Hypomagnesemia as a Risk Factor and Accelerator for Vascular Aging in Diabetes Mellitus and Chronic Kidney Disease
Abstract
:1. Introduction
2. Search Methods
3. Results
4. Cardiovascular Mortality in Chronic Kidney Disease
5. Magnesium Homeostasis
6. Hypomagnesemia and Cardiovascular Mortality
7. Hypomagnesemia and Other Aspects of Health
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Garg, A.X.; Clark, W.F.; Haynes, R.B.; House, A.A. Moderate renal insufficiency and the risk of cardiovascular mortality: Results from the NHANES I. Kidney Int. 2002, 61, 1486–1494. [Google Scholar] [CrossRef] [Green Version]
- GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef]
- Evans, M.; Lewis, R.D.; Morgan, A.R.; Whyte, M.B.; Hanif, W.; Bain, S.C.; Davies, S.; Dashora, U.; Yousef, Z.; Patel, D.C.; et al. A Narrative Review of Chronic Kidney Disease in Clinical Practice: Current Challenges and Future Perspectives. Adv. Ther. 2022, 39, 33–43. [Google Scholar] [CrossRef]
- Couser, W.G.; Remuzzi, G.; Mendis, S.; Tonelli, M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 2011, 80, 1258–1270. [Google Scholar] [CrossRef] [Green Version]
- Tuttle, K.R.; Jones, C.R.; Daratha, K.B.; Koyama, A.K.; Nicholas, S.B.; Alicic, R.Z.; Duru, O.K.; Neumiller, J.J.; Norris, K.C.; Rios Burrows, N.; et al. Incidence of Chronic Kidney Disease among Adults with Diabetes, 2015-2020. N. Engl. J. Med. 2022, 387, 1430–1431. [Google Scholar] [CrossRef]
- Chen, S.; Chen, L.; Jiang, H. Prognosis and risk factors of chronic kidney disease progression in patients with diabetic kidney disease and non-diabetic kidney disease: A prospective cohort CKD-ROUTE study. Ren. Fail. 2022, 44, 1309–1318. [Google Scholar] [CrossRef]
- KIdney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaulation and management of chronic kidney disease. KIdney Int. Suppl. 2013, 3, 1–150. [Google Scholar]
- Jankowski, J.; Floege, J.; Fliser, D.; Bohm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease: Pathophysiological Insights and Therapeutic Options. Circulation 2021, 143, 1157–1172. [Google Scholar] [CrossRef]
- Vallianou, N.G.; Mitesh, S.; Gkogkou, A.; Geladari, E. Chronic Kidney Disease and Cardiovascular Disease: Is there Any Relationship? Curr. Cardiol. Rev. 2019, 15, 55–63. [Google Scholar] [CrossRef]
- El Chamieh, C.; Liabeuf, S.; Massy, Z. Uremic Toxins and Cardiovascular Risk in Chronic Kidney Disease: What Have We Learned Recently beyond the Past Findings? Toxins 2022, 14, 280. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Jafar, T.H.; Nitsch, D.; Neuen, B.L.; Perkovic, V. Chronic kidney disease. Lancet 2021, 398, 786–802. [Google Scholar] [CrossRef]
- Inker, L.A.; Astor, B.C.; Fox, C.H.; Isakova, T.; Lash, J.P.; Peralta, C.A.; Tamura, M.K.; Feldman, H.I. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am. J. Kidney Dis. 2014, 63, 713–735. [Google Scholar] [CrossRef] [Green Version]
- US Renal Data System 2019 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2019, 75, S1–S64. [CrossRef]
- Luyckx, V.A.; Tonelli, M.; Stanifer, J.W. The global burden of kidney disease and the sustainable development goals. Bull. World Health Organ 2018, 96, 414–422C. [Google Scholar] [CrossRef]
- Liyanage, T.; Ninomiya, T.; Jha, V.; Neal, B.; Patrice, H.M.; Okpechi, I.; Zhao, M.-H.; Lv, J.; Garg, A.X.; Knight, J.; et al. Worldwide access to treatment for end-stage kidney disease: A systematic review. Lancet 2015, 385, 1975–1982. [Google Scholar] [CrossRef]
- Foley, R.N.; Parfrey, P.S.; Harnett, J.D.; Kent, G.M.; Murray, D.C.; Barre, P.E. The prognostic importance of left ventricular geometry in uremic cardiomyopathy. J. Am. Soc. Nephrol. 1995, 5, 2024–2031. [Google Scholar] [CrossRef]
- Templier, M.; Paré, G. Transparency in literature reviews: An assessment of reporting practices across review types and genres in top IS journals. Eur. J. Inf. Syst. 2017, 27, 503–550. [Google Scholar] [CrossRef]
- Guy Paré, S.K. Methods for Literature Reviews. In Handbook of eHealth Evaluation: An Evidence-Based Approach; Lau, F.K.C., Ed.; University of Victoria: Victoria, BC, Canada, 2017; pp. 157–179. [Google Scholar]
- Chrysant, S.G.; Ganousis, L.; Chrysant, C. Hemodynamic and metabolic effects of hypomagnesemia in spontaneously hypertensive rats. Cardiology 1988, 75, 81–89. [Google Scholar] [CrossRef]
- Yao, Z.; Xu, Y.; Ma, W.; Sun, X.Y.; Jia, S.; Zheng, Y.; Liu, X.; Fan, Y.; Wang, C. Magnesium Citrate Protects Against Vascular Calcification in an Adenine-induced Chronic Renal Failure Rat Model. J. Cardiovasc. Pharmacol. 2018, 72, 270–276. [Google Scholar] [CrossRef]
- Wei, M.X.; Esbaei, K.; Bargman, J.; Oreopoulos, D.G. Relationship between serum magnesium, parathyroid hormone, and vascular calcification in patients on dialysis: A literature review. Perit. Dial. Int. 2006, 26, 366–373. [Google Scholar] [CrossRef]
- Spiegel, D.M. Magnesium in chronic kidney disease: Unanswered questions. Blood Purif. 2011, 31, 172–176. [Google Scholar] [CrossRef]
- AL, M.d.F.; Rodriguez, M. Magnesium-its role in CKD. Nefrologia 2013, 33, 389–399. [Google Scholar] [CrossRef]
- Floege, J. Magnesium in CKD: More than a calcification inhibitor? J. Nephrol. 2015, 28, 269–277. [Google Scholar] [CrossRef] [Green Version]
- Heaf, J.G. Chronic Kidney Disease-Mineral Bone Disorder in the Elderly Peritoneal Dialysis Patient. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2015, 35, 640–644. [Google Scholar] [CrossRef]
- Rosa-Diez, G.; Negri, A.L.; Crucelegui, M.S.; Philippi, R.; Perez-Teysseyre, H.; Sarabia-Reyes, C.; Loor-Navarrete, H.; Heguilen, R. Sevelamer carbonate reduces the risk of hypomagnesemia in hemodialysis-requiring end-stage renal disease patients. Clin. Kidney J. 2016, 9, 481–485. [Google Scholar] [CrossRef] [Green Version]
- Apetrii, M.; Covic, A.; Massy, Z.A. Magnesium supplementation: A consideration in dialysis patients. Semin. Dial. 2018, 31, 11–14. [Google Scholar] [CrossRef]
- Van Laecke, S. Hypomagnesemia and hypermagnesemia. Acta Clin. Belg. 2019, 74, 41–47. [Google Scholar] [CrossRef]
- Rodelo-Haad, C.; Pendon-Ruiz de Mier, M.V.; Diaz-Tocados, J.M.; Martin-Malo, A.; Santamaria, R.; Munoz-Castaneda, J.R.; Rodriguez, M. The Role of Disturbed Mg Homeostasis in Chronic Kidney Disease Comorbidities. Front. Cell Dev. Biol. 2020, 8, 543099. [Google Scholar] [CrossRef]
- Sakaguchi, Y.; Fujii, N.; Shoji, T.; Hayashi, T.; Rakugi, H.; Isaka, Y. Hypomagnesemia is a significant predictor of cardiovascular and non-cardiovascular mortality in patients undergoing hemodialysis. Kidney Int. 2014, 85, 174–181. [Google Scholar] [CrossRef] [Green Version]
- Tonelli, M.; Wiebe, N.; Culleton, B.; House, A.; Rabbat, C.; Fok, M.; McAlister, F.; Garg, A.X. Chronic kidney disease and mortality risk: A systematic review. J. Am. Soc. Nephrol. 2006, 17, 2034–2047. [Google Scholar] [CrossRef] [Green Version]
- Shastri, S.; Sarnak, M.J. Cardiovascular Disease and CKD: Core Curriculum 2010. Am. J. Kidney Dis. 2010, 56, 399–417. [Google Scholar] [CrossRef]
- Schiffrin, E.L.; Lipman, M.L.; Mann, J.F. Chronic kidney disease: Effects on the cardiovascular system. Circulation 2007, 116, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Bologa, R.M.; Levine, D.M.; Parker, T.S.; Cheigh, J.S.; Serur, D.; Stenzel, K.H.; Rubin, A.L. Interleukin-6 predicts hypoalbuminemia, hypocholesterolemia, and mortality in hemodialysis patients. Am. J. Kidney Dis. 1998, 32, 107–114. [Google Scholar] [CrossRef]
- Parikh, S.V.; de Lemos, J.A. Biomarkers in cardiovascular disease: Integrating pathophysiology into clinical practice. Am. J. Med. Sci. 2006, 332, 186–197. [Google Scholar] [CrossRef]
- Lim, Y.J.; Sidor, N.A.; Tonial, N.C.; Che, A.; Urquhart, B.L. Uremic Toxins in the Progression of Chronic Kidney Disease and Cardiovascular Disease: Mechanisms and Therapeutic Targets. Toxins 2021, 13, 142. [Google Scholar] [CrossRef]
- Asai, M.; Kumakura, S.; Kikuchi, M. Review of the efficacy of AST-120 (KREMEZIN((R))) on renal function in chronic kidney disease patients. Ren. Fail. 2019, 41, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.R.; Yuan, L.; Shi, R.; Li, H.; Wang, D.G.; Wu, Y.G. Predictors of coronary artery calcification and its association with cardiovascular events in patients with chronic kidney disease. Ren. Fail. 2021, 43, 1172–1179. [Google Scholar] [CrossRef]
- Filipska, I.; Winiarska, A.; Knysak, M.; Stompor, T. Contribution of Gut Microbiota-Derived Uremic Toxins to the Cardiovascular System Mineralization. Toxins 2021, 13, 274. [Google Scholar] [CrossRef]
- Fulop, T.; Zsom, L.; Tapolyai, M.B.; Molnar, M.Z.; Salim, S.A.; Arany, I.; Hamrahian, M.; Rosivall, L. Peritoneal dialysis: The unique features by compartmental delivery of renal replacement therapy. Med. Hypotheses 2017, 108, 128–132. [Google Scholar] [CrossRef]
- Dai, Y.; Quan, J.; Xiong, L.; Luo, Y.; Yi, B. Probiotics improve renal function, glucose, lipids, inflammation and oxidative stress in diabetic kidney disease: A systematic review and meta-analysis. Ren. Fail. 2022, 44, 862–880. [Google Scholar] [CrossRef]
- Chao, C.T.; Lin, S.H. Uremic Vascular Calcification: The Pathogenic Roles and Gastrointestinal Decontamination of Uremic Toxins. Toxins 2020, 12, 812. [Google Scholar] [CrossRef]
- Ramos, C.I.; Armani, R.G.; Canziani, M.E.F.; Dalboni, M.A.; Dolenga, C.J.R.; Nakao, L.S.; Campbell, K.L.; Cuppari, L. Effect of prebiotic (fructooligosaccharide) on uremic toxins of chronic kidney disease patients: A randomized controlled trial. Nephrol. Dial. Transplant. 2019, 34, 1876–1884. [Google Scholar] [CrossRef]
- Zununi Vahed, S.; Mostafavi, S.; Hosseiniyan Khatibi, S.M.; Shoja, M.M.; Ardalan, M. Vascular Calcification: An Important Understanding in Nephrology. Vasc. Health Risk Manag. 2020, 16, 167–180. [Google Scholar] [CrossRef]
- Bao, S.; Guo, Y.; Diao, Z.; Guo, W.; Liu, W. Genome-wide identification of lncRNAs and mRNAs differentially expressed in human vascular smooth muscle cells stimulated by high phosphorus. Ren. Fail. 2020, 42, 437–446. [Google Scholar] [CrossRef]
- Xu, C.; Smith, E.R.; Tiong, M.K.; Ruderman, I.; Toussaint, N.D. Interventions To Attenuate Vascular Calcification Progression in Chronic Kidney Disease: A Systematic Review of Clinical Trials. J. Am. Soc. Nephrol. 2022, 33, 1011–1032. [Google Scholar] [CrossRef]
- Hisamatsu, T.; Miura, K.; Fujiyoshi, A.; Kadota, A.; Miyagawa, N.; Satoh, A.; Zaid, M.; Yamamoto, T.; Horie, M.; Ueshima, H.; et al. Serum magnesium, phosphorus, and calcium levels and subclinical calcific aortic valve disease: A population-based study. Atherosclerosis 2018, 273, 145–152. [Google Scholar] [CrossRef]
- Ter Braake, A.D.; Govers, L.P.; Peeters, M.J.; van Zuilen, A.D.; Wetzels, J.F.M.; Blankenstijn, P.J.; Hoenderop, J.G.J.; de Baaij, J.H.F.; van den Brand, J.; Masterplan Study Group. Low plasma magnesium concentration and future abdominal aortic calcifications in moderate chronic kidney disease. BMC Nephrol. 2021, 22, 71. [Google Scholar] [CrossRef]
- Ito, M.; Yamaguchi, M.; Katsuno, T.; Nobata, H.; Iwagaitsu, S.; Sugiyama, H.; Kinashi, H.; Banno, S.; Ando, M.; Kubo, Y.; et al. Association between serum magnesium levels and abdominal aorta calcification in patients with pre-dialysis chronic kidney disease stage 5. PLoS ONE 2021, 16, e0253592. [Google Scholar] [CrossRef]
- Masuyama, S.; Mizui, M.; Maeda, K.; Shimamura, K.; Sakaguchi, Y.; Morita, M.; Kuratani, T.; Mizote, I.; Nakamura, D.; Sakata, Y.; et al. Preoperative hypomagnesemia as a possible predictive factor for postoperative increase of transvalvular pressure gradient in hemodialysis patients treated with transcatheter aortic valve implantation. Ren. Fail. 2022, 44, 1083–1089. [Google Scholar] [CrossRef]
- Liao, F.; Folsom, A.R.; Brancati, F.L. Is low magnesium concentration a risk factor for coronary heart disease? The Atherosclerosis Risk in Communities (ARIC) Study. Am. Heart J. 1998, 136, 480–490. [Google Scholar] [CrossRef]
- Sakaguchi, Y. The emerging role of magnesium in CKD. Clin. Exp. Nephrol. 2022, 26, 379–384. [Google Scholar] [CrossRef]
- Guo, G.; Zhou, J.; Xu, T.; Sheng, Z.; Huang, A.; Sun, L.; Yao, L. Effect of Magnesium Supplementation on Chronic Kidney Disease-Mineral and Bone Disorder in Hemodialysis Patients: A Meta-Analysis of Randomized Controlled Trials. J. Ren. Nutr. 2022, 32, 102–111. [Google Scholar] [CrossRef]
- Leenders, N.H.J.; Vermeulen, E.A.; van Ballegooijen, A.J.; Hoekstra, T.; de Vries, R.; Beulens, J.W.; Vervloet, M.G. The association between circulating magnesium and clinically relevant outcomes in patients with chronic kidney disease: A systematic review and meta-analysis. Clin. Nutr. 2021, 40, 3133–3147. [Google Scholar] [CrossRef]
- Tangvoraphonkchai, K.; Davenport, A. Magnesium and Cardiovascular Disease. Adv. Chronic Kidney Dis. 2018, 25, 251–260. [Google Scholar] [CrossRef]
- Yuan, Q.; Xie, Y.; Peng, Z.; Wang, J.; Zhou, Q.; Xiao, X.; Wang, W.; Huang, L.; Tang, W.; Li, X.; et al. Urinary magnesium predicts risk of cardiovascular disease in Chronic Kidney Disease stage 1-4 patients. Clin. Nutr. 2021, 40, 2394–2400. [Google Scholar] [CrossRef]
- de Baaij, J.H.; Hoenderop, J.G.; Bindels, R.J. Magnesium in man: Implications for health and disease. Physiol. Rev. 2015, 95, 1–46. [Google Scholar] [CrossRef]
- Kolte, D.; Vijayaraghavan, K.; Khera, S.; Sica, D.A.; Frishman, W.H. Role of magnesium in cardiovascular diseases. Cardiol. Rev. 2014, 22, 182–192. [Google Scholar] [CrossRef] [Green Version]
- Whang, R.; Hampton, E.M.; Whang, D.D. Magnesium homeostasis and clinical disorders of magnesium deficiency. Ann. Pharmacother. 1994, 28, 220–226. [Google Scholar] [CrossRef]
- Romani, A.M. Cellular magnesium homeostasis. Arch. Biochem. Biophys. 2011, 512, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Wang, K.; Han, D.; He, X.; Wei, J.; Zhao, L.; Imam, M.U.; Ping, Z.; Li, Y.; Xu, Y.; et al. Dietary magnesium intake and the risk of cardiovascular disease, type 2 diabetes, and all-cause mortality: A dose-response meta-analysis of prospective cohort studies. BMC Med. 2016, 14, 210. [Google Scholar] [CrossRef] [Green Version]
- Barbagallo, M.; Veronese, N.; Dominguez, L.J. Magnesium in Aging, Health and Diseases. Nutrients 2021, 13, 463. [Google Scholar] [CrossRef]
- Liamis, G.; Hoorn, E.J.; Florentin, M.; Milionis, H. An overview of diagnosis and management of drug-induced hypomagnesemia. Pharmacol. Res. Perspect. 2021, 9, e00829. [Google Scholar] [CrossRef]
- Wile, D. Diuretics: A review. Ann. Clin. Biochem. 2012, 49, 419–431. [Google Scholar] [CrossRef] [Green Version]
- Perez-Garcia, R.; Jaldo, M.T.; Puerta, M.; Ortega, M.; Corchete, E.; de Sequera, P.; Martin-Navarro, J.A.; Albalate, M.; Alcazar, R. Hypomagnesaemia in haemodialysis is associated with increased mortality risk: Its relationship with dialysis fluid. Nefrologia 2020, 40, 552–562. [Google Scholar] [CrossRef]
- Gonella, M.; Calabrese, G. Magnesium status in chronically haemodialyzed patients: The role of dialysate magnesium concentration. Magnes. Res. 1989, 2, 259–265. [Google Scholar]
- Li, H.J.; Groden, C.; Hoenig, M.P.; Ray, E.C.; Ferreira, C.R.; Gahl, W.; Novacic, D. Case report: Extreme coronary calcifications and hypomagnesemia in a patient with a 17q12 deletion involving HNF1B. BMC Nephrol. 2019, 20, 353. [Google Scholar] [CrossRef] [Green Version]
- Ishimura, E.; Okuno, S.; Kitatani, K.; Tsuchida, T.; Yamakawa, T.; Shioi, A.; Inaba, M.; Nishizawa, Y. Significant association between the presence of peripheral vascular calcification and lower serum magnesium in hemodialysis patients. Clin. Nephrol. 2007, 68, 222–227. [Google Scholar] [CrossRef]
- Tomaschitz, A.; Ritz, E.; Pieske, B.; Rus-Machan, J.; Kienreich, K.; Verheyen, N.; Gaksch, M.; Grubler, M.; Fahrleitner-Pammer, A.; Mrak, P.; et al. Aldosterone and parathyroid hormone interactions as mediators of metabolic and cardiovascular disease. Metabolism 2014, 63, 20–31. [Google Scholar] [CrossRef]
- Joao Matias, P.; Azevedo, A.; Laranjinha, I.; Navarro, D.; Mendes, M.; Ferreira, C.; Amaral, T.; Jorge, C.; Aires, I.; Gil, C.; et al. Lower serum magnesium is associated with cardiovascular risk factors and mortality in haemodialysis patients. Blood Purif. 2014, 38, 244–252. [Google Scholar] [CrossRef]
- Misra, P.S.; Alam, A.; Lipman, M.L.; Nessim, S.J. The relationship between proton pump inhibitor use and serum magnesium concentration among hemodialysis patients: A cross-sectional study. BMC Nephrol. 2015, 16, 136. [Google Scholar] [CrossRef] [Green Version]
- Mikolasevic, I.; Milic, S.; Stimac, D.; Zaputovic, L.; Lukenda Zanko, V.; Gulin, T.; Jakopcic, I.; Klaric, D.; Gulin, M.; Orlic, L. Is there a relationship between hypomagnesemia and proton-pump inhibitors in patients on chronic hemodialysis? Eur. J. Intern. Med. 2016, 30, 99–103. [Google Scholar] [CrossRef]
- Okamoto, T.; Hatakeyama, S.; Hosogoe, S.; Tanaka, Y.; Imanishi, K.; Takashima, T.; Saitoh, F.; Suzuki, T.; Ohyama, C. Proton pump inhibitor as an independent factor of progression of abdominal aortic calcification in patients on maintenance hemodialysis. PLoS ONE 2018, 13, e0199160. [Google Scholar] [CrossRef]
- Cheungpasitporn, W.; Thongprayoon, C.; Kittanamongkolchai, W.; Srivali, N.; Edmonds, P.J.; Ungprasert, P.; O’Corragain, O.A.; Korpaisarn, S.; Erickson, S.B. Proton pump inhibitors linked to hypomagnesemia: A systematic review and meta-analysis of observational studies. Ren. Fail. 2015, 37, 1237–1241. [Google Scholar] [CrossRef] [Green Version]
- Srinutta, T.; Chewcharat, A.; Takkavatakarn, K.; Praditpornsilpa, K.; Eiam-Ong, S.; Jaber, B.L.; Susantitaphong, P. Proton pump inhibitors and hypomagnesemia: A meta-analysis of observational studies. Medicine 2019, 98, e17788. [Google Scholar] [CrossRef] [Green Version]
- Stolic, R.V.; Jovanovic, A.N.; Trajkovic, G.Z.; Kostic, M.M.; Odalovic, A.M.; Sovtic, S.R.; Sipic, M.V.; Pajovic, S.D.; Sojevic-Timotijevic, Z.N. Is low magnesium a clue to arteriovenous fistula complications in hemodialysis? Int. Urol. Nephrol. 2016, 48, 773–779. [Google Scholar] [CrossRef]
- Ter Braake, A.D.; Shanahan, C.M.; de Baaij, J.H.F. Magnesium Counteracts Vascular Calcification: Passive Interference or Active Modulation? Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1431–1445. [Google Scholar] [CrossRef] [Green Version]
- Dibaba, D.T.; Xun, P.; Song, Y.; Rosanoff, A.; Shechter, M.; He, K. The effect of magnesium supplementation on blood pressure in individuals with insulin resistance, prediabetes, or noncommunicable chronic diseases: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2017, 106, 921–929. [Google Scholar] [CrossRef] [Green Version]
- Haffner, D.; Leifheit-Nestler, M. CKD-MBD post kidney transplantation. Pediatr. Nephrol. 2021, 36, 41–50. [Google Scholar] [CrossRef]
- Ping, T.N.; Hsieh, S.L.; Wang, J.J.; Chen, J.B.; Wu, C.C. Panax notoginseng Suppresses Bone Morphogenetic Protein-2 Expression in EA.hy926 Endothelial Cells by Inhibiting the Noncanonical NF-kappaB and Wnt/beta-Catenin Signaling Pathways. Plants 2022, 11, 3265. [Google Scholar] [CrossRef]
- Pan, W.; Jie, W.; Huang, H. Vascular calcification: Molecular mechanisms and therapeutic interventions. MedComm 2023, 4, e200. [Google Scholar] [CrossRef]
- Yang, P.; Troncone, L.; Augur, Z.M.; Kim, S.S.J.; McNeil, M.E.; Yu, P.B. The role of bone morphogenetic protein signaling in vascular calcification. Bone 2020, 141, 115542. [Google Scholar] [CrossRef]
- Ram, E.; Lavee, J.; Shechter, M.; Kogan, A.; Maor, E.; Asher, E.; Freimark, D.; Klempfner, R.; Peled, Y. Relation of Low Serum Magnesium to Mortality and Cardiac Allograft Vasculopathy Following Heart Transplantation. Am. J. Cardiol. 2020, 125, 1517–1523. [Google Scholar] [CrossRef]
- Holzmann-Littig, C.; Kuechle, C.; Bietenbeck, A.; McCallum, W.; Heemann, U.; Renders, L.; Steubl, D. Estimating serum-ionized magnesium concentration in hemodialysis patients. Hemodial. Int. 2021, 25, 523–531. [Google Scholar] [CrossRef]
- Liu, H.; Wang, R. Associations between the serum magnesium and all-cause or cardiovascular mortality in chronic kidney disease and end-stage renal disease patients: A meta-analysis. Medicine 2021, 100, e27486. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, X.; Li, H.; Wang, S. Risk factors for mortality in patients undergoing peritoneal dialysis: A systematic review and meta-analysis. Ren. Fail. 2021, 43, 743–753. [Google Scholar] [CrossRef]
- Gaman, M.A.; Dobrica, E.C.; Cozma, M.A.; Antonie, N.I.; Stanescu, A.M.A.; Gaman, A.M.; Diaconu, C.C. Crosstalk of Magnesium and Serum Lipids in Dyslipidemia and Associated Disorders: A Systematic Review. Nutrients 2021, 13, 1411. [Google Scholar] [CrossRef]
- Kao, W.H.; Folsom, A.R.; Nieto, F.J.; Mo, J.P.; Watson, R.L.; Brancati, F.L. Serum and dietary magnesium and the risk for type 2 diabetes mellitus: The Atherosclerosis Risk in Communities Study. Arch. Intern. Med. 1999, 159, 2151–2159. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Dhanasinghu, R.; Sakthivadivel, V.; Kaliappan, A.; Gaur, A.; Balan, Y.; Tadi, L.J.; Sundaramurthy, R. Association of Serum Magnesium with Insulin Indices in Patients with Type 2 Diabetes Mellitus. Maedica 2022, 17, 596–601. [Google Scholar] [CrossRef]
- Simental-Mendia, L.E.; Sahebkar, A.; Rodriguez-Moran, M.; Guerrero-Romero, F. A systematic review and meta-analysis of randomized controlled trials on the effects of magnesium supplementation on insulin sensitivity and glucose control. Pharmacol. Res. 2016, 111, 272–282. [Google Scholar] [CrossRef]
- Orchard, T.J. Magnesium and type 2 diabetes mellitus. Arch. Intern. Med. 1999, 159, 2119–2120. [Google Scholar] [CrossRef]
- McNair, P.; Christensen, M.S.; Christiansen, C.; Madsbad, S.; Transbol, I. Renal hypomagnesaemia in human diabetes mellitus: Its relation to glucose homeostasis. Eur. J. Clin. Invest. 1982, 12, 81–85. [Google Scholar] [CrossRef]
- Saris, N.-E.L.; Mervaala, E.; Karppanen, H.; Khawaja, J.A.; Lewenstam, A. Magnesium. Clin. Chim. Acta 2000, 294, 1–26. [Google Scholar] [CrossRef]
- Barbagallo, M. Role of magnesium in insulin action, diabetes and cardio-metabolic syndrome X. Mol. Asp. Med. 2003, 24, 39–52. [Google Scholar] [CrossRef]
- Lo Piano, F.; Corsonello, A.; Corica, F. Magnesium and elderly patient: The explored paths and the ones to be explored: A review. Magnes. Res. 2019, 32, 1–15. [Google Scholar] [CrossRef]
- Dastgerdi, A.H.; Rad, M.G.; Soltani, N. The Therapeutic Effects of Magnesium in Insulin Secretion and Insulin Resistance. Adv. Biomed. Res. 2022, 11, 54. [Google Scholar] [CrossRef]
- Trapani, V.; Rosanoff, A.; Baniasadi, S.; Barbagallo, M.; Castiglioni, S.; Guerrero-Romero, F.; Iotti, S.; Mazur, A.; Micke, O.; Pourdowlat, G.; et al. The relevance of magnesium homeostasis in COVID-19. Eur. J. Nutr. 2022, 61, 625–636. [Google Scholar] [CrossRef]
- Kanellopoulou, C.; George, A.B.; Masutani, E.; Cannons, J.L.; Ravell, J.C.; Yamamoto, T.N.; Smelkinson, M.G.; Jiang, P.D.; Matsuda-Lennikov, M.; Reilley, J.; et al. Mg(2+) regulation of kinase signaling and immune function. J. Exp. Med. 2019, 216, 1828–1842. [Google Scholar] [CrossRef] [Green Version]
- Gile, J.; Ruan, G.; Abeykoon, J.; McMahon, M.M.; Witzig, T. Magnesium: The overlooked electrolyte in blood cancers? Blood Rev. 2020, 44, 100676. [Google Scholar] [CrossRef]
- Dedhia, H.V.; Banks, D.E. Pulmonary response to hyperoxia: Effects of magnesium. Environ Health Perspect 1994, 102 (Suppl. S10), 101–105. [Google Scholar] [CrossRef]
- Jiang, P.; Lv, Q.; Lai, T.; Xu, F. Does Hypomagnesemia Impact on the Outcome of Patients Admitted to the Intensive Care Unit? A Systematic Review and Meta-Analysis. Shock 2017, 47, 288–295. [Google Scholar] [CrossRef]
- Rude, R.K.; Gruber, H.E.; Norton, H.J.; Wei, L.Y.; Frausto, A.; Mills, B.G. Bone loss induced by dietary magnesium reduction to 10% of the nutrient requirement in rats is associated with increased release of substance P and tumor necrosis factor-alpha. J. Nutr. 2004, 134, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Fuentebella, J.; Kerner, J.A. Refeeding syndrome. Pediatr. Clin. North Am. 2009, 56, 1201–1210. [Google Scholar] [CrossRef]
- Rohrer, S.; Dietrich, J.W. Refeeding syndrome: A review of the literature. Z. Gastroenterol. 2014, 52, 593–600. [Google Scholar] [CrossRef]
- Wirth, R.; Diekmann, R.; Fleiter, O.; Fricke, L.; Kreilkamp, A.; Modreker, M.K.; Marburger, C.; Nels, S.; Schaefer, R.; Willschrei, H.P.; et al. Refeeding syndrome in geriatric patients: A frequently overlooked complication. Z. Gerontol. Geriatr. 2018, 51, 34–40. [Google Scholar] [CrossRef]
GFR Category | Glomerular Filtration Rate (GFR) mL/min/1.73 m2 | Description |
---|---|---|
G1 | ≥90 | Normal |
G2 | 60–89 | Mildly decreased |
G3a | 45–59 | Mildly to moderately decreased |
G3b | 30–44 | Moderately to severely decreased |
G4 | 15–29 | Severely decreased |
G5 | <15 | Kidney failure |
Searching Keywords | Number of Publications until 17 November 2022 | First Publication in This Field |
---|---|---|
hypomagnesemia and aging | 44 | 1980 |
hypomagnesemia and diabetes | 593 | 1963 |
hypomagnesemia and cardiovascular disease | 809 | 1969 |
hypomagnesemia and cardiovascular | 469 | 1963 |
hypomagnesemia and chronic kidney disease | 266 | 1973 |
hypomagnesemia and vascular calcification | 26 | 1988 |
Authors | Publication Years | Conclusions | Population | Type of the Study | |
---|---|---|---|---|---|
1. | Chrysant, S.G., et al. | 1988 | Hypomagnesemia aggravated hypertension, widespread tissue calcification, and increased peripheral vascular resistance. | animal | experimental |
2. | Honavar, S.G., et al. | 2001 | Sclerochoroidal calcification is associated with hypomagnesemia. | human | case series |
3. | Wei, M., et al. | 2006 | There is an inverse relationship between serum Mg and vascular calcification. | human | literature review |
4. | Ishimura, E., et al. | 2007 | Hypomagnesemia is significantly associated with the presence of vascular calcification. | human | cohort |
5. | Di Iorio, B.R., et al. | 2009 | Randomized, multicenter, prospective, interventional study. Conclusion: sevelamer improves the survival | human | randomized trial |
6. | Spiegel, D.M. | 2011 | Exogenous administration of the magnesium may be helpful as a phosphate binder. | human | review |
7. | M de Francisco, A.L., et al. | 2013 | It is time for a re-examination of the role of magnesium in CKD patients. | human | review |
8. | Tomaschitz, A., et al. | 2014 | Due to PTH elevation, the magnesiuretic effects are also increased. | human | review |
9. | João Matias, P., et al. | 2014 | Lower Mg levels seem to be associated with higher mortality in HD patients. | human | cohort |
10. | Floege, J. | 2015 | Magnesium has also been linked to diseases such as metabolic syndrome, diabetes, hypertension, fatigue and Depression, all of which are common in CKD | human | review |
11. | Misra, P.S., et al. | 2015 | Among HD patients, proton pump inhibitors users have lower serum Mg levels as compared with non-users | human | cross-section study |
12. | Heaf, J.G. | 2015 | Hypomagnesemia is common in PD and can be treated with magnesium supplements. | human | review |
13. | Stolic, R.V., et al. | 2016 | Hypomagnesemia is a significant pro-atherogenic factor. | human | cohort |
14. | Rosa-Diez, G., et al. | 2016 | Hemodialysis patients receiving sevelamer show higher serum magnesium levels and a reduced risk of vascular calcifications. | human | cohort, review |
15. | Ter Braake, A.D., et al. | 2017 | Magnesium may regulate vascular smooth muscle cell trans-differentiation toward an osteogenic phenotype. | human | review |
16. | Apetrii, M., et al. | 2018 | Normal serum magnesium levels may represent a plausible option to improve the outcome of dialysis patients. | human | review |
17. | Tangvoraphonkchai, K., et al. | 2018 | Hypomagnesemia has been proven or suspected as a cause of cardiac arrhythmias. | human | review |
18. | Okamoto, T., et al. | 2018 | Proton pump inhibitors associated with vascular calcification in patients undergoing dialysis through hypomagnesemia | human | cohort |
19. | Yao, Z., et al. | 2018 | Magnesium may be a potential drug for preventing vascular calcifications in patients with chronic renal failure. | animal | experimental |
20. | Van Laecke, S. | 2019 | Magnesium deficiency and/or hypomagnesemia have been linked to cardiovascular disease and vascular calcification. | human | narrative review |
21. | Li, H.J., et al. | 2019 | Hyperparathyroidism and hypomagnesemia may contribute to significant cardiovascular risk. | human | case report |
22. | Rodelo-Haad, C., et al. | 2020 | Low serum magnesium is associated with unfavorable clinical outcomes such as major adverse cardiovascular and renal events. | human | review |
23. | Haffner, D., et al. | 2021 | The role of magnesium supplementation after kidney transplantation. Conclusion: Hypomagnesemia could develop after kidney transplantation | human | cohort |
24. | Holzmann-Littig, C., et al. | 2021 | The importance of magnesium concentration in hemodialysis patients. Conclusion: With an easy equation could prevent HD patients from hypomagnesemia | human | cohort |
25. | Liu, H., et al. | 2021 | Hypomagnesemia is significantly associated with cardiovascular and all-cause mortality in maintenance HD patients. | human | meta-analysis |
26. | Sakaguchi, Y. | 2022 | Magnesium might provide a better cardiovascular prognosis. | human | randomized, cohort, review |
Origin of Loss | Etiology | Possible Diseases |
---|---|---|
Extrarenal | GI-loses | IBD, bariatric surgery, vomiting, malignancy of GI tract |
Decreased GI absorption | IBD, bariatric surgery, previous intestinal resection, decreased intake, drugs, vitamin D deficiency | |
Others | Sepsis, blood transfusion, hungry bone syndrome, refeeding | |
Renal | Hereditary | Hypercalciuric hypomagnesemia, Gitelman-like hypomagnesemia, mitochondrial-related hypomagnesemia |
Drugs | Platinum derived anti-cancer agents, diuretics, aminoglycosides, EGFR inhibitors, calcineurin inhibitors, pentamidine | |
Miscellaneous | Acidosis, osmotic diuresis, proteinuria, polyuria, insulin resistance, alcoholism, primary and secondary hyperparathyroidism |
Serum Magnesium (mmol/L) | Clinical Symptoms |
---|---|
<0.4 | tetany, nystagmus, seizures, psychosis, arrhythmia |
0.4–0.7 | tremor, neuromuscular irritability, hypokalemia, hypocalcemia |
0.7–1.1 | normal range |
>2.0 | lethargy, flushing, nausea, vomiting, diminished deep tendon reflexes, bradycardia, drowsiness |
>3.0 | tachycardia, slurred speech, muscle weakness, EKG changes |
>4.0 | hypotension, confusion, loss of deep tendon reflexes, quadriparesis, respiratory depression |
>5.0 | coma, apnea, cardiac arrest, asystole, death |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pethő, Á.G.; Tapolyai, M.; Browne, M.; Fülöp, T. Hypomagnesemia as a Risk Factor and Accelerator for Vascular Aging in Diabetes Mellitus and Chronic Kidney Disease. Metabolites 2023, 13, 306. https://doi.org/10.3390/metabo13020306
Pethő ÁG, Tapolyai M, Browne M, Fülöp T. Hypomagnesemia as a Risk Factor and Accelerator for Vascular Aging in Diabetes Mellitus and Chronic Kidney Disease. Metabolites. 2023; 13(2):306. https://doi.org/10.3390/metabo13020306
Chicago/Turabian StylePethő, Ákos Géza, Mihály Tapolyai, Maria Browne, and Tibor Fülöp. 2023. "Hypomagnesemia as a Risk Factor and Accelerator for Vascular Aging in Diabetes Mellitus and Chronic Kidney Disease" Metabolites 13, no. 2: 306. https://doi.org/10.3390/metabo13020306
APA StylePethő, Á. G., Tapolyai, M., Browne, M., & Fülöp, T. (2023). Hypomagnesemia as a Risk Factor and Accelerator for Vascular Aging in Diabetes Mellitus and Chronic Kidney Disease. Metabolites, 13(2), 306. https://doi.org/10.3390/metabo13020306