LC-QToF-Based Metabolomics Identifies Aberrant Tissue Metabolites Associated with a Higher-Fat Diet and Their ‘Reversion to Healthy’ with Dietary Probiotic Supplementation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Maintenance of Animals and Experimentation
2.2. Sample Preparation for Metabolite Profiling
2.3. LC-QToF Analysis
2.4. Data Processing, Chemometrics, and Statistical Analysis
3. Results and Discussion
3.1. Dietary Effects on the Pig Tissue Metabolomes
3.2. Metabolites Altered Due to a Higher-Fat Diet
3.2.1. Diet-Associated Alterations in the Brain Cortex
3.2.2. Diet-Associated Alterations in the Heart and Pancreas
3.2.3. Diet-Associated Alterations in the Kidney
3.2.4. A Reduction in the Membrane PC/PE Ratio
3.2.5. Diet-Associated Alterations in the Liver
3.2.6. Diet-Associated Alterations in the Skeletal Muscle
3.3. Metabolites Altered Due to Probiotic Supplementation
3.3.1. Phosphatidylcholines
3.3.2. Uridine Diphosphate-N-Acetylglucosamine
3.3.3. Saccharopine
3.4. Probiotic-Induced Metabolic Reversions
3.4.1. Probiotic-Induced Reversion in the Brain Cortex
3.4.2. Probiotic-Induced Reversion in the Heart
3.4.3. Probiotic-Induced Reversion in the Kidney
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NIH. Oral Probiotics: An Introduction. 2012. Available online: http://nccam.nih.gov/health/probiotics/introduction.htm (accessed on 27 April 2014).
- Sekirov, I.; Russell, S.L.; Antunes, L.C.M.; Finlay, B.B. Gut Microbiota in Health and Disease. Physiol. Rev. 2010, 90, 859–904. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Mu, J.; Li, X.; Zhao, X. Relationship between Probiotics and Obesity: A Review of Recent Research. Food Sci. Technol. 2022, 42. [Google Scholar] [CrossRef]
- Christensen, H.R.; Frøkiaer, H.; Pestka, J.J. Lactobacilli Differentially Modulate Expression of Cytokines and Maturation Surface Markers in Murine Dendritic Cells. J. Immunol. 2002, 168, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Roberfroid, M.B. Dietary Modulation of the Human Colonic Microbiota: Introducing the Concept of Prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef]
- Varcoe, J.J.; Krejcarek, G.; Busta, F.; Brady, L. Prophylactic Feeding of Lactobacillus acidophilus NCFM to Mice Attenuates Overt Colonic Hyperplasia. J. Food Prot. 2003, 66, 457–465. [Google Scholar] [CrossRef]
- Ouwehand, A.C.; Salminen, S.; Isolauri, E. Probiotics: An Overview of Beneficial Effects. Antonie Van Leeuwenhoek 2002, 82, 279–289. [Google Scholar] [CrossRef]
- Corthésy, B.; Gaskins, H.R.; Mercenier, A. Cross-Talk between Probiotic Bacteria and the Host Immune System. J. Nutr. 2007, 137 (Suppl. 2), 781S–790S. [Google Scholar] [CrossRef]
- Rousseaux, C.; Thuru, X.; Gelot, A.; Barnich, N.; Neut, C.; Dubuquoy, L.; Dubuquoy, C.; Merour, E.; Geboes, K.; Chamaillard, M.; et al. Lactobacillus acidophilus Modulates Intestinal Pain and Induces Opioid and Cannabinoid Receptors. Nat. Med. 2007, 13, 35–37. [Google Scholar] [CrossRef]
- Mohamadzadeh, M.; Olson, S.; Kalina, W.V.; Ruthel, G.; Demmin, G.L.; Warfield, K.L.; Bavari, S.; Klaenhammer, T.R. Lactobacilli Activate Human Dendritic Cells That Skew T Cells toward T Helper 1 Polarization. Proc. Natl. Acad. Sci. USA 2005, 102, 2880–2885. [Google Scholar] [CrossRef]
- Hong, Y.-S.; Hong, K.S.; Park, M.-H.; Ahn, Y.-T.; Lee, J.-H.; Huh, C.-S.; Lee, J.; Kim, I.-K.; Hwang, G.-S.; Kim, J.S. Metabonomic Understanding of Probiotic Effects in Humans With Irritable Bowel Syndrome. J. Clin. Gastroenterol. 2011, 45, 415–425. [Google Scholar] [CrossRef]
- Kumar, M.; Nagpal, R.; Verma, V.; Kumar, A.; Kaur, N.; Hemalatha, R.; Gautam, S.K.; Singh, B. Probiotic Metabolites as Epigenetic Targets in the Prevention of Colon Cancer. Nutr. Rev. 2013, 71, 23–34. [Google Scholar] [CrossRef] [PubMed]
- Madsen, K. Using Metabolomics to Decipher Probiotic Effects in Patients With Irritable Bowel Syndrome. J. Clin. Gastroenterol. 2011, 45, 389–390. [Google Scholar] [CrossRef]
- Ma, Y.-Y.; Li, L.; Yu, C.-H.; Shen, Z.; Chen, L.-H.; Li, Y.-M. Effects of Probiotics on Nonalcoholic Fatty Liver Disease: A Meta-Analysis. World J. Gastroenterol. WJG 2013, 19, 6911–6918. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Neyrinck, A.M.; Fava, F.; Knauf, C.; Burcelin, R.G.; Tuohy, K.M.; Gibson, G.R.; Delzenne, N.M. Selective Increases of Bifidobacteria in Gut Microflora Improve High-Fat-Diet-Induced Diabetes in Mice through a Mechanism Associated with Endotoxaemia. Diabetologia 2007, 50, 2374–2383. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-Y.; Park, J.-H.; Seok, S.-H.; Baek, M.-W.; Kim, D.-J.; Lee, K.-E.; Paek, K.-S.; Lee, Y.; Park, J.-H. Human Originated Bacteria, Lactobacillus rhamnosus PL60, Produce Conjugated Linoleic Acid and Show Anti-Obesity Effects in Diet-Induced Obese Mice. Biochim. Biophys. Acta 2006, 1761, 736–744. [Google Scholar] [CrossRef]
- Hanhineva, K.; Barri, T.; Kolehmainen, M.; Pekkinen, J.; Pihlajamäki, J.; Vesterbacka, A.; Solano-Aguilar, G.; Mykkänen, H.; Dragsted, L.O.; Urban, J.F.; et al. Comparative Nontargeted Profiling of Metabolic Changes in Tissues and Biofluids in High-Fat Diet-Fed Ossabaw Pig. J. Proteome Res. 2013, 12, 3980–3992. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Monagas, M.; Jang, S.; Molokin, A.; Harnly, J.M.; Urban, J.F.; Solano-Aguilar, G.; Chen, P. A High Fat, High Cholesterol Diet Leads to Changes in Metabolite Patterns in Pigs—A Metabolomic Study. Food Chem. 2015, 173, 171–178. [Google Scholar] [CrossRef]
- Trasino, S.E.; Dawson, H.D.; Urban, J.F.; Wang, T.T.Y.; Solano-Aguilar, G. Feeding Probiotic Lactobacillus paracasei to Ossabaw Pigs on a High-Fat Diet Prevents Cholesteryl-Ester Accumulation and LPS Modulation of the Liver X Receptor and Inflammatory Axis in Alveolar Macrophages. J. Nutr. Biochem. 2013, 24, 1931–1939. [Google Scholar] [CrossRef]
- Lee, L.; Alloosh, M.; Saxena, R.; Van Alstine, W.; Watkins, B.A.; Klaunig, J.E.; Sturek, M.; Chalasani, N. Nutritional Model of Steatohepatitis and Metabolic Syndrome in the Ossabaw Miniature Swine. Hepatology 2009, 50, 56–67. [Google Scholar] [CrossRef]
- Bjerg, A.T.; Kristensen, M.; Ritz, C.; Holst, J.J.; Rasmussen, C.; Leser, T.D.; Wellejus, A.; Astrup, A. Lactobacillus paracasei Subsp Paracasei L. Casei W8 Suppresses Energy Intake Acutely. Appetite 2014, 82, 111–118. [Google Scholar] [CrossRef]
- Bjerg, A.T.; Kristensen, M.; Ritz, C.; Stark, K.; Holst, J.; Leser, T.; Wellejus, A.; Astrup, A. Four Weeks Supplementation with Lactobacillus paracasei Subsp. Paracasei L. Casei W8® Shows Modest Effect on Triacylglycerol in Young Healthy Adults. Benef. Microbes 2015, 6, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Kårlund, A.; Hanhineva, K.; Lehtonen, M.; Karjalainen, R.O.; Sandell, M. Nontargeted Metabolite Profiles and Sensory Properties of Strawberry Cultivars Grown Both Organically and Conventionally. J. Agric. Food Chem. 2015, 63, 1010–1019. [Google Scholar] [CrossRef] [PubMed]
- Pekkinen, J.; Rosa-Sibakov, N.; Micard, V.; Keski-Rahkonen, P.; Lehtonen, M.; Poutanen, K.; Mykkänen, H.; Hanhineva, K. Amino Acid-Derived Betaines Dominate as Urinary Markers for Rye Bran Intake in Mice Fed High-Fat Diet—A Nontargeted Metabolomics Study. Mol. Nutr. Food Res. 2015, 59, 1550–1562. [Google Scholar] [CrossRef] [PubMed]
- Couch, R.D.; Dailey, A.; Zaidi, F.; Navarro, K.; Forsyth, C.B.; Mutlu, E.; Engen, P.A.; Keshavarzian, A. Alcohol Induced Alterations to the Human Fecal VOC Metabolome. PLoS ONE 2015, 10, e0119362. [Google Scholar] [CrossRef]
- Pizzorno, J. Glutathione! Integr. Med. 2014, 13, 8–12. [Google Scholar]
- Dringen, R.; Hirrlinger, J. Glutathione Pathways in the Brain. Biol. Chem. 2003, 384, 505–516. [Google Scholar] [CrossRef]
- Labban, R.S.M.; Alfawaz, H.; Almnaizel, A.T.; Hassan, W.M.; Bhat, R.S.; Moubayed, N.M.; Bjørklund, G.; El-Ansary, A. High-Fat Diet-Induced Obesity and Impairment of Brain Neurotransmitter Pool. Transl. Neurosci. 2020, 11, 147–160. [Google Scholar] [CrossRef]
- Cavaliere, G.; Trinchese, G.; Penna, E.; Cimmino, F.; Pirozzi, C.; Lama, A.; Annunziata, C.; Catapano, A.; Mattace Raso, G.; Meli, R.; et al. High-Fat Diet Induces Neuroinflammation and Mitochondrial Impairment in Mice Cerebral Cortex and Synaptic Fraction. Front. Cell. Neurosci. 2019, 13, 509. [Google Scholar] [CrossRef]
- Andrich, D.E.; Melbouci, L.; Ou, Y.; Auclair, N.; Mercier, J.; Grenier, J.-C.; Lira, F.S.; Barreiro, L.B.; Danialou, G.; Comtois, A.-S.; et al. A Short-Term High-Fat Diet Alters Glutathione Levels and IL-6 Gene Expression in Oxidative Skeletal Muscles of Young Rats. Front. Physiol. 2019, 10, 372. [Google Scholar] [CrossRef]
- Norris, K.M.; Okie, W.; Kim, W.K.; Adhikari, R.; Yoo, S.; King, S.; Pazdro, R. A High-Fat Diet Differentially Regulates Glutathione Phenotypes in the Obesity-Prone Mouse Strains DBA/2J, C57BL/6J, and AKR/J. Nutr. Res. 2016, 36, 1316–1324. [Google Scholar] [CrossRef]
- Hao, X.; Huang, Y.; Qiu, M.; Yin, C.; Ren, H.; Gan, H.; Li, H.; Zhou, Y.; Xia, J.; Li, W.; et al. Immunoassay of S-Adenosylmethionine and S-Adenosylhomocysteine: The Methylation Index as a Biomarker for Disease and Health Status. BMC Res. Notes 2016, 9, 498. [Google Scholar] [CrossRef] [PubMed]
- Obeid, R.; Herrmann, W. Homocysteine and Lipids: S-Adenosyl Methionine as a Key Intermediate. FEBS Lett. 2009, 583, 1215–1225. [Google Scholar] [CrossRef] [PubMed]
- KEGG PATHWAY: Cysteine and Methionine Metabolism—Reference Pathway. Available online: http://www.genome.jp/kegg-bin/show_pathway?map00270+C00021 (accessed on 2 July 2017).
- Barroso, M.; Florindo, C.; Kalwa, H.; Silva, Z.; Turanov, A.A.; Carlson, B.A.; de Almeida, I.T.; Blom, H.J.; Gladyshev, V.N.; Hatfield, D.L.; et al. Inhibition of Cellular Methyltransferases Promotes Endothelial Cell Activation by Suppressing Glutathione Peroxidase 1 Protein Expression. J. Biol. Chem. 2014, 289, 15350–15362. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, P.B.; Bottiglieri, T.; Arning, E.; Ziegler, G.M.; Hansen, A.L.; Masliah, E. Elevated S-Adenosylhomocysteine in Alzheimer Brain: Influence on Methyltransferases and Cognitive Function. J. Neural Transm. 2004, 111, 547–567. [Google Scholar] [CrossRef] [PubMed]
- Selley, M.L. A Metabolic Link between S-Adenosylhomocysteine and Polyunsaturated Fatty Acid Metabolism in Alzheimer’s Disease. Neurobiol. Aging 2007, 28, 1834–1839. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; He, F.; Wu, C.; Li, P.; Li, N.; Deng, J.; Zhu, G.; Ren, W.; Peng, Y. Betaine in Inflammation: Mechanistic Aspects and Applications. Front. Immunol. 2018, 9, 1070. [Google Scholar] [CrossRef]
- Zhou, R.; Chen, X.-L.; Zhou, Z.; Zhang, Y.; Lan, Q.; Liao, G.; Chen, Y.; Zhu, H. Higher Dietary Intakes of Choline and Betaine Are Associated with a Lower Risk of Primary Liver Cancer: A Case-Control Study. Sci. Rep. 2017, 7, 679. [Google Scholar] [CrossRef]
- Olthof, M.R.; van Vliet, T.; Boelsma, E.; Verhoef, P. Low Dose Betaine Supplementation Leads to Immediate and Long Term Lowering of Plasma Homocysteine in Healthy Men and Women. J. Nutr. 2003, 133, 4135–4138. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Y.; Zhao, M.; Zheng, L.; Fan, D. Changes in the Concentrations of Trimethylamine N-Oxide (TMAO) and Its Precursors in Patients with Amyotrophic Lateral Sclerosis. Sci. Rep. 2020, 10, 15198. [Google Scholar] [CrossRef]
- Janeiro, M.H.; Ramírez, M.J.; Milagro, F.I.; Martínez, J.A.; Solas, M. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients 2018, 10, 1398. [Google Scholar] [CrossRef]
- Yang, S.; Li, X.; Yang, F.; Zhao, R.; Pan, X.; Liang, J.; Tian, L.; Li, X.; Liu, L.; Xing, Y.; et al. Gut Microbiota-Dependent Marker TMAO in Promoting Cardiovascular Disease: Inflammation Mechanism, Clinical Prognostic, and Potential as a Therapeutic Target. Front. Pharmacol. 2019, 10, 1360. [Google Scholar] [CrossRef] [PubMed]
- Krueger, E.S.; Beales, J.L.; Elison, W.S.; Tessem1, J.S. Gut Metabolite Trimethylamine N-Oxide Protects β Cell Insulin Secretion by Reducing Oxidative Stress and Maintaining Insulin Granule Formation. Curr. Dev. Nutr. 2021, 5 (Suppl. 2), 57. [Google Scholar] [CrossRef]
- Vinnere Pettersson, O.; Leong, S.L. Fungal Xerophiles (Osmophiles). In eLS; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- d’Enfert, C.; Kaune, A.-K.; Alaban, L.-R.; Chakraborty, S.; Cole, N.; Delavy, M.; Kosmala, D.; Marsaux, B.; Fróis-Martins, R.; Morelli, M.; et al. The Impact of the Fungus-Host-Microbiota Interplay upon Candida albicans Infections: Current Knowledge and New Perspectives. FEMS Microbiol. Rev. 2021, 45, fuaa060. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Jiang, B.; Zhang, T.; Chen, J. Combined Mutagenesis and Metabolic Regulation to Enhance D-Arabitol Production from Candida Parapsilosis. J. Ind. Microbiol. Biotechnol. 2020, 47, 425–435. [Google Scholar] [CrossRef] [PubMed]
- Seiboth, B.; Metz, B. Fungal Arabinan and L-Arabinose Metabolism. Appl. Microbiol. Biotechnol. 2011, 89, 1665–1673. [Google Scholar] [CrossRef]
- Heisel, T.; Montassier, E.; Johnson, A.; Al-Ghalith, G.; Lin, Y.W.; Wei, L.N. High-Fat Diet Changes Fungal Microbiomes and Interkingdom Relationships in the Murine Gut. mSphere 2017, 2, e00351-17. [Google Scholar] [CrossRef]
- Pérez, J.C. Fungi of the Human Gut Microbiota: Roles and Significance. Int. J. Med. Microbiol. 2021, 311, 151490. [Google Scholar] [CrossRef]
- Tran, D.H.; Wang, Z.V. Glucose Metabolism in Cardiac Hypertrophy and Heart Failure. J. Am. Heart Assoc. 2019, 8, e012673. Available online: https://www.ahajournals.org/doi/10.1161/JAHA.119.012673 (accessed on 11 October 2022). [CrossRef]
- KEGG PATHWAY: Tryptophan Metabolism—Homo Sapiens (Human). Available online: http://www.genome.jp/kegg-bin/show_pathway?hsa00380+1644 (accessed on 7 May 2017).
- Leong, S.C.; Sirich, T.L. Indoxyl Sulfate-Review of Toxicity and Therapeutic Strategies. Toxins 2016, 8, 358. [Google Scholar] [CrossRef]
- Kim, J.; Hong, H.; Heo, A.; Park, W. Indole Toxicity Involves the Inhibition of Adenosine Triphosphate Production and Protein Folding in Pseudomonas putida. FEMS Microbiol. Lett. 2013, 343, 89–99. [Google Scholar] [CrossRef]
- van der Veen, J.N.; Kennelly, J.P.; Wan, S.; Vance, J.E.; Vance, D.E.; Jacobs, R.L. The Critical Role of Phosphatidylcholine and Phosphatidylethanolamine Metabolism in Health and Disease. Biochim. Biophys. Acta (BBA) Biomembr. 2017, 1859 Pt B, 1558–1572. [Google Scholar] [CrossRef] [PubMed]
- Perona, J.S. Membrane Lipid Alterations in the Metabolic Syndrome and the Role of Dietary Oils. Biochim. Biophys. Acta (BBA) Biomembr. 2017, 1859 Pt B, 1690–1703. [Google Scholar] [CrossRef] [PubMed]
- Maev, I.V.; Samsonov, A.A.; Palgova, L.K.; Pavlov, C.S.; Shirokova, E.N.; Vovk, E.I.; Starostin, K.M. Effectiveness of Phosphatidylcholine as Adjunctive Therapy in Improving Liver Function Tests in Patients with Non-Alcoholic Fatty Liver Disease and Metabolic Comorbidities: Real-Life Observational Study from Russia. BMJ Open Gastroenterol. 2020, 7, e000368. [Google Scholar] [CrossRef] [PubMed]
- Afshinnia, F.; Rajendiran, T.M.; Karnovsky, A.; Soni, T.; Wang, X.; Xie, D.; Yang, W.; Shafi, T.; Weir, M.P.; He, J.; et al. Lipidomic Signature of Progression of Chronic Kidney Disease in the Chronic Renal Insufficiency Cohort. Kidney Int. Rep. 2016, 1, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Ge, X.; Li, X.; He, J.; Wei, X.; Du, J.; Sun, J.; Li, X.; Xun, Z.; Liu, W.; et al. High-Fat Diet Promotes Renal Injury by Inducing Oxidative Stress and Mitochondrial Dysfunction. Cell Death Dis. 2020, 11, 914. [Google Scholar] [CrossRef]
- Amaral, J.D.; Viana, R.J.S.; Ramalho, R.M.; Steer, C.J.; Rodrigues, C.M.P. Bile Acids: Regulation of Apoptosis by Ursodeoxycholic Acid. J. Lipid Res. 2009, 50, 1721–1734. [Google Scholar] [CrossRef]
- Chiang, J.Y.L. Bile Acid Metabolism and Signaling. Compr. Physiol. 2013, 3, 1191–1212. [Google Scholar] [CrossRef] [PubMed]
- Ferdinandusse, S.; Denis, S.; Faust, P.L.; Wanders, R.J.A. Bile Acids: The Role of Peroxisomes. J. Lipid Res. 2009, 50, 2139–2147. [Google Scholar] [CrossRef]
- Hylemon, P.B.; Zhou, H.; Pandak, W.M.; Ren, S.; Gil, G.; Dent, P. Bile Acids as Regulatory Molecules. J. Lipid Res. 2009, 50, 1509–1520. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Shimizu, H.; Hagio, M.; Fukiya, S.; Watanabe, M.; Tanaka, Y.; Joe, G.-H.; Iwaya, H.; Yoshitsugu, R.; Kikuchi, K.; et al. 12α-Hydroxylated Bile Acid Induces Hepatic Steatosis with Dysbiosis in Rats. Biochim. Et Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2020, 1865, 158811. [Google Scholar] [CrossRef]
- Abrigo, J.; Gonzalez, F.; Aguirre, F.; Tacchi, F.; Gonzalez, A.; Meza, M.P.; Simon, F.; Cabrera, D.; Arrese, M.; Karpen, S.; et al. Cholic Acid and Deoxycholic Acid Induce Skeletal Muscle Atrophy through a Mechanism Dependent on TGR5 Receptor. J. Cell. Physiol. 2021, 236, 260–272. [Google Scholar] [CrossRef] [PubMed]
- Azer, S.A.; Hasanato, R. Use of Bile Acids as Potential Markers of Liver Dysfunction in Humans: A Systematic Review. Medicine 2021, 100, e27464. [Google Scholar] [CrossRef] [PubMed]
- Staels, B.; Fonseca, V.A. Bile Acids and Metabolic Regulation. Diabetes Care 2009, 32 (Suppl. 2), S237–S245. [Google Scholar] [CrossRef] [PubMed]
- Saeed, A.; Floris, F.; Andersson, U.; Pikuleva, I.; Lövgren-Sandblom, A.; Bjerke, M.; Paucar, M.; Wallin, A.; Svenningsson, P.; Björkhem, I. 7α-Hydroxy-3-Oxo-4-Cholestenoic Acid in Cerebrospinal Fluid Reflects the Integrity of the Blood-Brain Barrier. J. Lipid Res. 2014, 55, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Borg, A.J.E.; Dennig, A.; Weber, H.; Nidetzky, B. Mechanistic Characterization of UDP-Glucuronic Acid 4-Epimerase. FEBS J. 2021, 288, 1163–1178. [Google Scholar] [CrossRef]
- Roy-Chowdhury, J.; Roy-Chowdhury, N. 58—Bilirubin Metabolism and Its Disorders. In Zakim and Boyer’s Hepatology, 7th ed.; Sanyal, A.J., Boyer, T.D., Lindor, K.D., Terrault, N.A., Eds.; Elsevier: Philadelphia, PA, USA, 2018; pp. 898–925.e8. [Google Scholar] [CrossRef]
- Xu, J.; Kulkarni, S.R.; Li, L.; Slitt, A.L. UDP-Glucuronosyltransferase Expression in Mouse Liver Is Increased in Obesity- and Fasting-Induced Steatosis. Drug Metab. Dispos. 2012, 40, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Ghose, R.; Omoluabi, O.; Gandhi, A.; Shah, P.; Strohacker, K.; Carpenter, K.C.; McFarlin, B.; Guo, T. Role of High-Fat Diet in Regulation of Gene Expression of Drug Metabolizing Enzymes and Transporters. Life Sci. 2011, 89, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Li, S.; Yan, C.; Sun, R.; He, J.; Xie, Y.; Peng, Y.; Wang, G.; Aa, J. Inhibitory Effects of Endogenous Linoleic Acid and Glutaric Acid on the Renal Glucuronidation of Berberrubine in Mice and on Recombinant Human UGT1A7, 1A8, and 1A9. Mol. Pharmacol. 2018, 93, 216–227. [Google Scholar] [CrossRef]
- Shibuya, A.; Itoh, T.; Tukey, R.H.; Fujiwara, R. Impact of Fatty Acids on Human UDP-Glucuronosyltransferase 1A1 Activity and Its Expression in Neonatal Hyperbilirubinemia. Sci. Rep. 2013, 3, 2903. [Google Scholar] [CrossRef]
- Miller, S.G.; Hafen, P.S.; Brault, J.J. Increased Adenine Nucleotide Degradation in Skeletal Muscle Atrophy. Int. J. Mol. Sci. 2020, 21, 88. [Google Scholar] [CrossRef]
- Pan, Z.; Mao, B.; Zhang, Q.; Tang, X.; Yang, B.; Zhao, J.; Cui, S.; Zhang, H. Postbiotics Prepared Using Lactobacillus paracasei CCFM1224 Prevent Nonalcoholic Fatty Liver Disease by Modulating the Gut Microbiota and Liver Metabolism. Int. J. Mol. Sci. 2022, 23, 13522. [Google Scholar] [CrossRef] [PubMed]
- Buse, M.G. Hexosamines, Insulin Resistance and the Complications of Diabetes: Current Status. Am. J. Physiol. Endocrinol. Metab. 2006, 290, E1–E8. [Google Scholar] [CrossRef] [PubMed]
- Fantus, I.G.; Goldberg, H.J.; Whiteside, C.I.; Topic, D. The Hexosamine Biosynthesis Pathway. In The Diabetic Kidney; Contemporary Diabetes; Humana Press: Totowa, NJ, USA, 2006; pp. 117–133. [Google Scholar] [CrossRef]
- Bond, M.R.; Hanover, J.A. O-GlcNAc Cycling: A Link between Metabolism and Chronic Disease. Annu. Rev. Nutr. 2013, 33, 205–229. [Google Scholar] [CrossRef] [PubMed]
- Maszczak-Seneczko, D.; Sosicka, P.; Olczak, T.; Jakimowicz, P.; Majkowski, M.; Olczak, M. UDP-N-Acetylglucosamine Transporter (SLC35A3) Regulates Biosynthesis of Highly Branched N-Glycans and Keratan Sulfate. J. Biol. Chem. 2013, 288, 21850–21860. [Google Scholar] [CrossRef] [PubMed]
- Toma, L.; Pinhal, M.A.; Dietrich, C.P.; Nader, H.B.; Hirschberg, C.B. Transport of UDP-Galactose into the Golgi Lumen Regulates the Biosynthesis of Proteoglycans. J. Biol. Chem. 1996, 271, 3897–3901. [Google Scholar] [CrossRef] [PubMed]
- Arias, E.B.; Kim, J.; Cartee, G.D. Prolonged Incubation in PUGNAc Results in Increased Protein O-Linked Glycosylation and Insulin Resistance in Rat Skeletal Muscle. Diabetes 2004, 53, 921–930. [Google Scholar] [CrossRef]
- Silva-Aguiar, R.P.; Peruchetti, D.B.; Pinheiro, A.A.S.; Caruso-Neves, C.; Dias, W.B. O-GlcNAcylation in Renal (Patho)Physiology. Int. J. Mol. Sci. 2022, 23, 11260. [Google Scholar] [CrossRef]
- Pena, I.A.; Marques, L.A.; Laranjeira, Â.B.A.; Yunes, J.A.; Eberlin, M.N.; MacKenzie, A.; Arruda, P. Mouse Lysine Catabolism to Aminoadipate Occurs Primarily through the Saccharopine Pathway; Implications for Pyridoxine Dependent Epilepsy (PDE). Biochim. Biophys. Acta 2017, 1863, 121–128. [Google Scholar] [CrossRef]
- Papes, F.; Kemper, E.L.; Cord-Neto, G.; Langone, F.; Arruda, P. Lysine Degradation through the Saccharopine Pathway in Mammals: Involvement of Both Bifunctional and Monofunctional Lysine-Degrading Enzymes in Mouse. Biochem. J. 1999, 344, 555–563. [Google Scholar] [CrossRef]
- Gatrell, S.K.; Berg, L.E.; Barnard, J.T.; Grimmett, J.G.; Barnes, K.M.; Blemings, K.P. Tissue Distribution of Indices of Lysine Catabolism in Growing Swine. J. Anim. Sci. 2013, 91, 238–247. [Google Scholar] [CrossRef]
- KEGG PATHWAY: Lysine Degradation—Reference Pathway. Available online: http://www.genome.jp/kegg-bin/show_pathway?map00310+C00449 (accessed on 2 July 2017).
- Galili, G.; Tang, G.; Zhu, X.; Gakiere, B. Lysine Catabolism: A Stress and Development Super-Regulated Metabolic Pathway. Curr. Opin. Plant Biol. 2001, 4, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Makide, K.; Kitamura, H.; Sato, Y.; Okutani, M.; Aoki, J. Emerging Lysophospholipid Mediators, Lysophosphatidylserine, Lysophosphatidylthreonine, Lysophosphatidylethanolamine and Lysophosphatidylglycerol. Prostaglandins Other Lipid Mediat. 2009, 89, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.T.; Ramesh, T.; Toh, X.R.; Nguyen, L.N. Emerging Roles of Lysophospholipids in Health and Disease. Prog. Lipid Res. 2020, 80, 101068. [Google Scholar] [CrossRef]
- Tan, S.H.; Koh, H.W.L.; Chua, J.Y.; Burla, B.; Ong, C.C.; Teo, L.S.L.; Yang, X.; Benke, P.I.; Choi, H.; Torta, F.; et al. Variability of the Plasma Lipidome and Subclinical Coronary Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2022, 42, 100–112. [Google Scholar] [CrossRef]
- Wang, Z.; Peters, B.A.; Usyk, M.; Xing, J.; Hanna, D.B.; Wang, T.; Post, W.S.; Landay, A.L.; Hodis, H.N.; Weber, K.; et al. Gut Microbiota, Plasma Metabolomic Profiles, and Carotid Artery Atherosclerosis in HIV Infection. Arterioscler. Thromb. Vasc. Biol. 2022, 42, 1081–1093. [Google Scholar] [CrossRef] [PubMed]
- Schober, A.; Siess, W. Lysophosphatidic Acid in Atherosclerotic Diseases. Br. J. Pharmacol. 2012, 167, 465–482. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, Y.; Sakurai, T.; Chen, Z.; Inoue, N.; Chiba, H.; Hui, S.-P. Lysophosphatidylethanolamine Affects Lipid Accumulation and Metabolism in a Human Liver-Derived Cell Line. Nutrients 2022, 14, 579. [Google Scholar] [CrossRef]
- Chorell, E.; Olsson, T.; Jansson, J.-H.; Wennberg, P. Lysophospholipids as Predictive Markers of ST-Elevation Myocardial Infarction (STEMI) and Non-ST-Elevation Myocardial Infarction (NSTEMI). Metabolites 2020, 11, 25. [Google Scholar] [CrossRef]
- Gilbert, M.S.; Ijssennagger, N.; Kies, A.K.; van Mil, S.W.C. Protein Fermentation in the Gut; Implications for Intestinal Dysfunction in Humans, Pigs, and Poultry. Am. J. Physiol.-Gastrointest. Liver Physiol. 2018, 315, G159–G170. [Google Scholar] [CrossRef]
Tissue | Metabolite Name | log2(Fold Change) | −log10(p-Value) | Frequency: Basal (n = 5) | Frequency: Higher-Fat (n = 5) |
---|---|---|---|---|---|
Brain Cortex | S-adenosylhomocysteine | 18.99 | 1.77 | 0 | 3 |
Brain Cortex | Glutathione | −21.95 | 1.90 | 4 | 0 |
Heart | Arabitol | −17.62 | 2.12 | 3 | 0 |
Heart | Betaine | −17.19 | 1.45 | 4 | 0 |
Kidney | 1-(Octadecenoyl)-sn-glycero-3-phosphoethanolamine | 15.31 | 2.27 | 0 | 3 |
Kidney | Indoxyl sulfate | −17.57 | 1.35 | 3 | 0 |
Liver | 1-(Octadecenoyl)-sn-glycero-3-phosphoethanolamine | 14.88 | 2.06 | 0 | 4 |
Liver | Glycocholic acid | 4.73 | 1.66 | 1 | 5 |
Liver | 1-O-Hexadecyl-sn-glycero-3-phosphocholine | −17.12 | 1.92 | 4 | 0 |
Skeletal Muscle | Inosine | 19.55 | 1.64 | 0 | 4 |
Skeletal Muscle | Uridine diphosphate glucuronic acid | 15.00 | 1.65 | 0 | 4 |
Skeletal Muscle | 7α-Hydroxy-3-oxo-4-cholestenoic acid | 1.85 | 1.81 | 4 | 5 |
Skeletal Muscle | 1-(Octadecenoyl)-sn-glycero-3-phosphoethanolamine | 1.83 | 1.46 | 1 | 5 |
Pancreas | 1-(Octadecenoyl)-sn-glycero-3-phosphoethanolamine | 2.38 | 1.42 | 1 | 5 |
Pancreas | Trimethylamine N-oxide | −2.64 | 1.54 | 5 | 4 |
Pancreas | Betaine | −2.45 | 1.85 | 5 | 3 |
Dietary Comparisions | ||||||
---|---|---|---|---|---|---|
Basal versus Basal+probiotic | Tissue | Metabolite Name | log2(Fold Change) | −log10(p-Value) | Frequency: Basal (n = 5) | Frequency: Basal+Probiotic (n = 5) |
Brain Cortex | Phosphatidylethanolamine lyso alkenyl 18:1 | 15.79 | 3.13 | 3 | 0 | |
Brain Cortex | 1-Octadecanoyl-sn-glycero-3-phosphocholine | 3.28 | 1.39 | 3 | 3 | |
Brain Cortex | Taurine | −18.63 | 7.75 | 0 | 3 | |
Heart | 6-amino-2-[[3-methyl-2-[[pyrrolidine-2-carbonyl]amino]butanoyl]amino]hexanoic acid | 14.90 | 2.02 | 4 | 0 | |
Heart | (4-amino-4,6-dimethyl-5-sulfooxy-tetrahydropyran-2-yl) [hydroxy-[[3-hydroxy-5-(5-methyl-2,4-dioxo-pyrimidin-1-yl)tetrahydrofuran-2-yl]methoxy]phosphoryl] hydrogen phosphate | 1.69 | 1.32 | 5 | 3 | |
Heart | tert-butyl N-[1-[[1-cyclohexyl-2-hydroxy-2-[6-(phenylcarbamoyl)-3,3a,4,5,6,6a-hexahydro-2H-pyrrolo [3,2-b]pyrrol-1-yl]ethyl]amino]-1-oxopropan-2-yl]-N-methylcarbamate | −15.54 | 3.10 | 0 | 4 | |
Kidney | Uridine diphosphate-N-acetylglucosamine * | 22.1 | 4.62 | 4 | 0 | |
Kidney | Urothion | 15.62 | 4.40 | 4 | 0 | |
Kidney | Uridine 5′-diphosphogalactose | −14.86 | 6.61 | 0 | 3 | |
Liver | Saccharopine * | 16.94 | 4.51 | 4 | 0 | |
Liver | LysoPC(18:0) | 15.81 | 4.14 | 3 | 0 | |
Liver | [5-(2,6-dihydroxy-2,3-dihydropurin-9-yl)-3,4-dihydroxy-tetrahydrofuran-2-yl]methyl phosphono hydrogen phosphate | −18.17 | 3.34 | 0 | 3 | |
Skeletal Muscle | 1-O-Hexadecyl-2-O-acetyl-sn-glyceryl-3-phosphorylcholine | 20.67 | 2.86 | 3 | 0 | |
Skeletal Muscle | 4-Hydroxy-3-methoxymandelic acid | 15.14 | 3.35 | 3 | 0 | |
Skeletal Muscle | Uridine 5′-diphosphogalactose | −15.27 | 1.75 | 0 | 3 | |
Pancreas | N-(2-aminoacetyl)-1-(4-phenyldiazenylphenyl)pyrrolidine-2-carboxamide | 18.39 | 4.39 | 3 | 0 | |
Pancreas | 4-hydroxypyrrolidine-2-carbaldehyde | −6.04 | 2.69 | 5 | 5 | |
Pancreas | Guanosine diphosphate mannose | −15.39 | 3.52 | 0 | 3 | |
Higher-fat versus Higher-fat+probiotic | Tissue | Metabolite Name | log2(Fold Change) | −log10(p-value) | Frequency: Higher-fat (n = 5) | Frequency: Higher-fat+probiotic (n = 5) |
Brain Cortex | S-adenosylhomocysteine * | 18.99 | 3.74 | 3 | 0 | |
Brain Cortex | 1-Stearoyl-2-hydroxy-sn-glycero-3-phosphocholine | 18.39 | 1.40 | 3 | 0 | |
Brain Cortex | 5,6,7,8-Tetrahydromethanopterin | −18.71 | 5.05 | 0 | 3 | |
Heart | 2′-α-mannosyl-L-tryptophan | 15.31 | 6.63 | 3 | 0 | |
Heart | N’-{[8-({5-[2-(2-aminopyridin-4-yl)ethyl]-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl}oxy)-1-hydroxy-5-(hydroxymethyl)-6-methoxy-9,10-dioxo-3-(2-phenylethyl)-9,10-dihydroanthracen-2-yl]methyl}-N-methylguanidine | 15.56 | 7.09 | 3 | 0 | |
Heart | 3,4,5-Trinitrofuran-2-thiol | −16.58 | 3.45 | 0 | 3 | |
Kidney | Uridine diphosphate-N-acetylglucosamine * | 22.45 | 8.07 | 3 | 0 | |
Kidney | 3-sulfolactic acid | −16.66 | 3.92 | 0 | 3 | |
Kidney | Indoxyl sulfate * | −19.18 | 2.79 | 0 | 3 | |
Liver | Adenosine monophosphate | 20.96 | 2.21 | 3 | 0 | |
Liver | Phosphodimethylethanolamine | −19.45 | 3.73 | 0 | 4 | |
Liver | 6-(7-hydroxy-4,6-dimethylhepta-2,4-dien-2-yl)-4-methoxy-5-methyl-2H-pyran-2-one | −22.02 | 5.30 | 0 | 4 | |
Skeletal Muscle | Inosine * | 19.55 | 2.79 | 4 | 0 | |
Skeletal Muscle | Xylitol | 16.88 | 4.37 | 4 | 0 | |
Skeletal Muscle | 2-[[5-acetamido-6-(2-amino-2-carboxy-1-methyl-ethoxy)-3,4-dihydroxy-tetrahydropyran-2-yl]methoxy]-4-hydroxy-5-[[2-(2-methoxyethoxycarbonylamino)acetyl]amino]-6-(1,2,3-trihydroxypropyl)tetrahydropyran-2-carboxylic acid | −14.75 | 4.02 | 0 | 3 | |
Pancreas | LysoPE(20:1) | 20.76 | 2.94 | 4 | 0 | |
Pancreas | Guanosine monophosphate | 17.74 | 5.19 | 3 | 0 | |
Pancreas | N-({6-[(5-tert-butyl-1,2-oxazol-3-yl)methyl]-3-hydroxyoxan-2-yl}methyl)propanamide | −17.82 | 4.60 | 0 | 3 |
Tissue | Metabolite Name | log2(Fold Change) Higher-Fat vs. Basal | log2(Fold-Change) Higher-Fat+Probiotic vs. Basal | Frequency: Higher-Fat (n = 5) | Frequency: Basal (n = 5) | Frequency: Higher-Fat+Probiotic (n = 5) |
---|---|---|---|---|---|---|
Brain Cortex | S-Adenosylhomocysteine * | 19.00 | 0.00 | 3 | 0 | 0 |
Brain Cortex | Tryptophan | 4.58 | −0.24 | 3 | 3 | 4 |
Brain Cortex | 4-(Methylsulfanyl)-2-oxobutanoic acid | 3.91 | −0.46 | 3 | 3 | 3 |
Brain Cortex | LysoPC(22:4) | −14.06 | 0.04 | 0 | 4 | 3 |
Brain Cortex | 2-[[2-(hexadecanoylamino)acetyl]amino]-3-(1H-imidazol-5-yl)propanoic acid | −14.67 | 0.01 | 0 | 3 | 3 |
Brain Cortex | LysoPC(22:6) | −21.26 | −0.21 | 0 | 3 | 3 |
Brain Cortex | Glutathione * | −21.95 | 0.16 | 0 | 4 | 2 |
Heart | LysoPE(18:2) | 14.36 | 0.00 | 4 | 0 | 0 |
Kidney | LysoPC(16:1) | 2.04 | −0.19 | 3 | 2 | 3 |
Kidney | Indoxyl sulfate * | −17.57 | 1.61 | 0 | 3 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dailey, A.; Solano-Aguilar, G.; Urban, J.F., Jr.; Couch, R.D. LC-QToF-Based Metabolomics Identifies Aberrant Tissue Metabolites Associated with a Higher-Fat Diet and Their ‘Reversion to Healthy’ with Dietary Probiotic Supplementation. Metabolites 2023, 13, 358. https://doi.org/10.3390/metabo13030358
Dailey A, Solano-Aguilar G, Urban JF Jr., Couch RD. LC-QToF-Based Metabolomics Identifies Aberrant Tissue Metabolites Associated with a Higher-Fat Diet and Their ‘Reversion to Healthy’ with Dietary Probiotic Supplementation. Metabolites. 2023; 13(3):358. https://doi.org/10.3390/metabo13030358
Chicago/Turabian StyleDailey, Allyson, Gloria Solano-Aguilar, Joseph F. Urban, Jr., and Robin D. Couch. 2023. "LC-QToF-Based Metabolomics Identifies Aberrant Tissue Metabolites Associated with a Higher-Fat Diet and Their ‘Reversion to Healthy’ with Dietary Probiotic Supplementation" Metabolites 13, no. 3: 358. https://doi.org/10.3390/metabo13030358
APA StyleDailey, A., Solano-Aguilar, G., Urban, J. F., Jr., & Couch, R. D. (2023). LC-QToF-Based Metabolomics Identifies Aberrant Tissue Metabolites Associated with a Higher-Fat Diet and Their ‘Reversion to Healthy’ with Dietary Probiotic Supplementation. Metabolites, 13(3), 358. https://doi.org/10.3390/metabo13030358