Fatty Liver Disease in Patients with Prediabetes and Overweight or Obesity
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Demographic and Clinical Data Collection
2.3. Definitions
2.3.1. MetS
2.3.2. Cardiovascular Risk
2.3.3. FLI as a Surrogate Measure of Fatty Liver
2.4. Statistical Analyses
3. Results
3.1. General Characteristics of the Study Population
3.2. Prevalence of FLI-Defined NAFLD
3.3. FLI-Defined NAFLD and CVR
4. Discussion
4.1. FLI-Defined NAFLD by Sex
4.2. FLI-Defined NAFLD and MetS
4.3. FLI-Defined NAFLD and Associated Comorbidities
4.4. Screening FLI-Defined NAFLD in Primary Health Care
4.5. Study Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Younossi, Z.M.; Marchesini, G.; Pinto-Cortez, H.; Petta, S. Epidemiology of Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis: Implications for Liver Transplantation. Transplantation 2019, 103, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Bellentani, S. The epidemiology of non-alcoholic fatty liver disease. Liver Int. 2017, 37, 81–84. [Google Scholar] [CrossRef]
- Borggreve, S.E.; Hillege, H.L.; Wolffenbuttel, B.H.R.; de Jong, P.E.; Bakker, S.J.L.; van der Steege, G.; van Tol, A.; Dullaart, R.P.F.; PREVEND Study Group. The effect of cholesteryl ester transfer protein -629C->A promoter polymorphism on high-density lipoprotein cholesterol is dependent on serum triglycerides. J. Clin. Endocrinol. Metab. 2005, 90, 4198–4204. [Google Scholar] [CrossRef]
- Le, M.H.; Yeo, Y.H.; Li, X.; Li, J.; Zou, B.; Wu, Y.; Ye, Q.; Huang, D.Q.; Zhao, C.; Zhang, J.; et al. 2019 Global NAFLD Prevalence: A Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2021, 20, 2809–2817.e28. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.Q.; El-Serag, H.B.; Loomba, R. Global epidemiology of NAFLD-related HCC: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2020, 18, 223–238. [Google Scholar] [CrossRef]
- Estes, C.; Anstee, Q.M.; Arias-Loste, M.T.; Bantel, H.; Bellentani, S.; Caballeria, J.; Colombo, M.; Craxi, A.; Crespo, J.; Day, C.P.; et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J. Hepatol. 2018, 69, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Aller, R.; Fernández-Rodríguez, C.; Iacono, O.L.; Bañares, R.; Abad, J.; Carrión, J.A.; García-Monzón, C.; Caballería, J.; Berenguer, M.; Rodríguez-Perálvarez, M.; et al. Documento de consenso. Manejo de la enfermedad hepática grasa no alcohólica (EHGNA). Guía de práctica clínica. Gastroenterol. Y Hepatol. 2018, 41, 328–349. [Google Scholar] [CrossRef]
- Caballería, L.; Pera, G.; Auladell, M.A.; Torán, P.; Muñoz, L.; Miranda, D.; Alumà, A.; Casas, J.D.; Sánchez, C.; Gil, D.; et al. Prevalence and factors associated with the presence of nonalcoholic fatty liver disease in an adult population in Spain. Eur. J. Gastroenterol. Hepatol. 2010, 22, 24–32. [Google Scholar] [CrossRef]
- Fresneda, S.; Abbate, M.; Busquets-Cortés, C.; López-González, A.; Fuster-Parra, P.; Bennasar-Veny, M.; Yáñez, A.M. Sex and age differences in the association of fatty liver index-defined non-alcoholic fatty liver disease with cardiometabolic risk factors: A cross-sectional study. Biol. Sex Differ. 2022, 13, 1–16. [Google Scholar] [CrossRef]
- Tana, C.; Ballestri, S.; Ricci, F.; Di Vincenzo, A.; Ticinesi, A.; Gallina, S.; Giamberardino, M.A.; Cipollone, F.; Sutton, R.; Vettor, R.; et al. Cardiovascular Risk in Non-Alcoholic Fatty Liver Disease: Mechanisms and Therapeutic Implications. Int. J. Environ. Res. Public Health 2019, 16, 3104. [Google Scholar] [CrossRef]
- Riazi, K.; Azhari, H.; Charette, J.H.; E Underwood, F.; A King, J.; Afshar, E.E.; Swain, M.G.; E Congly, S.; Kaplan, G.G.; Shaheen, A.-A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef]
- Stefan, N.; Cusi, K. A global view of the interplay between non-alcoholic fatty liver disease and diabetes. Lancet Diabetes Endocrinol. 2022, 10, 284–296. [Google Scholar] [CrossRef]
- Targher, G.; Day, C.P.; Bonora, E. Risk of Cardiovascular Disease in Patients with Nonalcoholic Fatty Liver Disease. New Engl. J. Med. 2010, 363, 1341–1350. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2017, 15, 11–20. [Google Scholar] [CrossRef]
- Yang, K.C.; Hung, H.-F.; Lu, C.-W.; Chang, H.-H.; Lee, L.-T.; Huang, K.-C. Association of Non-alcoholic Fatty Liver Disease with Metabolic Syndrome Independently of Central Obesity and Insulin Resistance. Sci. Rep. 2016, 6, 27034. [Google Scholar] [CrossRef] [PubMed]
- Cholongitas, E. Epidemiology of nonalcoholic fatty liver disease in Europe: A systematic review and meta-analysis. Ann. Gastroenterol. 2021, 34, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Moschen, A.R.; Roden, M. NAFLD and diabetes mellitus. Nat. Rev. Gastroenterol. Hepatol. 2016, 14, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Busquets-Cortés, C.; Bennasar-Veny, M.; López-González, A.-A.; Fresneda, S.; Aguiló, A.; Yanez, A. Fatty liver index and progression to type 2 diabetes: A 5-year longitudinal study in Spanish workers with pre-diabetes. BMJ Open 2021, 11, e045498. [Google Scholar] [CrossRef]
- Nishi, T.; Babazono, A.; Maeda, T.; Imatoh, T.; Une, H. Evaluation of the fatty liver index as a predictor for the development of diabetes among insurance beneficiaries with prediabetes. J. Diabetes Investig. 2014, 6, 309–316. [Google Scholar] [CrossRef]
- Falguera, M.; Vilanova, M.B.; Alcubierre, N.; Granado-Casas, M.; Marsal, J.R.; Miró, N.; Cebrian, C.; Molló, À.; Franch-Nadal, J.; Mata-Cases, M.; et al. Prevalence of pre-diabetes and undiagnosed diabetes in the Mollerussa prospective observational cohort study in a semi-rural area of Catalonia. BMJ Open 2020, 10, e033332. [Google Scholar] [CrossRef]
- Jäger, S.; Jacobs, S.; Kröger, J.; Stefan, N.; Fritsche, A.; Weikert, C.; Boeing, H.; Schulze, M.B. Association between the Fatty Liver Index and Risk of Type 2 Diabetes in the EPIC-Potsdam Study. PLoS ONE 2015, 10, e0124749. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef]
- Shealy, K.M.; Wu, J.; Waites, J.; Taylor, N.A.; Sarbacker, G.B. Patterns of Diabetes Screening and Prediabetes Treatment during Office Visits in the US. J. Am. Board Fam. Med. 2019, 32, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Nhim, K.; Khan, T.; Gruss, S.M.; Wozniak, G.; Kirley, K.; Schumacher, P.; Luman, E.T.; Albright, A. Primary Care Providers’ Prediabetes Screening, Testing, and Referral Behaviors. Am. J. Prev. Med. 2018, 55, e39–e47. [Google Scholar] [CrossRef]
- Wong, V.W.; Zelber-Sagi, S.; Cusi, K.; Carrieri, P.; Wright, E.; Crespo, J.; Lazarus, J.V. Management of NAFLD in primary care settings. Liver Int. 2022, 42, 2377–2389. [Google Scholar] [CrossRef] [PubMed]
- Abbate, M.; Fresneda, S.; Yañez, A.; Ricci-Cabello, I.; Galmes-Panades, A.M.; Aguilo, A.; Bennasar-Veny, M.; Vidal, C.; Llobera, J.; Gonzalez-Torrente, S.; et al. Nurse-led telephone intervention for lifestyle changes on glycaemic control in people with prediabetes: Study protocol for a randomized controlled trial. J. Adv. Nurs. 2021, 77, 3204–3217. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2022. Diabetes Care 2021, 45, S17–S38. [Google Scholar] [CrossRef]
- Domingo-Salvany, A.; Bacigalupe, A.; Carrasco, J.M.; Espelt, A.; Ferrando, J.; Borrell, C.; del Grupo de Determinantes Sociales de la Sociedad Española de Epidemiología. Proposals for social class classification based on the Spanish National Classification of Occupations 2011 using neo-Weberian and neo-Marxist approaches. Gac. Sanit. 2013, 27, 263–272. [Google Scholar] [CrossRef]
- WHO. Guidelines for Controlling and Monitoring the Tobacco Epidemic; World Health Organization: Geneva, Switzerland, 1998. [Google Scholar]
- Centers Disease Control and Prevention. Behavioral Risk Factor Surveillance System Survey Questionnaire; CDC: Atlanta, GA, USA, 2019. [Google Scholar]
- United States Department of Health and Human Services. Population Assessment of Tobacco and Health (PATH) Study [United States]; Inter-University Consortium for Political and Social Research: Ann Arbor, MI, USA, 2020. [Google Scholar]
- Grant, B.F.; Chu, A.; Sigman, R.; Amsbary, M.; Kali, J.; Sugawara, Y.; Goldstein, R. National Institute on Alcohol Abuse and Alcoholism National Epidemiologic Survey on Alcohol and Related Conditions-III (NESARC-III) Source and Accuracy Statement; National Institute on Alcohol Abuse: Bethesda, MD, USA, 2015. [Google Scholar]
- Stewart, A.M.-J.M.; Olds, T.; De Ridder, H. International standards for anthropometric assessment. In Kinanthropometry and Exercise Physiology; Routledge: New York, NY, USA, 2011; Volume 137. [Google Scholar]
- Astorino, T.A.; Baker, J.S.; Brock, S.; Dalleck, L.C.; Goulet, E.D.B.; Gotshall, R.W.; Hutchison, A.; Knight-Maloney, M.; Kravitz, L.C.; Laskin, J.J.; et al. Validity and Reliability of Body Composition Analysis Using the Tanita BC 418-MA. J. Exerc. Physiol. 2012, 15, 74–83. [Google Scholar]
- WHO. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; WHO: Genewa, Switzerland, 2000. [Google Scholar]
- Salas-Salvadó, J.; Rubio, M.A.; Barbany, M.; Moreno, B. Consenso SEEDO 2007 para la evaluación del sobrepeso y la obesidad y el establecimiento de criterios de intervención terapéutica. Med. Clín. 2007, 128, 184–196. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. The IDF Consensus Worldwide Definition of the Metabolic Syndrome; International Diabetes Federation (IDF): Brussels, Belgium, 2006; pp. 1–24. [Google Scholar]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J.; IDF Epidemiology Task Force Consensus Group. The metabolic syndrome—A new worldwide definition. Lancet 2005, 366, 1059–1062. [Google Scholar] [CrossRef] [PubMed]
- Marrugat, J.; Solanas, P.; D’Agostino, R.; Sullivan, L.; Ordovas, J.; Cordón, F.; Ramos, R.; Sala, J.; Masià, R.; Rohlfs, I.; et al. Estimación del riesgo coronario en España mediante la ecuación de Framingham calibrada. Rev. Esp. Cardiol. 2003, 56, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk: The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS): The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef]
- Conroy, R.M.; Pyörälä, K.; Fitzgerald, A.P.; Sans, S.; Menotti, A.; De Backer, G.; De Bacquer, D.; Ducimetière, P.; Jousilahti, P.; Keil, U.; et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: The SCORE project. Eur. Heart J. 2003, 24, 987–1003. [Google Scholar] [CrossRef]
- Koehler, E.M.; Schouten, J.N.; Hansen, B.E.; Hofman, A.; Stricker, B.H.; Janssen, H.L. External Validation of the Fatty Liver Index for Identifying Nonalcoholic Fatty Liver Disease in a Population-based Study. Clin. Gastroenterol. Hepatol. 2013, 11, 1201–1204. [Google Scholar] [CrossRef]
- Quek, J.; Chan, K.E.; Wong, Z.Y.; Tan, C.; Tan, B.; Lim, W.H.; Tan, D.J.H.; Tang, A.S.P.; Tay, P.; Xiao, J.; et al. Global prevalence of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in the overweight and obese population: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 8, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Franch-Nadal, J.; Caballeria, L.; Mata-Cases, M.; Mauricio, D.; Giraldez-García, C.; Mancera, J.; Goday, A.; Mundet-Tudurí, X.; Regidor, E.; for the PREDAPS Study Group. Fatty liver index is a predictor of incident diabetes in patients with prediabetes: The PREDAPS study. PLoS ONE 2018, 13, e0198327. [Google Scholar] [CrossRef]
- Vesa, C.M.; Behl, T.; Nemeth, S.; Bratu, O.G.; Diaconu, C.C.; Moleriu, R.D.; Negrut, N.; Zaha, D.C.; Bustea, C.; Radu, F.I.; et al. Prediction of NAFLD occurrence in prediabetes patients. Exp. Ther. Med. 2020, 20, 1. [Google Scholar] [CrossRef]
- Lonardo, A.; Nascimbeni, F.; Ballestri, S.; Fairweather, D.; Win, S.; Than, T.A.; Abdelmalek, M.F.; Suzuki, A. Sex Differences in Nonalcoholic Fatty Liver Disease: State of the Art and Identification of Research Gaps. Hepatology 2019, 70, 1457–1469. [Google Scholar] [CrossRef]
- DiStefano, J.K. NAFLD and NASH in Postmenopausal Women: Implications for Diagnosis and Treatment. Endocrinology 2020, 161, bqaa134. [Google Scholar] [CrossRef] [PubMed]
- Kuang, M.; Lu, S.; Xie, Q.; Peng, N.; He, S.; Yu, C.; Qiu, J.; Sheng, G.; Zou, Y. Abdominal obesity phenotypes are associated with the risk of developing non-alcoholic fatty liver disease: Insights from the general population. BMC Gastroenterol. 2022, 22, 311. [Google Scholar] [CrossRef] [PubMed]
- Zeb, I.; Katz, R.; Nasir, K.; Ding, J.; Rezaeian, P.; Budoff, M.J. Relation of nonalcoholic fatty liver disease to the metabolic syndrome: The Multi-Ethnic Study of Atherosclerosis. J. Cardiovasc. Comput. Tomogr. 2013, 7, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Anstee, Q.M.; Targher, G.; Day, C.P. Progression of NAFLD to diabetes mellitus, cardiovascular disease or cirrhosis. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 330–344. [Google Scholar] [CrossRef]
- Caballeria, J.; Caballeria, L. Esteatohepatitis no alcohólica y diabetes Nonalcoholic steatohepatitis and diabetes. Endocrinol. Nutr. 2016, 63, 377–379. [Google Scholar] [CrossRef]
- Balkau, B.; Lange, C.; Vol, S.; Fumeron, F.; Bonnet, F. Nine-year incident diabetes is predicted by fatty liver indices: The French D.E.S.I.R. study. BMC Gastroenterol. 2010, 10, 56. [Google Scholar] [CrossRef]
- Fung, J.; Lee, C.-K.; Chan, M.; Seto, W.-K.; Lai, C.-L.; Yuen, M.-F.; the Hong Kong Liver Health Census Study Group. High prevalence of non-alcoholic fatty liver disease in the Chinese—Results from the Hong Kong liver health census. Liver Int. 2014, 35, 542–549. [Google Scholar] [CrossRef]
- Xie, Y.; Kong, W.; Wang, X.; Wu, Z. Association of glycated hemoglobin with non-alcoholic fatty liver disease patients and the severity of liver steatosis and fibrosis measured by transient elastography in adults without diabetes. BMC Endocr. Disord. 2022, 22, 1–10. [Google Scholar] [CrossRef]
- Lonardo, A.; Nascimbeni, F.; Mantovani, A.; Targher, G. Hypertension, diabetes, atherosclerosis and NASH: Cause or consequence? J. Hepatol. 2017, 68, 335–352. [Google Scholar] [CrossRef]
- Wu, J.; Ward, E.; Lu, Z.K. Addressing Lifestyle Management During Visits Involving Patients with Prediabetes: NAMCS 2013–2015. J. Gen. Intern. Med. 2018, 34, 1412–1418. [Google Scholar] [CrossRef]
- Tseng, E.; Greer, R.C.; O’Rourke, P.; Yeh, H.-C.; McGuire, M.M.; Clark, J.M.; Maruthur, N.M. Survey of primary care providers’ knowledge of screening for, diagnosing and managing prediabetes. J. Gen. Intern. Med. 2017, 32, 1172–1178. [Google Scholar] [CrossRef] [PubMed]
- Rikhi, R.; Singh, T.; Esfeh, J.M. Work up of fatty liver by primary care physicians, review. Ann. Med. Surg. 2020, 50, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Busquets-Cortés, C.; Bennasar-Veny, M.; López-González, A.; Fresneda, S.; Abbate, M.; Yáñez, A.M. Utility of Fatty Liver Index to predict reversion to normoglycemia in people with prediabetes. PLoS ONE 2021, 16, e0249221. [Google Scholar] [CrossRef] [PubMed]

| Variable | All n = 186 | Men n = 89 (47.84%) | Women n = 97 (52.15%) | p-Value * |
|---|---|---|---|---|
| Age (years) | 59.26 (10.32) | 58.65 (10.43) | 59.82 (10.24) | 0.440 |
| Social class | 0.960 | |||
| White collar | 40 (21.5) | 19 (21.3) | 21 (21.6) | |
| Blue collar | 146 (78.5) | 70 (78.7) | 76 (78.4) | |
| Smoking status | <0.001 | |||
| Never | 84 (45.2) | 27 (30.3) | 57 (58.8) | |
| Former | 74 (39.8) | 52 (58.4) | 22 (22.7) | |
| Current | 28 (15.1) | 10 (11.2) | 18 (18.6) | |
| BMI (kg/m2) | 32.29 (3.53) | 32.00 (3.32) | 32.56 (3.71) | 0.279 |
| BMI categories | 0.395 | |||
| Overweight | 49 (26.3) | 26 (29.2) | 22 (23.7) | |
| Obese | 137 (73.7) | 63 (33.9) | 74 (76.3) | |
| WC (cm) | 105.62 (10.19) | 109.10 (8.90) | 102.44 (10.29) | <0.001 |
| SBP (mmHg) | 133.98 (14.13) | 137.02 (13.48) | 131.22 (14.77) | 0.005 |
| DBP (mmHg) | 83.76 (9.29) | 85.33 (9.27) | 82.35 (9.12) | 0.029 |
| BP categories | 0.660 | |||
| Normal | 32 (17.2) | 13 (14.6) | 19 (19.6) | |
| Prehypertension | 25 (13.4) | 12 (13.5) | 13 (13.4) | |
| Hypertension | 129 (69.4) | 64 (71.9) | 65 (67.0) | |
| FPG (mg/dL) | 108.76 (6.24) | 109.44 (6.59) | 108.13 (5.86) | 0.155 |
| HbA1c ∇ | 5.89 (0.32) | 5.86 (0.33) | 5.92 (0.32) | 0.282 |
| GGT (IU/L) | 44.11 (60.06) | 56.88 (82.51) | 32.40 (20.53) | 0.008 |
| AST (IU/L) + | 24.11 (11.79) | 27.23 (12.75) | 21.23 (10.05) | 0.001 |
| ALT (IU/L) ° | 27.68 (18.95) | 34.03 (23.31) | 21.73 (10.80) | <0.001 |
| Cholesterol (mg/dL) | 198.28 (35.01) | 194.73 (37.74) | 201.54 (32.15) | 0.186 |
| HDL-C (mg/dL) | 49.98 (12.20) | 46.26 (9.91) | 53.39 (13.13) | <0.001 |
| LDL-C (mg/dL) | 119.55 (29.74) | 118.84 (30.59) | 120.19 (29.11) | 0.761 |
| TG (mg/dL) | 152.04 (143.21) | 163.62 (195.67) | 141.41 (64.73) | 0.310 |
| Presence of dyslipidemia | 107 (57,5) | 52 (58.4) | 55 (56.7) | 0.812 |
| Presence of MetS | 137 (73,7) | 65 (73.0) | 72 (74.2) | 0.854 |
| REGICOR | 4.55 (2.68) | 5.58 (3.16) | 3.60 (1.68) | <0.001 |
| Categories of Framingham-REGICOR | <0.001 | |||
| Low risk a | 113 (60.8) | 39 (43.8) | 74 (76.3) | |
| Moderate risk a | 62 (33.3) | 40 (44.9) | 22 (22.7) | |
| High risk a | 11 (5.9) | 10 (11.2) | 1 (1.0) | |
| SCORE | 2.91 (2.62) | 3.69 (2.82) | 2.20 (2.20) | <0.001 |
| Categories of SCORE | <0.001 | |||
| Low risk a | 52 (28.0) | 15 (16.9) | 37 (38.1) | |
| Moderate risk | 96 (51.6) | 47 (52.8) | 49 (50.5) | |
| High risk a | 38 (20.4) | 27 (30.3) | 11 (11.3) | |
| FLI | 75.61 (19.02) | 79.26 (17.53) | 72.27 (19.79) | 0.012 |
| FLI categories | 0.102 | |||
| <60 | 41 (22.0) | 15 (16.9) | 26 (26.8) | |
| ≥60 | 145 (78.0) | 74 (83.1) | 71 (73.2) |
| Variable | FLI < 60 (n = 41) | FLI ≥ 60 (n = 145) | OR (95% CI) | p-Value * |
|---|---|---|---|---|
| Age (years) | 58.56 (10.96) | 59.46 (10.16) | 1.01 (0.97–1.04) | 0.623 |
| Social class | 0.225 | |||
| White collar | 6 (14.6) | 34 (23.4) | Ref. | |
| Blue collar | 35 (85.4) | 111 (76.6) | 0.55 (0.21–1.41) | |
| Smoking status | ||||
| Never | 22 (53.7) | 62 (42.8) | Ref. | 0.425 |
| Former | 13 (31.7) | 61 (42.1) | 1.61 (0.74–3.448) | |
| Current | 6 (14.6) | 22 (15.2) | 1.60 (0.46–3.62) | |
| BMI (kg/m2) | 28.62 (1.55) | 33.33 (3.23) | 2.58 (1.88–3.55) | <0.001 |
| BMI categories | <0.001 | |||
| Overweight | 32 (78.0) | 17 (11.7) | Ref. | |
| Obese | 9 (22.0) | 128 (88.3) | 26.35 (10.75–64.57) | |
| WC (cm) in men | 100.10 (5.61) | 110.94 (8.44) | 1.25 (1.11–1.41) | <0.001 |
| WC (cm) in women | 91.47 (6.50) | 106.46 (8.32) | 1.28 (1.15–1.42) | <0.001 |
| SBP (mmHg) | 130.51 (14.28) | 134.97 (13.97) | 1.02 (0.99–1.05) | 0.075 |
| DBP (mmHg) | 81.40 (8.62) | 84.44 (9.39) | 1.03 (0.99–1.07) | 0.065 |
| BP categories | 0.151 | |||
| Normal | 11 (26.8) | 21 (14.5) | Ref. | |
| Prehypertension | 6 (14.6) | 19 (11.3) | 1.57 (0.48–5.10) | |
| Hypertension | 24 (58.5) | 105 (72.4) | 2.27 (0.96–5.33) | |
| FPG (mg/dL) | 108.02 (5.91) | 108.97 (6.34) | 1.02 (0.96–1.08) | 0.396 |
| HbA1c ∇ | 5.88 (0.29) | 5.89 (0.33) | 1.10 (0.33–3.70) | 0.801 |
| GGT (IU/L) | 25.32 (10.29) | 49.43 (66.90) | 1.06 (1.02–1.10) | <0.001 |
| AST (IU/L) + | 19.68 (5.00) | 25.43 (12.87) | 1.11 (10.30–1.19) | <0.001 |
| ALT (IU/L) ° | 19.09 (7.81) | 30.17 (20.47) | 1.10 (1.05–1.16) | <0.001 |
| Cholesterol (mg/dL) | 194.22 (31.18) | 199.43 (36.03) | 1.00 (0.99–1.01) | 0.402 |
| HDL-C (mg/dL) n= 184 | 53.85 (11.88) n = 40 | 48.90 (12.11) n = 144 | 0.96 (0.94–0.99) | 0.023 |
| LDL-C (mg/dL) n= 181 | 120.63 (28.37) n = 41 | 119.24 (30.22) n = 140 | 0.99 (0.98–1.01) | 0.792 |
| TG (mg/dL) | 94.46 (27.70) | 168.32 (157.88) | 1.02 (1.01–1.04) | <0.001 |
| Presence of dyslipidemia | ||||
| 21 (51.2) | 86 (59.3) | 1.39 (0.69–2.80) | 0.355 | |
| Presence of MetS | 20 (48.8) | 116 (81.1) | 5.91 (2.34–14.93) | <0.001 |
| REGICOR | 3.53 (2.27) | 4.84 (2.73) | 1.29 (1.07–1.56) | 0.006 |
| Categories of Framingham-REGICOR | 0.005 | |||
| Low risk a | 34 (82.9) | 78 (54.5) | Ref. | |
| Moderate risk b | 6 (14.6) | 55 (38.5) | 3.99 (1.57–10.16) | |
| High risk | 1 (2.4) | 10 (7.0) | 4.35 (0.53–35.40) | |
| SCORE | 2.35 (2.38) | 3.07 (2.67) | 1.12 (0.96–1.31) | 0.121 |
| Categories of SCORE | 0.172 | |||
| Low risk | 13 (31.7) | 38 (26.6) | Ref. | |
| Moderate risk | 24 (58.5) | 72 (50.3) | 1.02 (0.47–2.24) | |
| High risk | 4 (9.8) | 33 (23.1) | 2.82 (0.83–9.50) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arias-Fernández, M.; Fresneda, S.; Abbate, M.; Torres-Carballo, M.; Huguet-Torres, A.; Sánchez-Rodríguez, C.; Bennasar-Veny, M.; Yañez, A.M.; Busquets-Cortés, C. Fatty Liver Disease in Patients with Prediabetes and Overweight or Obesity. Metabolites 2023, 13, 531. https://doi.org/10.3390/metabo13040531
Arias-Fernández M, Fresneda S, Abbate M, Torres-Carballo M, Huguet-Torres A, Sánchez-Rodríguez C, Bennasar-Veny M, Yañez AM, Busquets-Cortés C. Fatty Liver Disease in Patients with Prediabetes and Overweight or Obesity. Metabolites. 2023; 13(4):531. https://doi.org/10.3390/metabo13040531
Chicago/Turabian StyleArias-Fernández, María, Sergio Fresneda, Manuela Abbate, Marina Torres-Carballo, Aina Huguet-Torres, Cristian Sánchez-Rodríguez, Miquel Bennasar-Veny, Aina M. Yañez, and Carla Busquets-Cortés. 2023. "Fatty Liver Disease in Patients with Prediabetes and Overweight or Obesity" Metabolites 13, no. 4: 531. https://doi.org/10.3390/metabo13040531
APA StyleArias-Fernández, M., Fresneda, S., Abbate, M., Torres-Carballo, M., Huguet-Torres, A., Sánchez-Rodríguez, C., Bennasar-Veny, M., Yañez, A. M., & Busquets-Cortés, C. (2023). Fatty Liver Disease in Patients with Prediabetes and Overweight or Obesity. Metabolites, 13(4), 531. https://doi.org/10.3390/metabo13040531

