Assessing the Effectiveness of Chemical Marker Extraction from Amazonian Plant Cupuassu (Theobroma grandiflorum) by PSI-HRMS/MS and LC-HRMS/MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Preparation
2.3. LC-MS Analysis
2.4. PSI-MS
2.5. Compound Characterization
2.6. Molecular Docking
2.7. 3D Pharmacophore Model Generation
3. Results and Discussion
3.1. Comprehensive Metabolite Annotation of Cupuassu (T. grandiflorum) Pulp Extract
3.2. Assessing the Effectiveness of Metabolite Extraction from Cupuassu Pulp by PSI-HRMS/MS and LC-HRMS/MS
3.3. Determination of Antioxidant Properties Using Molecular Docking
3.4. Pharmacophore Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Febrianto, N.A.; Zhu, F. Comparison of Bioactive Components and Flavor Volatiles of Diverse Cocoa Genotypes of Theobroma grandiflorum, Theobroma bicolor, Theobroma subincanum and Theobroma cacao. Food Res. Int. 2022, 161, 111764. [Google Scholar] [CrossRef] [PubMed]
- Jean-marie, E.; Jiang, W.; Bereau, D.; Robinson, J.-C. Theobroma cacao and Theobroma grandiflorum: Botany, Composition and Pharmacological Activities of Pods and Seeds. Foods 2022, 11, 3966. [Google Scholar] [CrossRef]
- Lim, T.K. Theobroma grandiflorum . In Edible Medicinal and Non Medicinal Plants; Springer: Dordrecht, The Netherlands, 2012; pp. 252–258. [Google Scholar]
- Vriesmann, L.C.; Silveira, J.L.M.; Petkowicz, C.L.D.O. Rheological Behavior of a Pectic Fraction from the Pulp of Cupuassu (Theobroma grandiflorum). Carbohydr. Polym. 2010, 79, 312–317. [Google Scholar] [CrossRef]
- Cucaita, N.A.; Hernández, M.S.; Gutiérrez, R.H. Comparison between Chocolate and an Analog Product Made from Copoazú (Theobroma grandiflorum). Acta Hortic. 2014, 1047, 231–236. [Google Scholar] [CrossRef]
- Barros, H.R.d.M.; García-Villalba, R.; Tomás-Barberán, F.A.; Genovese, M.I. Evaluation of the Distribution and Metabolism of Polyphenols Derived from Cupuassu (Theobroma grandiflorum) in Mice Gastrointestinal Tract by UPLC-ESI-QTOF. J. Funct. Foods 2016, 22, 477–489. [Google Scholar] [CrossRef]
- Pugliese, A.G.; Tomas-barberan, F.A.; Truchado, P.; Genovese, M.I. Flavonoids, Proanthocyanidins, Vitamin C, and Antioxidant Activity of Theobroma grandiflorum (Cupuassu) Pulp and Seeds. J. Agric. Food Chem. 2013, 61, 2720–2728. [Google Scholar] [CrossRef] [PubMed]
- Ióca, L.P.; Romminger, S.; Santos, M.F.C.; Bandeira, K.F.; Rodrigues, F.T.; Kossuga, M.H.; Nicacio, K.J.; Ferreira, E.L.F.; Morais-Urano, R.P.; Passos, M.S.; et al. A Strategy for the Rapid Identification of Fungal Metabolites and the Discovery of the Antiviral Activity of Pyrenocine a and Harzianopyridone. Quim. Nova 2016, 39, 720–731. [Google Scholar] [CrossRef]
- Lima, N.M.; Andrade, T.J.A.S.; Silva, D.H.S. Dereplication of Terpenes and Phenolic Compounds from Inga Edulis Extracts Using HPLC-SPE-TT, RP-HPLC-PDA and NMR Spectroscopy. Nat. Prod. Res. 2021, 36, 488–492. [Google Scholar] [CrossRef]
- Kind, T.; Fiehn, O. Seven Golden Rules for Heuristic Filtering of Molecular Formulas Obtained by Accurate Mass Spectrometry. BMC Bioinform. 2007, 8, 105. [Google Scholar] [CrossRef] [Green Version]
- Hubert, J.; Nuzillard, J.-M.; Renault, J.-H. Dereplication Strategies in Natural Product Research: How Many Tools and Methodologies behind the Same Concept? Phytochem. Rev. 2017, 16, 55–95. [Google Scholar] [CrossRef]
- Weidt, S.; Haggarty, J.; Kean, R.; Cojocariu, C.I.; Silcock, P.J.; Rajendran, R.; Ramage, G.; Burgess, K.E.V. A Novel Targeted/Untargeted GC-Orbitrap Metabolomics Methodology Applied to Candida albicans and Staphylococcus aureus Biofilms. Metabolomics 2016, 12, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canuto, G.A.B.; Da Costa, J.L.; Da Cruz, P.L.R.; De Souza, A.R.L.; Faccio, A.T.; Klassen, A.; Rodrigues, K.T.; Tavares, M.F.M. Metabolomics: Definitions, State-of-the-Art and Representative Applications. Quim. Nova 2018, 41, 75–91. [Google Scholar]
- Yu, M.; Wen, R.; Jiang, L.; Huang, S.; Fang, Z.; Chen, B.; Wang, L. Rapid Analysis of Benzoic Acid and Vitamin C in Beverages by Paper Spray Mass Spectrometry. Food Chem. 2018, 268, 411–415. [Google Scholar] [CrossRef]
- Cooks, R.G.; Ouyang, Z.; Takats, Z.; Wiseman, J.M. Ambient Mass Spectrometry. Science 2006, 311, 1566–1570. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Manicke, N.E.; Lin, J.; Cooks, R.G.; Ouyang, Z. Development, Characterization, and Application of Paper Spray Ionization. Anal. Chem. 2010, 82, 2463–2471. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Yang, Y. Chemical Fingerprint Analysis for Quality Assessment and Control of Bansha Herbal Tea Using Paper Spray Mass Spectrometry. Anal. Chim. Acta 2013, 785, 82–90. [Google Scholar] [CrossRef]
- Silva, V.D.M.; Arquelau, P.B.F.; Silva, M.R.; Augusti, R.; Melo, J.O.F.; Fante, C.A. Use of Paper Spray-Mass Spectrometry to Determine the Chemical Profile of Ripe Banana Peel Flour and Evaluation of Its Physicochemical and Antioxidant Properties. Quim. Nova 2020, 43, 579–585. [Google Scholar] [CrossRef]
- Di, L.; Taverna, D.; Indelicato, S.; Napoli, A.; Sindona, G.; Mazzotti, F. Rapid Assay of Resveratrol in Red Wine by Paper Spray Tandem Mass Spectrometry and Isotope Dilution. Food Chem. 2017, 229, 354–357. [Google Scholar]
- Bartella, L.; Bouza, M.; Rocío-Bautista, P.; Di, L.; García-Reyes, F.; Molina-Díaz, A. Direct Wine Profiling by Mass Spectrometry (MS): A Comparison of Different Ambient MS Approaches. Microchem. J. 2022, 179, 107479. [Google Scholar] [CrossRef]
- Moura, A.C.M.; Lago, I.N.; Cardoso, C.F.; dos Reis Nascimento, A.; Pereira, I.; Vaz, B.G. Rapid Monitoring of Pesticides in Tomatoes (Solanum Lycopersicum L.) during Pre-Harvest Intervals by Paper Spray Ionization Mass Spectrometry. Food Chem. 2020, 310, 125938. [Google Scholar] [CrossRef]
- Loyola, A.C.F.e.; Silva, V.D.M.; Silva, M.R.; Rodrigues, C.G.; dos Santos, A.N.; Melo, J.O.F.; Augusti, R.; Fante, C.A.A. A Use of Paper Spray Mass Spectrometry for Determining the Chemicalprofile of Green Cavendish Banana (Musa AAA) Peel and Pulp Flours and Evaluation of Its Functional Potential. J. Braz. Chem. Soc. Chem. Soc. 2021, 32, 953–963. [Google Scholar]
- Wang, H.; Liu, J.; Cooks, R.G.; Ouyang, Z. Paper Spray for Direct Analysis of Complex Mixtures Using Mass. Angew. Chem. Int. Ed. 2010, 49, 877–880. [Google Scholar] [CrossRef] [PubMed]
- Baj, T.; Baryluk, A.; Sieniawska, E. Application of Mixture Design for Optimum Antioxidant Activity of Mixtures of Essential Oils from Ocimum basilicum L., Origanum majorana L. and Rosmarinus officinalis L. Ind. Crops Prod. 2018, 115, 52–61. [Google Scholar] [CrossRef]
- DiCiaula, M.C.; Lopes, G.C.; Scarminio, I.S.; De Mello, J.C.P. Optimization of Solvent Mixtures for Extraction from Bark of Schinus terebinthifolius by a Statistical Mixture-Design Technique and Development of a Uv-Vis Spectrophotometric Method for Analysis of Total Polyphenols in the Extract. Quim. Nova 2014, 37, 158–163. [Google Scholar] [CrossRef] [Green Version]
- Lima, G.S.; Lima, N.M.; Roque, J.V.; De Aguiar, D.V.A.; Oliveira, V.A.; Santos, G.F.; Chaves, A.R.; Vaz, B.G. LC-HRMS/MS-Based Metabolomics Approaches Applied to the Detection of Antifungal Compounds and a Metabolic Dynamic Assessment of Orchidaceae. Molecules 2022, 27, 7937. [Google Scholar] [CrossRef]
- Pereira, I.; Rodrigues, M.F.; Chaves, A.R.; Vaz, B.G. Molecularly Imprinted Polymer (MIP) Membrane Assisted Direct Spray Ionization Mass Spectrometry for Agrochemicals Screening in Foodstuffs. Talanta 2018, 178, 507–514. [Google Scholar] [CrossRef]
- Santos, A.M.S.; Faria, R.C.; Pereira, I.; de Lima, L.A.S.; Leal, C.M.; Nascimento, A.R.; Simas, R.C.; Lima, N.M.; Vaz, B.G. Paper Spray Ionization Mass Spectrometry Applied for Quantification of Pesticides and Discrimination from Tomato Varieties (Solanum lycopersicum). J. Food Compos. Anal. 2022, 109, 104467. [Google Scholar] [CrossRef]
- Ramalho, R.R.F.; Pereira, I.; Lima, G.S.; Santos, G.F.; Maciel, L.I.L.; Simas, R.C.; Vaz, B.G. Fumonisin B1 Analysis in Maize by Molecularly Imprinted Polymer Paper Spray Ionization Mass Spectrometry (MIP-PSI-MS). J. Food Compos. Anal. 2022, 107, 104362. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Wolber, G.; Langer, T. LigandScout: 3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters. J. Chem. Inf. Model. 2005, 45, 160–169. [Google Scholar] [CrossRef]
- Sendovski, M.; Kanteev, M.; Ben-Yosef, V.S.; Adir, N.; Fishman, A. First Structures of an Active Bacterial Tyrosinase Reveal Copper Plasticity. J. Mol. Biol. 2011, 405, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Declercq, J.P.; Evrard, C.; Clippe, A.; Stricht, D.; Vander, S.; Bernard, A.; Knoops, B. Crystal Structure of Human Peroxiredoxin 5, a Novel Type of Mammalian Peroxiredoxin at 1.5 Å Resolution. J. Mol. Biol. 2001, 311, 751–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- SAMSON: Software for Adaptive Modeling and Simulation of Nanosystems; OneAngstrom: Grenoble, France, 2022.
- Phapale, P.; Palmer, A.; Gathungu, R.M.; Kale, D.; Brügger, B.; Alexandrov, T. Public LC-Orbitrap-MS/MS Spectral Library for Metabolite Identification. J. Proteome Res. 2021, 20, 2089–2097. [Google Scholar] [CrossRef]
- Kuhl, C.; Tautenhahn, R.; Bottcher, C.; Larson, T.R.; Neumann, S. CAMERA: An Integrated Strategy for Compound Spectra Extraction and Annotation of Liquid Chromatography/Mass Spectrometry Data Sets. Anal. Chem. 2012, 84, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Wernisch, S.; Pennathur, S. Evaluation of Coverage, Retention Patterns, and Selectivity of Seven Liquid Chromatographic Methods for Metabolomics. Anal. Bioanal. Chem. 2016, 408, 6079–6091. [Google Scholar] [CrossRef] [Green Version]
- Brodsky, L.; Moussaieff, A.; Shahaf, N.; Aharoni, A.; Rogachev, I. Evaluation of Peak Picking Quality in LC−MS Metabolomics Data. Anal. Chem. 2010, 82, 9177–9187. [Google Scholar] [CrossRef]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [Green Version]
- Nothias, L.F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J.; Sarvepalli, A.; Protsyuk, I.; Ernst, M.; Tsugawa, H.; Fleischauer, M.; et al. Feature-Based Molecular Networking in the GNPS Analysis Environment. Nat. Methods 2020, 17, 905–908. [Google Scholar] [CrossRef]
- Mohimani, H.; Gurevich, A.; Shlemov, A.; Mikheenko, A.; Korobeynikov, A.; Cao, L.; Shcherbin, E.; Nothias, L.F.; Dorrestein, P.C.; Pevzner, P.A. Dereplication of Microbial Metabolites through Database Search of Mass Spectra. Nat. Commun. 2018, 9, 4035. [Google Scholar] [CrossRef] [Green Version]
- da Silva, R.R.; Wang, M.; Nothias, L.F.; van der Hooft, J.J.J.; Caraballo-Rodríguez, A.M.; Fox, E.; Balunas, M.J.; Klassen, J.L.; Lopes, N.P.; Dorrestein, P.C. Propagating Annotations of Molecular Networks Using in Silico Fragmentation. PLoS Comput. Biol. 2018, 14, e1006089. [Google Scholar] [CrossRef]
- Cao, L.; Guler, M.; Tagirdzhanov, A.; Lee, Y.Y.; Gurevich, A.; Mohimani, H. MolDiscovery: Learning Mass Spectrometry Fragmentation of Small Molecules. Nat. Commun. 2021, 12, 3718. [Google Scholar] [CrossRef]
- Van Der Hooft, J.J.J.; Wandy, J.; Barrett, M.P.; Burgess, K.E.V.; Rogers, S. Topic Modeling for Untargeted Substructure Exploration in Metabolomics. Proc. Natl. Acad. Sci. USA 2016, 113, 13738–13743. [Google Scholar] [CrossRef] [Green Version]
- Ernst, M.; Kang, K.B.; Caraballo-Rodríguez, A.M.; Nothias, L.F.; Wandy, J.; Chen, C.; Wang, M.; Rogers, S.; Medema, M.H.; Dorrestein, P.C.; et al. Molnetenhancer: Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools. Metabolites 2019, 9, 144. [Google Scholar] [CrossRef] [Green Version]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed Minimum Reporting Standards for Chemical Analysis. Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [Green Version]
- Day, R.A.; Underwood, A.L. Quantitative Analysis, 6th ed.; Prentice-Hall: Hoboken, NJ, USA, 1991. [Google Scholar]
- Jouyban, A.; Soltanpour, S.; Chan, H. A Simple Relationship between Dielectric Constant of Mixed Solvents with Solvent Composition and Temperature. Int. J. Pharm. 2004, 269, 353–360. [Google Scholar] [CrossRef]
- Mao, H.; Qiu, Z. Development and Application of Ultra-High Temperature Drilling Fluids in Offshore Oilfield around Bohai Sea Bay Basin, China. In Proceedings of the The Offshore Technology Conference Asia, Kuala Lumpur, Malaysia, 22–25 March 2016; pp. 1201–1222. [Google Scholar]
- Zhang, Z.; Xu, W.; Manicke, N.E.; Cooks, R.G.; Ouyang, Z. Silica Coated Paper Substrate for Paper-Spray Analysis of Therapeutic Drugs in Dried Blood Spots. Anal. Chem. 2012, 84, 931–938. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Wang, Q.; Tong, W.; Xiong, J.; Wei, Q.; Zhou, W.; Yin, Z.; Jia, R.; Song, X.; Zou, Y.; et al. Extraction and Antioxidant Activity of Flavonoids of Morus nigra. Int. J. Clin. Exp. Med. 2015, 8, 22328–22336. [Google Scholar]
- Hu, B.; So, P.K.; Yao, Z.P. Analytical Properties of Solid-Substrate Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2013, 24, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Vega, C.; Spence, C.; Zhang, C.; Bills, B.J.; Manicke, N.E. Ionization Suppression and Recovery in Direct Biofluid Analysis Using Paper Spray Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2016, 27, 726–734. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Wang, H.; Liu, J.; Zhang, Z.; McLuckey, M.N.; Ouyang, Z. Analysis of Biological Samples Using Paper Spray Mass Spectrometry: An Investigation of Impacts by the Substrates, Solvents and Elution Methods. Chromatographia 2013, 76, 1339–1346. [Google Scholar] [CrossRef] [Green Version]
Exact Mass (Da) | Molecular Formula | Error (ppm) | Metabolite Name | Chemical Structure | Chemical Class |
---|---|---|---|---|---|
290.079 | C15H14O6 | 8 | Catechin | Flavonoid | |
496.1216 | C22H24O13 | 10 | (−)-Epigallocatechin-3′-glucuronide | Flavonoid | |
322.1205 | C20H18O4 | 2 | 5,7-Dihydroxy-8-prenylflavone | Flavonoid | |
270.0528 | C15H10O5 | 1 | 3,5,7-Trihydroxyflavone | Flavonoid | |
272.0684 | C15H12O5 | 3 | 5,7,8-trihydroxyflavanone | Flavonoid | |
432.1267 | C18H24O12 | 0 | 2-Methyl-4-oxo-4H-pyran-3-yl 6-O-(4-carboxy-3-hydroxy-3-methylbutanoyl)-beta-D-glucopyranoside | Chromone | |
260.1048 | C15H16O4 | 10 | Heteropeucenin | Chromone | |
192.027 | C6H8O7 | 0 | Citric acid | Organic acid | |
178.0629 | C10H10O3 | 1 | 4-Methoxycinnamic acid | Phenylpropanoid | |
134.0731 | C9H10O | 1 | Cinnamic alcohol | Phenylpropanoid | |
430.1838 | C20H30O10 | 0 | 2-Phenylethyl 6-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranoside | Phenylpropanoid | |
272.1776 | C18H24O2 | 0 | Galaxolidone | Terpene | |
250.1568 | C15H22O3 | 9 | Hydroxyvalerenic acid | Terpene | |
274.1568 | C17H22O3 | 10 | Nimbidiol | Terpene | |
332.1987 | C20H28O4 | 9 | 7|A,15-Dihydroxydehydroabietic acid | Terpene | |
250.1568 | C15H22O3 | 10 | 2-[(2S,4aR,8aS)-2-hydroxy-4a-methyl-8-methylidene-3,4,5,6,7,8a-hexahydro-1H-naphthalen-2-yl]prop-2-enoic acid | Terpene | |
320.2351 | C20H32O3 | 10 | (1R,4aR,5S)-5-(3-hydroxy-3-methylpent-4-enyl)-1,4a-dimethyl-6-methylidene-3,4,5,7,8,8a-hexahydro-2H-naphthalene-1-carboxylic acid | Terpene | |
442.381 | C30H50O2 | 0 | Allobetulinol | Terpene | |
488.3501 | C30H48O5 | 4 | Asiatic acid | Terpene | |
426.3861 | C30H50O | 2 | Lup-20(29)-en-3-ol | Terpene |
Compound | Docking Score (kcal/mol) PDB:3nm8 (Bacterial tyrosinase) | Docking Score (kcal/mol) PDB: 1HD2 (Human Peroxiredoxin 5) |
---|---|---|
Quercetin (standard) | −10.4 | −6.3 |
Citric acid | −5.8 | −4.5 |
Catechin | −7.5 | −6.1 |
5,7,8-Trihydroxyflavanone | −11.4 | −7.0 |
Asiatic acid | −8.0 | −6.8 |
Epigallocatechin-3′-glucuronide | −9.0 | −7.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, N.M.; Lima, G.S.; dos Santos, G.F.; Preet, G.; Maciel, L.I.L.; Andrade, T.d.J.A.S.; Jaspars, M.; Chaves, A.R.; Vaz, B.G. Assessing the Effectiveness of Chemical Marker Extraction from Amazonian Plant Cupuassu (Theobroma grandiflorum) by PSI-HRMS/MS and LC-HRMS/MS. Metabolites 2023, 13, 367. https://doi.org/10.3390/metabo13030367
Lima NM, Lima GS, dos Santos GF, Preet G, Maciel LIL, Andrade TdJAS, Jaspars M, Chaves AR, Vaz BG. Assessing the Effectiveness of Chemical Marker Extraction from Amazonian Plant Cupuassu (Theobroma grandiflorum) by PSI-HRMS/MS and LC-HRMS/MS. Metabolites. 2023; 13(3):367. https://doi.org/10.3390/metabo13030367
Chicago/Turabian StyleLima, Nerilson M., Gesiane S. Lima, Gabriel F. dos Santos, Gagan Preet, Lanaia I. L. Maciel, Teresinha de Jesus A. S. Andrade, Marcel Jaspars, Andrea R. Chaves, and Boniek G. Vaz. 2023. "Assessing the Effectiveness of Chemical Marker Extraction from Amazonian Plant Cupuassu (Theobroma grandiflorum) by PSI-HRMS/MS and LC-HRMS/MS" Metabolites 13, no. 3: 367. https://doi.org/10.3390/metabo13030367
APA StyleLima, N. M., Lima, G. S., dos Santos, G. F., Preet, G., Maciel, L. I. L., Andrade, T. d. J. A. S., Jaspars, M., Chaves, A. R., & Vaz, B. G. (2023). Assessing the Effectiveness of Chemical Marker Extraction from Amazonian Plant Cupuassu (Theobroma grandiflorum) by PSI-HRMS/MS and LC-HRMS/MS. Metabolites, 13(3), 367. https://doi.org/10.3390/metabo13030367