Metabolic Features of Increased Gut Permeability, Inflammation, and Altered Energy Metabolism Distinguish Agricultural Workers at Risk for Mesoamerican Nephropathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Laboratory Methods
2.3. Data Analysis
2.4. Statistical Methods
3. Results
3.1. Non-Hypothesis-Based Explorations
3.2. Hypothesis-Based Explorations
3.3. Stability Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, R.J.; Wesseling, C.; Newman, L.S. Chronic Kidney Disease of Unknown Cause in Agricultural Communities. N. Engl. J. Med. 2019, 380, 1843–1852. [Google Scholar] [CrossRef]
- Wijkström, J.; González-Quiroz, M.; Hernandez, M.; Trujillo, Z.; Hultenby, K.; Ring, A.; Söderberg, M.; Aragón, A.; Elinder, C.-G.; Wernerson, A. Renal Morphology, Clinical Findings, and Progression Rate in Mesoamerican Nephropathy. Am. J. Kidney Dis. 2017, 69, 626–636. [Google Scholar] [CrossRef] [Green Version]
- Kupferman, J.; Amador, J.J.; Lynch, K.E.; Laws, R.L.; López-Pilarte, D.; Ramírez-Rubio, O.; Kaufman, J.S.; Lau, J.L.; Weiner, D.E.; Robles, N.V.; et al. Characterization of Mesoamerican Nephropathy in a Kidney Failure Hotspot in Nicaragua. Am. J. Kidney Dis. 2016, 68, 716–725. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Locasale, J.W. Metabolomics: A Primer. Trends Biochem. Sci. 2017, 42, 274–284. [Google Scholar] [CrossRef] [Green Version]
- Abbiss, H.; Maker, G.L.; Trengove, R.D. Metabolomics Approaches for the Diagnosis and Understanding of Kidney Diseases. Metabolites 2019, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- Kalim, S.; Rhee, E.P. An Overview of Renal Metabolomics. Kidney Int. 2017, 91, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Ralto, K.M.; Rhee, E.P.; Parikh, S.M. NAD(+) Homeostasis in Renal Health and Disease. Nat. Rev. Nephrol. 2020, 16, 99–111. [Google Scholar] [CrossRef]
- Cantó, C.; Menzies, K.J.; Auwerx, J. NAD+ Metabolism and the Control of Energy Homeostasis: A Balancing Act between Mitochondria and the Nucleus. Cell Metab. 2015, 22, 31–53. [Google Scholar] [CrossRef] [Green Version]
- Tran, M.T.; Zsengeller, Z.K.; Berg, A.H.; Khankin, E.V.; Bhasin, M.K.; Kim, W.; Clish, C.B.; Stillman, I.E.; Karumanchi, S.A.; Rhee, E.P.; et al. PGC1α Drives NAD Biosynthesis Linking Oxidative Metabolism to Renal Protection. Nature 2016, 531, 528–532. [Google Scholar] [CrossRef] [Green Version]
- Poyan Mehr, A.; Tran, M.T.; Ralto, K.M.; Leaf, D.E.; Washco, V.; Messmer, J.; Lerner, A.; Kher, A.; Kim, S.H.; Khoury, C.C.; et al. De Novo NAD + Biosynthetic Impairment in Acute Kidney Injury in Humans. Nat. Med. 2018, 24, 1351–1359. [Google Scholar] [CrossRef]
- Bignon, Y.; Rinaldi, A.; Nadour, Z.; Poindessous, V.; Nemazanyy, I.; Lenoir, O.; Fohlen, B.; Weill-Raynal, P.; Hertig, A.; Karras, A.; et al. Cell Stress Response Impairs de Novo NAD+ Biosynthesis in the Kidney. JCI Insight 2022, 7, e153019. [Google Scholar] [CrossRef]
- Katsyuba, E.; Mottis, A.; Zietak, M.; De Franco, F.; van der Velpen, V.; Gariani, K.; Ryu, D.; Cialabrini, L.; Matilainen, O.; Liscio, P.; et al. De Novo NAD+ Synthesis Enhances Mitochondrial Function and Improves Health. Nature 2018, 563, 354–359. [Google Scholar] [CrossRef]
- Fischer, R.S.B.; Vangala, C.; Truong, L.; Mandayam, S.; Chavarria, D.; Llanes, O.M.G.; Laguna, M.U.F.; Baez, A.G.; Garcia, F.; García-Trabanino, R.; et al. Early Detection of Acute Tubulointerstitial Nephritis in the Genesis of Mesoamerican Nephropathy. Kidney Int. 2018, 93, 681–690. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Roncal-Jimenez, C.A.; Andres-Hernando, A.; Jensen, T.; Tolan, D.R.; Sanchez-Lozada, L.G.; Newman, L.S.; Butler-Dawson, J.; Sorensen, C.; Glaser, J.; et al. Increase of Core Temperature Affected the Progression of Kidney Injury by Repeated Heat Stress Exposure. Am. J. Physiol. Ren. Physiol. 2019, 317, F1111–F1121. [Google Scholar] [CrossRef]
- Zheng, M.; Cai, J.; Liu, Z.; Shu, S.; Wang, Y.; Tang, C.; Dong, Z. Nicotinamide Reduces Renal Interstitial Fibrosis by Suppressing Tubular Injury and Inflammation. J. Cell Mol. Med. 2019, 23, 3995–4004. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Liang, Y.; Hu, T.; Wei, R.; Cai, C.; Wang, P.; Wang, L.; Qiao, W.; Feng, L. Endogenous Nampt Upregulation Is Associated with Diabetic Nephropathy Inflammatory-Fibrosis through the NF-ΚB P65 and Sirt1 Pathway; NMN Alleviates Diabetic Nephropathy Inflammatory-Fibrosis by Inhibiting Endogenous Nampt. Exp. Ther. Med. 2017, 14, 4181–4193. [Google Scholar] [CrossRef] [Green Version]
- Hallan, S.; Afkarian, M.; Zelnick, L.R.; Kestenbaum, B.; Sharma, S.; Saito, R.; Darshi, M.; Barding, G.; Raftery, D.; Ju, W.; et al. Metabolomics and Gene Expression Analysis Reveal Down-Regulation of the Citric Acid (TCA) Cycle in Non-Diabetic CKD Patients. EBioMedicine 2017, 26, 68–77. [Google Scholar] [CrossRef] [Green Version]
- Mándi, Y.; Vécsei, L. The Kynurenine System and Immunoregulation. J. Neural Transm. 2012, 119, 197–209. [Google Scholar] [CrossRef]
- Aregger, F.; Uehlinger, D.E.; Fusch, G.; Bahonjic, A.; Pschowski, R.; Walter, M.; Schefold, J.C. Increased Urinary Excretion of Kynurenic Acid Is Associated with Non-Recovery from Acute Kidney Injury in Critically Ill Patients. BMC Nephrol. 2018, 19, 44. [Google Scholar] [CrossRef]
- Raines, N.; González, M.; Wyatt, C.; Kurzrok, M.; Pool, C.; Lemma, T.; Weiss, I.; Marín, C.; Prado, V.; Marcas, E.; et al. Risk Factors for Reduced Glomerular Filtration Rate in a Nicaraguan Community Affected by Mesoamerican Nephropathy. MEDICC Rev. 2014, 16, 16–22. [Google Scholar]
- Hansson, E.; Glaser, J.; Weiss, I.; Ekström, U.; Apelqvist, J.; Hogstedt, C.; Peraza, S.; Lucas, R.; Jakobsson, K.; Wesseling, C.; et al. Workload and Cross-Harvest Kidney Injury in a Nicaraguan Sugarcane Worker Cohort. Occup. Environ. Med. 2019, 76, 818–826. [Google Scholar] [CrossRef] [Green Version]
- Laws, R.L.; Brooks, D.R.; Amador, J.J.; Weiner, D.E.; Kaufman, J.S.; Ramírez-Rubio, O.; Riefkohl, A.; Scammell, M.K.; López-Pilarte, D.; Sánchez, J.M.; et al. Changes in Kidney Function among Nicaraguan Sugarcane Workers. Int. J. Occup. Environ. Health 2015, 21, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Inker, L.A.; Eneanya, N.D.; Coresh, J.; Tighiouart, H.; Wang, D.; Sang, Y.; Crews, D.C.; Doria, A.; Estrella, M.M.; Froissart, M.; et al. Chronic Kidney Disease Epidemiology Collaboration. New Creatinine- and Cystatin C-Based Equations to Estimate GFR without Race. N. Engl. J. Med. 2021, 385, 1737–1749. [Google Scholar] [CrossRef]
- Raines, N.H.; Inker, L.A.; Seegmiller, J.C.; Brooks, D.R.; Gonzalez-Quiroz, M.; Friedman, D.J. Estimated Versus Measured Glomerular Filtration Rate in Men at Risk for Mesoamerican Nephropathy. Am. J. Kidney Dis. 2022, 81, P370–P373. [Google Scholar] [CrossRef]
- O’Donnell, J.K.; Tobey, M.; Weiner, D.E.; Stevens, L.A.; Johnson, S.; Stringham, P.; Cohen, B.; Brooks, D.R. Prevalence of and Risk Factors for Chronic Kidney Disease in Rural Nicaragua. Nephrol. Dial. Transplant. 2011, 26, 2798–2805. [Google Scholar] [CrossRef] [Green Version]
- Gallo-Ruiz, L.; Sennett, C.M.; Sánchez-Delgado, M.; García-Urbina, A.; Gámez-Altamirano, T.; Basra, K.; Laws, R.L.; Amador, J.J.; Lopez-Pilarte, D.; Tripodis, Y.; et al. Prevalence and Risk Factors for CKD Among Brickmaking Workers in La Paz Centro, Nicaragua. Am. J. Kidney Dis. 2019, 74, 239–247. [Google Scholar] [CrossRef]
- Yih, W.K.; Kulldorff, M.; Friedman, D.J.; Leibler, J.H.; Amador, J.J.; López-Pilarte, D.; Galloway, R.L.; Ramírez-Rubio, O.; Riefkohl, A.; Brooks, D.R. Investigating Possible Infectious Causes of Chronic Kidney Disease of Unknown Etiology in a Nicaraguan Mining Community. Am. J. Trop. Med. Hyg. 2019, 101, 676–683. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.-É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the Gap between Raw Spectra and Functional Insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Jacob, R.A.; Swendseid, M.E.; McKee, R.W.; Fu, C.S.; Clemens, R.A. Biochemical Markers for Assessment of Niacin Status in Young Men: Urinary and Blood Levels of Niacin Metabolites. J. Nutr. 1989, 119, 591–598. [Google Scholar] [CrossRef]
- Reinhold, D.; Pielke-Lombardo, H.; Jacobson, S.; Ghosh, D.; Kechris, K. Pre-Analytic Considerations for Mass Spectrometry-Based Untargeted Metabolomics Data. Methods Mol. Biol. 2019, 1978, 323–340. [Google Scholar] [CrossRef]
- Contreras-Jodar, A.; Nayan, N.H.; Hamzaoui, S.; Caja, G.; Salama, A.A.K. Heat Stress Modifies the Lactational Performances and the Urinary Metabolomic Profile Related to Gastrointestinal Microbiota of Dairy Goats. PLoS ONE 2019, 14, e0202457. [Google Scholar] [CrossRef] [Green Version]
- Hansson, E.; Glaser, J.; Jakobsson, K.; Weiss, I.; Wesseling, C.; Lucas, R.A.I.; Wei, J.L.K.; Ekström, U.; Wijkström, J.; Bodin, T.; et al. Pathophysiological Mechanisms by Which Heat Stress Potentially Induces Kidney Inflammation and Chronic Kidney Disease in Sugarcane Workers. Nutrients 2020, 12, E1639. [Google Scholar] [CrossRef]
- Cervenka, I.; Agudelo, L.Z.; Ruas, J.L. Kynurenines: Tryptophan’s Metabolites in Exercise, Inflammation, and Mental Health. Science 2017, 357, eaaf9794. [Google Scholar] [CrossRef] [Green Version]
- Strasser, B.; Geiger, D.; Schauer, M.; Gatterer, H.; Burtscher, M.; Fuchs, D. Effects of Exhaustive Aerobic Exercise on Tryptophan-Kynurenine Metabolism in Trained Athletes. PLoS ONE 2016, 11, e0153617. [Google Scholar] [CrossRef]
- Murr, C.; Widner, B.; Wirleitner, B.; Fuchs, D. Neopterin as a Marker for Immune System Activation. Curr. Drug Metab. 2002, 3, 175–187. [Google Scholar] [CrossRef]
- Kumar, R.; Adiga, A.; Novack, J.; Etinger, A.; Chinitz, L.; Slater, J.; de Loor, H.; Meijers, B.; Holzman, R.S.; Lowenstein, J. The Renal Transport of Hippurate and Protein-bound Solutes. Physiol. Rep. 2020, 8, e14349. [Google Scholar] [CrossRef] [Green Version]
- Lennerz, B.S.; Vafai, S.B.; Delaney, N.F.; Clish, C.B.; Deik, A.A.; Pierce, K.A.; Ludwig, D.S.; Mootha, V.K. Effects of Sodium Benzoate, a Widely Used Food Preservative, on Glucose Homeostasis and Metabolic Profiles in Humans. Mol. Genet. Metab. 2015, 114, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Gräber, T.; Kluge, H.; Hirche, F.; Broz, J.; Stangl, G.I. Effects of Dietary Benzoic Acid and Sodium-Benzoate on Performance, Nitrogen and Mineral Balance and Hippuric Acid Excretion of Piglets. Arch. Anim. Nutr. 2012, 66, 227–236. [Google Scholar] [CrossRef]
- Audrito, V.; Messana, V.G.; Brandimarte, L.; Deaglio, S. The Extracellular NADome Modulates Immune Responses. Front. Immunol. 2021, 12, 704779. [Google Scholar] [CrossRef]
- Clark, A.J.; Parikh, S.M. Mitochondrial Metabolism in Acute Kidney Injury. Semin. Nephrol. 2020, 40, 101–113. [Google Scholar] [CrossRef]
- Yoo, H.C.; Yu, Y.C.; Sung, Y.; Han, J.M. Glutamine Reliance in Cell Metabolism. Exp. Mol. Med. 2020, 52, 1496–1516. [Google Scholar] [CrossRef]
- Bonilla, D.A.; Kreider, R.B.; Stout, J.R.; Forero, D.A.; Kerksick, C.M.; Roberts, M.D.; Rawson, E.S. Metabolic Basis of Creatine in Health and Disease: A Bioinformatics-Assisted Review. Nutrients 2021, 13, 1238. [Google Scholar] [CrossRef]
- Lee, H.W.; Handlogten, M.E.; Osis, G.; Clapp, W.L.; Wakefield, D.N.; Verlander, J.W.; Weiner, I.D. Expression of Sodium-Dependent Dicarboxylate Transporter 1 (NaDC1/SLC13A2) in Normal and Neoplastic Human Kidney. Am. J. Physiol. Ren. Physiol. 2017, 312, F427–F435. [Google Scholar] [CrossRef]
- Lever, M.; Sizeland, P.C.; Bason, L.M.; Hayman, C.M.; Chambers, S.T. Glycine Betaine and Proline Betaine in Human Blood and Urine. Biochim. Biophys. Acta 1994, 1200, 259–264. [Google Scholar] [CrossRef]
- Khamis, M.M.; Holt, T.; Awad, H.; El-Aneed, A.; Adamko, D.J. Comparative Analysis of Creatinine and Osmolality as Urine Normalization Strategies in Targeted Metabolomics for the Differential Diagnosis of Asthma and COPD. Metabolomics 2018, 14, 115. [Google Scholar] [CrossRef]
- Refsum, H.E.; Strömme, S.B. Urea and Creatinine Production and Excretion in Urine during and after Prolonged Heavy Exercise. Scand. J. Clin. Lab. Investig. 1974, 33, 247–254. [Google Scholar] [CrossRef]
- Laparre, J.; Kaabia, Z.; Mooney, M.; Buckley, T.; Sherry, M.; Le Bizec, B.; Dervilly-Pinel, G. Impact of Storage Conditions on the Urinary Metabolomics Fingerprint. Anal. Chim. Acta 2017, 951, 99–107. [Google Scholar] [CrossRef]
Group | Residence in a High-Risk Region | Highest-Intensity Manual Labor | Agricultural Environment |
---|---|---|---|
Cane Harvest and Seed Cutters | + | + | + |
Other Cane Workers | + | − | + |
Spain Agricultural Workers | − | − | + |
Non-Agricultural Workers | + | − | − |
Variable | Cane Harvest and Seed Cutters n = 117 | Other Cane Workers n = 78 | Spain Agricultural Workers n = 78 | Non-Agricultural Workers n = 102 | p-Value |
---|---|---|---|---|---|
Age in years, mean (SD) | 35 (8) | 36 (9) | 42 (11) * | 48 (9) * | <0.0001 |
Weight in kg, mean (SD) | 67 (11) | 75 (11) * | 80 (13) * | 79 (16) * | <0.0001 |
Height in cm, mean (SD) | 168 (9) | 169 (7) | 172 (7) * | 167 (7) + | 0.0005 |
BMI in kg/m2, mean (SD) | 25 (4) | 26 (4) | 27 (4) * | 25 (4) + | 0.006 |
Serum creatinine in mg/dL, mean (SD) | 0.9 (0.1) | 0.8 (0.1) | 1.0 (0.1) * | 0.8 (0.1) | <0.0001 |
eGFR, mL/min/1.73 m2, mean (SD) | 112 (12) | 114 (11) | 95 (13) * | 106 (12) * | <0.0001 |
Urine creatinine in mmol/L, mean (SD) | 132 (86) | 126 (67) | 157 (67) | 140 (73) | 0.049 |
Urine dipstick specific gravity, median (IQR) | 1.015 (1.010 to 1.020) | 1.015 (1.010 to 1.020) | 1.030 (1.020 to 1.030) * | 1.020 (1.015 to 1.020) + | <0.0001 |
Urine dipstick protein, n (%) | |||||
0–30 mg/dL | 117 (100) | 78 (100) | 68 (87) | 100 (98) | <0.0001 |
>30–<300 mg/dL | 0 (0) | 0 (0) | 5 (6) | 2 (2) | |
≥300 mg/dL | 0 (0) | 0 (0) | 5 (6) | 0 (0) | |
Urine dipstick leukocyte esterase > trace, n (%) | 12 (10) | 4 (5) | 5 (6) | 1 (1) | 0.02 |
Hypertension, n (%) | 8 (7) | 2 (3) | 16 (21) | 10 (10) | 0.002 |
Diabetes, n (%) | 0 (0) | 0 (0) | 3 (4) | 0 (0) | 0.02 |
Current use of ACEi or ARB, n (%) | 0 (0) | 0 (0) | 5 (6) | 0 (0) | 0.0007 |
NSAID use category, n (%) | |||||
<1×/month | 76 (65) | 51 (65) | 44 (56) | 70 (69) | <0.0001 |
1×/month to 1×/week | 21 (18) | 12 (15) | 30 (38) | 25 (25) | |
>1×/week | 20 (17) | 15 (19) | 4 (5) | 7 (7) | |
Tobacco use category, n (%) | |||||
Current smoker | 51 (44) | 23 (29) | 27 (35) | 38 (37) | 0.54 |
Former smoker | 21 (18) | 20 (26) | 19 (24) | 25 (25) | |
Never smoker | 45 (38) | 35 (45) | 32 (41) | 39 (38) | |
Alcohol > 1×/month, n (%) | 52 (47) | 26 (34) | 36 (46) | 15 (68) + | 0.04 |
Years working in occupational category, mean (SD) | 12 (5) | 15 (6) | 14 (11) | 14 (11) | 0.11 |
Cane Harvest and Seed Cutters (n = 117) | Other Cane Workers (n = 78) | Spain Agricultural Workers (n = 78) | Non-Agriculture (n = 102) | p | |
---|---|---|---|---|---|
NAD+, mmol/mmol Cr | |||||
median | 0.0156 | 0.0126 ** | 0.0122 ** | 0.0146 | 0.0004 |
IQR | 0.0120, 0.0197 | 0.0094, 0.0164 | 0.0093, 0.0181 | 0.0124, 0.0185 | |
Tryptophan, mmol/mmol Cr | |||||
median | 0.0056 | 0.0055 | 0.0061 | 0.0068 ** | 0.01 |
IQR | 0.0038, 0.0072 | 0.0042, 0.0075 | 0.0043, 0.0094 | 0.0043, 0.0093 | |
Kynurenic acid, mmol/mmol Cr | |||||
median | 0.0200 | 0.0160 ** | 0.0184 | 0.0188 * | <0.0001 |
IQR | 0.0166, 0.0249 | 0.0140, 0.0189 | 0.0160, 0.0255 | 0.0152, 0.0217 | |
Nicotinamide, mmol/mmol Cr | |||||
median | 0.0141 | 0.0130 | 0.0139 | 0.0126 | 0.22 |
IQR | 0.0111, 0.0181 | 0.0112, 0.0182 | 0.0104, 0.0260 | 0.0101, 0.0167 | |
Methylnicotinamide, mmol/mmol Cr | |||||
median | 0.0040 | 0.0039 | 0.0035 | 0.0048 * | 0.0004 |
IQR | 0.0030, 0.0055 | 0.0031, 0.0057 | 0.0027, 0.0047 | 0.0034, 0.0069 | |
DE NOVO PATHWAY | |||||
NAD+ to Tryptophan Ratio, mmol/mmol | |||||
median | 2.92 | 2.32 * | 2.12 * | 2.06 ** | 0.006 |
IQR | 1.99, 5.23 | 1.53, 4.24 | 1.32, 4.89 | 1.43, 4.49 | |
Kynurenic Acid to Tryptophan Ratio, mmol/mmol | |||||
median | 3.48 | 2.89 * | 3.06 | 2.66 ** | 0.001 |
IQR | 2.61, 6.34 | 2.12, 3.91 | 2.15, 4.88 | 1.95, 4.19 | |
NAD+ to Kynurenic Acid Ratio, mmol/mmol | |||||
median | 0.727 | 0.698 | 0.594 | 0.758 | 0.01 |
IQR | 0.542, 1.057 | 0.561, 0.896 | 0.462, 1.138 | 0.610, 0.990 | |
SALVAGE PATHWAY | |||||
NAD+ to Nicotinamide Ratio, mmol/mmol | |||||
median | 1.022 | 0.939 | 0.924 | 1.193 | 0.07 |
IQR | 0.765, 1.597 | 0.684, 1.260 | 0.351, 1.796 | 0.773, 1.627 | |
Methylnicotinamide to Nicotinamide Ratio, mmol/mmol | |||||
median | 0.304 | 0.301 | 0.236 | 0.374 * | <0.0001 |
IQR | 0.204, 0.407 | 0.193, 0.500 | 0.110, 0.346 | 0.248, 0.575 | |
NAD+ to Methylnicotinamide Ratio, mmol/mmol | |||||
median | 3.68 | 2.72 ** | 3.52 | 3.01 | 0.007 |
IQR | 2.72, 5.89 | 2.17, 3.93 | 2.47, 5.31 | 2.07, 4.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raines, N.H.; Leone, D.A.; O’Callaghan-Gordo, C.; Ramirez-Rubio, O.; Amador, J.J.; Lopez Pilarte, D.; Delgado, I.S.; Leibler, J.H.; Embade, N.; Gil-Redondo, R.; et al. Metabolic Features of Increased Gut Permeability, Inflammation, and Altered Energy Metabolism Distinguish Agricultural Workers at Risk for Mesoamerican Nephropathy. Metabolites 2023, 13, 325. https://doi.org/10.3390/metabo13030325
Raines NH, Leone DA, O’Callaghan-Gordo C, Ramirez-Rubio O, Amador JJ, Lopez Pilarte D, Delgado IS, Leibler JH, Embade N, Gil-Redondo R, et al. Metabolic Features of Increased Gut Permeability, Inflammation, and Altered Energy Metabolism Distinguish Agricultural Workers at Risk for Mesoamerican Nephropathy. Metabolites. 2023; 13(3):325. https://doi.org/10.3390/metabo13030325
Chicago/Turabian StyleRaines, Nathan H., Dominick A. Leone, Cristina O’Callaghan-Gordo, Oriana Ramirez-Rubio, Juan José Amador, Damaris Lopez Pilarte, Iris S. Delgado, Jessica H. Leibler, Nieves Embade, Rubén Gil-Redondo, and et al. 2023. "Metabolic Features of Increased Gut Permeability, Inflammation, and Altered Energy Metabolism Distinguish Agricultural Workers at Risk for Mesoamerican Nephropathy" Metabolites 13, no. 3: 325. https://doi.org/10.3390/metabo13030325
APA StyleRaines, N. H., Leone, D. A., O’Callaghan-Gordo, C., Ramirez-Rubio, O., Amador, J. J., Lopez Pilarte, D., Delgado, I. S., Leibler, J. H., Embade, N., Gil-Redondo, R., Bruzzone, C., Bizkarguenaga, M., Scammell, M. K., Parikh, S. M., Millet, O., Brooks, D. R., & Friedman, D. J. (2023). Metabolic Features of Increased Gut Permeability, Inflammation, and Altered Energy Metabolism Distinguish Agricultural Workers at Risk for Mesoamerican Nephropathy. Metabolites, 13(3), 325. https://doi.org/10.3390/metabo13030325