Verbeke, F.; Speeckaert, M.; Joossens, M.; Couttenye, M.M.; et al. Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney Int. 2020, 97, 1230–1242. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sirich, T.L.; Aronov, P.A.; Plummer, N.S.; Hostetter, T.H.; Meyer, T.W. Numerous protein-bound solutes are cleared by the kidney with high efficiency. Kidney Int. 2013, 84, 585–590. [Google Scholar] [CrossRef][Green Version]
- Giebułtowicz, J.; Korytowska, N.; Sankowski, B.; Wroczyński, P. Development and validation of a LC-MS/MS method for quantitative analysis of uraemic toxins p-cresol sulphate and indoxyl sulphate in saliva. Talanta 2016, 150, 593–598. [Google Scholar] [CrossRef]
- Morita, I.; Kawamoto, M.; Yoshida, H. Difference in the concentration of tryptophan metabolites between maternal and umbilical foetal blood. J. Chromatogr. 1992, 576, 334–339. [Google Scholar] [CrossRef]
- Korytowska, N.; Sankowski, B.; Wyczałkowska-Tomasik, A.; Pączek, L.; Wroczyński, P.; Giebułtowicz, J. The utility of saliva testing in the estimation of uremic toxin levels in serum. Clin. Chem. Lab. Med. 2018, 57, 230–237. [Google Scholar] [CrossRef]
- Dame, Z.T.; Aziat, F.; Mandal, R. The human saliva metabolome. Metabolomics 2015, 11, 1864–1883. [Google Scholar] [CrossRef]
- Sugimoto, M.; Saruta, J.; Matsuki, C. Physiological and environmental parameters associated with mass spectrometry-based salivary metabolomic profiles. Metabolomics 2013, 9, 454–463. [Google Scholar] [CrossRef]
- Cooke, M.; Leeves, N.; White, C. Time profile of putrescine, cadaverine, indole and skatole in human saliva. Arch. Oral. Biol. 2003, 48, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Ujhelyi, L.; Balla, G.; Jeney, V.; Varga, Z.; Nagy, E.; Vercellotti, G.M.; Agarwal, A.; Eaton, J.W.; Balla, J. Hemodialysis reduces inhibitory effect of plasma ultrafiltrate on LDL oxidation and subsequent endothelial reactions. Kidney Int. 2006, 69, 144–151. [Google Scholar] [CrossRef][Green Version]
- Conrad, M.L.; Moser, A.C.; Hage, D.S. Evaluation of indole-based probes for high-throughput screening of drug binding to human serum albumin: Analysis by high-performance affinity chromatography. J. Sep. Sci. 2009, 32, 1145–1155. [Google Scholar] [CrossRef][Green Version]
- McMenamy, R.H. Association of indole analogues to defatted human serum albumin. Arch. Biochem. Biophys. 1963, 103, 409–417. [Google Scholar] [CrossRef]
- Tomasić, A.; Bertosa, B.; Tomić, S.; Soskić, M.; Magnus, V. Binding behavior of amino acid conjugates of indole-3-acetic acid to immobilized human serum albumin. J. Chromatogr. A 2007, 1154, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Bertuzzi, A.; Mingrone, G.; Gandolfi, A.; Greco, A.V.; Ringoir, S.; Vanholder, R. Binding of indole-3-acetic acid to human serum albumin and competition with L-tryptophan. Clin. Chim. Acta 1997, 265, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Kragh-Hansen, U.; Chuang, V.T.; Otagiri, M. Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol. Pharm. Bull. 2002, 25, 695–704. [Google Scholar] [CrossRef][Green Version]
COMPOUND | PLASMA | PLASMA | SALIVA | SALIVA | RT (min) | RELATIVE RESPONSE * | LOD ** (pg) |
---|---|---|---|---|---|---|---|
ng/mL ADDED | 400 | 40 | 40 | 10 | --- | --- | --- |
ICA | 93.8 ± 1.4 | 98.9 ± 3.4 | 107.2 ± 4.3 | 99.2 ± 5.4 | 6.4 | 0.091 | 2.0 |
IAA | 96.2 ± 1.9 | 94.6 ± 2.6 | 96.9 ± 3.2 | 96.2 ± 4.8 | 7.6 | 1.04 | 0.2 |
ILA | 105.8 ± 1.1 | 105.4 ± 2.9 | 109.3 ± 3.5 | 104.2 ± 6.2 | 8.6 | 0.43 | 0.4 |
2-MeIAA | 99.3 ± 0.8 | 100.1 ± 1.4 | 108.2 ± 5.0 | 99.6 ± 7.0 | 9.6 | 0.47 | 0.4 |
IPA | 101.7 ± 0.6 | 100.5 ± 3.1 | 101.3 ± 6.0 | 101.4 ± 6.3 | 14.0 | 0.64 | 0.3 |
1-MeIAA | 99.3 ± 1.7 | 102.0 ± 4.3 | 105.5 ± 6.5 | 101.2 ± 6.3 | 16.6 | 1.0 | 0.2 |
ISO4 | 104.4 ± 1.0 | 104.5 ± 3.4 | 110.0 ± 4.9 | 102.7 ± 5.8 | 20.4 | 0.36 | 0.6 |
IND | 101.0 ± 0.3 | 104.4 ± 4.1 | 101.4 ± 0.5 | 117.8 ± 6.2 | 22.2 | 0.35 | 0.6 |
IBA | 99.0 ± 0.4 | 96.6 ± 3.5 | 91.5 ± 4.0 | 105.8 ± 5.9 | 24.4 | 0.19 | 1.0 |
INDOLE | TOTAL PLASMA CONC. (n = 14) (ng/mL) | PRIOR REPORTED TOTAL PLASMA CONCENTRATIONS (ng/mL) | ||
ICA | <2 | No Prior | ||
IAA | 225 ± 135 | 225 ± 50 summary mean ± SD [14] | ||
ILA | 107 ± 20.3 | 205 ± 124 summary mean ± SD [14] | ||
IPA | 142 ± 67.7 | 112 ± 23 summary mean ± SD [14] | ||
ISO4 | 507 ± 180 | 595 ± 576 [36], ~1030 [37], 1040 (median, IQR 650) [38] | ||
IND | 3.05 ± 3.70 | 4.1 ± 3.5 summary mean ± SD [14] | ||
IBA | <1 | No Prior | ||
INDOLE | PLASMA UF CONC. (n = 14) (ng/mL) | PRIOR REPORTED PLASMA UF (ng/mL) | PLASMA % FREE * (n = 14) | PRIOR REPORTED %-FREE |
ICA | <0.1 | No Prior | --- | No Prior |
IAA | 21.6 ± 15.8 | 19.3 ± 14.0 [39] | 9.23 ± 2.45 | 18% [39] |
ILA | 1.34 ± 0.46 | 22.6 ± 16.4 ng/mL [39] | 1.10 ± 0.63 | 18% [39] |
IPA | 0.33 ± 0.12 | No Prior | 0.26 ± 0.13 | No Prior |
ISO4 | 12.3 ± 5.5 | 27.2 [40], 11 (IQR 16) [41] | 2.56 ± 1.22 | 2.7% [40], 1% [41] |
IND | NA | No Prior | --- | No Prior |
IBA | <0.05 | No Prior | --- | No Prior |
INDOLE | SALIVA CONC. (n = 7) (ng/mL) | SALIVA CONC. (n = 7) Median (IQR) (ng/mL) | PRIOR REPORTED SALIVA CONCENTRATIONS (ng/mL) | |
ICA | <2 | --- | No Prior | |
IAA | 236 ± 287 | 94 (390) | 26.3 ± 83.7 [42], 550 ± 554 [41] | |
ILA | 12.4 ± 15.2 | 7.6 (6.2) | No Prior | |
IPA | <1 | --- | No Prior | |
ISO4 | 4.9 ± 4.1 | 3.9 (5.4) | 9.4 (IQR 7.6) [38], 8 (IQR 9) [40] | |
IND | 160 ± 269 | 26.2 (197) | 40 ± 90 [43] | |
IBA | <1 | --- | No Prior |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anderson, G.M. Determination of Indolepropionic Acid and Related Indoles in Plasma, Plasma Ultrafiltrate, and Saliva. Metabolites 2023, 13, 602. https://doi.org/10.3390/metabo13050602
Anderson GM. Determination of Indolepropionic Acid and Related Indoles in Plasma, Plasma Ultrafiltrate, and Saliva. Metabolites. 2023; 13(5):602. https://doi.org/10.3390/metabo13050602
Chicago/Turabian StyleAnderson, George M. 2023. "Determination of Indolepropionic Acid and Related Indoles in Plasma, Plasma Ultrafiltrate, and Saliva" Metabolites 13, no. 5: 602. https://doi.org/10.3390/metabo13050602
APA StyleAnderson, G. M. (2023). Determination of Indolepropionic Acid and Related Indoles in Plasma, Plasma Ultrafiltrate, and Saliva. Metabolites, 13(5), 602. https://doi.org/10.3390/metabo13050602