Comparison of Diagnostic Models to Estimate the Risk of Metabolic Syndrome in a Chilean Pediatric Population: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design, Population and Sample
2.2. Study Variables and Measurements
- Anthropometric variables: weight (kg), height (cm), BMI (kg/m2), waist circumference (WC, cm), waist-to-height ratio (WHtR), fat-free mass (FFM, kg), body fat (BF, kg), BF percentage (%), systolic blood pressure (SBP, mmHg), and diastolic blood pressure (DBP, mmHg).
- Metabolic and hormonal variables: Glucose (mg/dL), HDL-c (mg/dL), LDL-c (mg/dL), triglycerides (TG, mg/dL), total cholesterol (TC, mg/dL), insulin (μU/mL), adiponectin (μg/mL) and leptin (ng/mL) were considered.
2.3. Diagnosis of Metabolic Syndrome
2.4. Ethical Aspects
2.5. Statistical Analyses
3. Results
3.1. Sample Description
3.2. Components of the Metabolic Syndrome
3.3. MetS Diagnostic Accuracy and Discriminant Capacity of the Study Variables
3.4. Risk Diagnostic Models
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bussler, S.; Penke, M.; Flemming, G.; Elhassan, Y.S.; Kratzsch, J.; Sergeyev, E.; Lipek, T.; Vogel, M.; Spielau, U.; Körner, A.; et al. Novel Insights in the Metabolic Syndrome in Childhood and Adolescence. Horm. Res. Paediatr. 2017, 88, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Samson, S.L.; Garber, A.J. Metabolic syndrome. Endocrinol. Metab. Clin. North Am. 2014, 43, 1–23. [Google Scholar] [CrossRef]
- Magge, S.N.; Goodman, E.; Armstrong, S.C.; Nutrition, C.O.; Endocrinology, S.O.; Obesity, S.O. The Metabolic Syndrome in Children and Adolescents: Shifting the Focus to Cardiometabolic Risk Factor Clustering. Pediatrics 2017, 140, e20171603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Titmuss, A.T.; Srinivasan, S. Metabolic syndrome in children and adolescents: Old concepts in a young population. J. Paediatr. Child. Health 2016, 52, 928–934. [Google Scholar] [CrossRef]
- Al-Hamad, D.; Raman, V. Metabolic syndrome in children and adolescents. Transl. Pediatr. 2017, 6, 397–407. [Google Scholar] [CrossRef] [Green Version]
- Ahrens, W.; Moreno, L.A.; Mårild, S.; Molnár, D.; Siani, A.; De Henauw, S.; Böhmann, J.; Günther, K.; Hadjigeorgiou, C.; Iacoviello, L.; et al. Metabolic syndrome in young children: Definitions and results of the IDEFICS study. Int. J. Obes. 2014, 38 (Suppl. S2), S4–S14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engin, A. The Definition and Prevalence of Obesity and Metabolic Syndrome. Adv. Exp. Med. Biol. 2017, 960, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.G.; Kaelber, D.C. Phenotypic prevalence of obesity and metabolic syndrome among an underdiagnosed and underscreened population of over 50 million children and adults. Front. Genet. 2022, 13, 961116. [Google Scholar] [CrossRef] [PubMed]
- Christian Flemming, G.M.; Bussler, S.; Körner, A.; Kiess, W. Definition and early diagnosis of metabolic syndrome in children. J. Pediatr. Endocrinol. Metab. 2020, 33, 821–833. [Google Scholar] [CrossRef]
- Friend, A.; Craig, L.; Turner, S. The prevalence of metabolic syndrome in children: A systematic review of the literature. Metab. Syndr. Relat. Disord. 2013, 11, 71–80. [Google Scholar] [CrossRef]
- Mastroeni, S.S.B.S.; Mastroeni, M.F.; Ekwaru, J.P.; Setayeshgar, S.; Veugelers, P.J.; Gonçalves, M.C.; Rondó, P.H.C. Anthropometric measurements as a potential non-invasive alternative for the diagnosis of metabolic syndrome in adolescents. Arch. Endocrinol. Metab. 2019, 63, 30–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nappo, A.; González-Gil, E.M.; Ahrens, W.; Bammann, K.; Michels, N.; Moreno, L.A.; Kourides, Y.; Iacoviello, L.; Mårild, S.; Fraterman, A.; et al. Analysis of the association of leptin and adiponectin concentrations with metabolic syndrome in children: Results from the IDEFICS study. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 543–551. [Google Scholar] [CrossRef]
- Romero-Saldaña, M.; Fuentes-Jiménez, F.J.; Vaquero-Abellán, M.; Álvarez-Fernández, C.; Molina-Recio, G.; López-Miranda, J. New non-invasive method for early detection of metabolic syndrome in the working population. Eur. J. Cardiovasc. Nurs. 2016, 15, 549–558. [Google Scholar] [CrossRef]
- Arsang-Jang, S.; Kelishadi, R.; Esmail Motlagh, M.; Heshmat, R.; Mansourian, M. Temporal Trend of Non-Invasive Method Capacity for Early Detection of Metabolic Syndrome in Children and Adolescents: A Bayesian Multilevel Analysis of Pseudo-Panel Data. Ann. Nutr. Metab. 2019, 75, 55–65. [Google Scholar] [CrossRef]
- Friedman, J.M. Leptin and the regulation of body weigh. Keio. J. Med. 2011, 60, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riley, R.D.; Windt, D.v.d.; Croft, P.; Moons, K.G.M. Prognosis Research in Healthcare: Concepts, Methods, and Impact, 1st ed.; Oxford University Press: Oxford, UK, 2019; p. xv. 354p. [Google Scholar]
- Moons, K.G.; Royston, P.; Vergouwe, Y.; Grobbee, D.E.; Altman, D.G. Prognosis and prognostic research: What, why, and how? BMJ 2009, 338, b375. [Google Scholar] [CrossRef] [PubMed]
- Report, G.N. Country Nutrition Profile. Available online: https://globalnutritionreport.org/resources/nutrition-profiles/latin-america-and-caribbean/south-america/chile/ (accessed on 19 January 2023).
- JUNAEB. Informe Mapa Nutricional 2021. Available online: https://www.junaeb.cl/wp-content/uploads/2022/10/INFORME-MAPA-NUTRICIONAL-2021_FINAL.pdf (accessed on 19 January 2023).
- Burrows, A.R.; Leiva, B.L.; Weistaub, G.; Ceballos, S.X.; Gattas, Z.V.; Lera, M.L.; Albala, B.C. Prevalence of metabolic syndrome in a sample of Chilean children consulting in an obesity clinic. Rev. Med. Chil. 2007, 135, 174–181. [Google Scholar]
- Mardones, F.; Arnaiz, P.; Barja, S.; Giadach, C.; Villarroel, L.; Domínguez, A.; Castillo, O.; Farias, M. Nutritional status, metabolic syndrome and insulin resistance in children from Santiago (Chile). Nutr. Hosp. 2013, 28, 1999–2005. [Google Scholar] [CrossRef]
- Burrows, R.; Correa-Burrows, P.; Reyes, M.; Blanco, E.; Albala, C.; Gahagan, S. High cardiometabolic risk in healthy Chilean adolescents: Associations with anthropometric, biological and lifestyle factors. Public. Health Nutr. 2016, 19, 486–493. [Google Scholar] [CrossRef] [Green Version]
- Eyzaguirre, F.; Silva, R.; Román, R.; Palacio, A.; Cosentino, M.; Vega, V.; García, H. Prevalence of metabolic syndrome in children and adolescents who consult with obesity. Rev. Med. Chil. 2011, 139, 732–738. [Google Scholar] [CrossRef] [Green Version]
- Censo de Población y Vivienda 2017. Available online: http://resultados.censo2017.cl/ (accessed on 19 January 2023).
- de Onis, M.; Habicht, J.P. Anthropometric reference data for international use: Recommendations from a World Health Organization Expert Committee. Am. J. Clin. Nutr. 1996, 64, 650–658. [Google Scholar] [CrossRef] [Green Version]
- Kuczmarski, R.J.; Ogden, C.L.; Grummer-Strawn, L.M.; Flegal, K.M.; Guo, S.S.; Wei, R.; Mei, Z.; Curtin, L.R.; Roche, A.F.; Johnson, C.L. CDC growth charts: United States. Adv. Data 2000, 1–27. [Google Scholar]
- Arnaiz, P.; Acevedo, M.; Díaz, C. Razón cintura estatura como predictor de riesgo cardiometabólico en niños y adolescentes. Rev. Chil. Cardiol. 2010, 29, 281–288. [Google Scholar] [CrossRef] [Green Version]
- Fernández, J.R.; Redden, D.T.; Pietrobelli, A.; Allison, D.B. Waist circumference percentiles in nationally representative samples of African-American, European-American, and Mexican-American children and adolescents. J. Pediatr. 2004, 145, 439–444. [Google Scholar] [CrossRef] [PubMed]
- MINSAL. Orientaciones técnicas para el control de salud integral de adolescentes. Control Joven Sano 2014. [Google Scholar]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Cook, S.; Weitzman, M.; Auinger, P.; Nguyen, M.; Dietz, W.H. Prevalence of a metabolic syndrome phenotype in adolescents: Findings from the third National Health and Nutrition Examination Survey, 1988-1994. Arch. Pediatr. Adolesc. Med. 2003, 157, 821–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzmán-Guzmán, I.P.; Salgado-Bernabé, A.B.; Muñoz Valle, J.F.; Vences-Velázquez, A.; Parra-Rojas, I. Prevalence of metabolic syndrome in children with and without obesity. Med. Clin. 2015, 144, 198–203. [Google Scholar] [CrossRef]
- Ye, P.; Yan, Y.; Ding, W.; Dong, H.; Liu, Q.; Huang, G.; Mi, J. Prevalence of metabolic syndrome in Chinese children and adolescents: A Meta-analysis. Zhonghua Liu Xing Bing Xue Za Zhi 2015, 36, 884–888. [Google Scholar]
- Bustos, P.; Orias, J.; Sáez, K.; Maldonado, M.; Cuadra, L.; Asenjo, S. Effects of the Bright Bodies Program in Chilean obese children. Rev. Med. Chil. 2015, 143, 1136–1143. [Google Scholar] [CrossRef] [Green Version]
- Gepstein, V.; Weiss, R. Obesity as the Main Risk Factor for Metabolic Syndrome in Children. Front. Endocrinol. 2019, 10, 568. [Google Scholar] [CrossRef] [PubMed]
- Sapunar, J.; Aguilar-Farías, N.; Navarro, J.; Araneda, G.; Chandia-Poblete, D.; Manríquez, V.; Brito, R.; Cerda, A. High prevalence of overweight, obesity, insulin resistance and metabolic syndrome in rural children and adolescents. Rev. Med. Chil. 2018, 146, 978–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ten, S.; Maclaren, N. Insulin resistance syndrome in children. J. Clin. Endocrinol. Metab. 2004, 89, 2526–2539. [Google Scholar] [CrossRef]
- Arellano-Ruiz, P.; García-Hermoso, A.; Cavero-Redondo, I.; Pozuelo-Carrascosa, D.; Martínez-Vizcaíno, V.; Solera-Martinez, M. Homeostasis Model Assessment cut-off points related to metabolic syndrome in children and adolescents: A systematic review and meta-analysis. Eur. J. Pediatr. 2019, 178, 1813–1822. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Hong, H.; Park, S.; Kim, S.; Kang, H. Insulin Resistance and Its Association with Metabolic Syndrome in Korean Children. Biomed. Res. Int. 2017, 2017, 8728017. [Google Scholar] [CrossRef] [Green Version]
- Radetti, G.; Fanolla, A.; Grugni, G.; Lupi, F.; Sartorio, A. Indexes of adiposity and body composition in the prediction of metabolic syndrome in obese children and adolescents: Which is the best? Nutr. Metab. Cardiovasc. Dis. 2019, 29, 1189–1196. [Google Scholar] [CrossRef]
- Jung, C.; Fischer, N.; Fritzenwanger, M.; Figulla, H.R. Anthropometric indices as predictors of the metabolic syndrome and its components in adolescents. Pediatr. Int. 2010, 52, 402–409. [Google Scholar] [CrossRef]
- Lee, K. Comparison of Body Mass Index Percentiles to Detect Metabolic Syndrome Using the Korean, United States Centers for Disease Control and Prevention, and World Health Organization References in Korean Children Aged 10-16 Years. Metab. Syndr. Relat. Disord. 2019, 17, 210–216. [Google Scholar] [CrossRef]
- Oliveira, R.G.; Guedes, D.P. Performance of anthropometric indicators as predictors of metabolic syndrome in Brazilian adolescents. BMC Pediatr. 2018, 18, 33. [Google Scholar] [CrossRef] [Green Version]
- Andaki, A.C.R.; Mendes, E.L.; Santos, A.; Brito, C.J.; Tinôco, A.L.A.; Mota, J. Waist circumference percentile curves as a screening tool to predict cardiovascular risk factors and metabolic syndrome risk in Brazilian children. Cad. Saude. Publica. 2018, 34, e00105317. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, H.D. Body fat measurements in children as predictors for the metabolic syndrome: Focus on waist circumference. Proc. Nutr. Soc. 2006, 65, 385–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochoa Sangrador, C.; Ochoa-Brezmes, J. Waist-to-height ratio as a risk marker for metabolic syndrome in childhood. A meta-analysis. Pediatr. Obes. 2018, 13, 421–432. [Google Scholar] [CrossRef]
- Mi, J.; Munkonda, M.N.; Li, M.; Zhang, M.X.; Zhao, X.Y.; Fouejeu, P.C.; Cianflone, K. Adiponectin and leptin metabolic biomarkers in chinese children and adolescents. J. Obes. 2010, 2010, 892081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srikanthan, K.; Feyh, A.; Visweshwar, H.; Shapiro, J.I.; Sodhi, K. Systematic Review of Metabolic Syndrome Biomarkers: A Panel for Early Detection, Management, and Risk Stratification in the West Virginian Population. Int. J. Med. Sci. 2016, 13, 25–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stroescu, R.F.; Mărginean, O.; Bizerea, T.; Gafencu, M.; Voicu, A.; Doroș, G. Adiponectin, leptin and high sensitivity C-reactive protein values in obese children—Important markers for metabolic syndrome? J. Pediatr. Endocrinol. Metab. 2019, 32, 27–31. [Google Scholar] [CrossRef]
- Pyrzak, B.; Ruminska, M.; Popko, K.; Demkow, U. Adiponectin as a biomarker of the metabolic syndrome in children and adolescents. Eur. J. Med. Res. 2010, 15 (Suppl. S2), 147–151. [Google Scholar] [CrossRef] [Green Version]
- Klünder-Klünder, M.; Flores-Huerta, S.; García-Macedo, R.; Peralta-Romero, J.; Cruz, M. Adiponectin in eutrophic and obese children as a biomarker to predict metabolic syndrome and each of its components. BMC Public. Health 2013, 13, 88. [Google Scholar] [CrossRef] [Green Version]
- Magaña Gomez, J.A.; Moreno-Mascareño, D.; Angulo Rojo, C.E.; de la Peña, G.D. Association of Total and High Molecular Weight Adiponectin with Components of Metabolic Syndrome in Mexican Children. J. Clin. Res. Pediatr. Endocrinol. 2020, 12, 180–188. [Google Scholar] [CrossRef]
- Liu, Z.; Liang, S.; Que, S.; Zhou, L.; Zheng, S.; Mardinoglu, A. Meta-Analysis of Adiponectin as a Biomarker for the Detection of Metabolic Syndrome. Front. Physiol. 2018, 9, 1238. [Google Scholar] [CrossRef] [Green Version]
- Madeira, I.; Bordallo, M.A.; Rodrigues, N.C.; Carvalho, C.; Gazolla, F.; Collett-Solberg, P.; Medeiros, C.; Bordallo, A.P.; Borges, M.; Monteiro, C.; et al. Leptin as a predictor of metabolic syndrome in prepubertal children. Arch. Endocrinol. Metab. 2017, 61, 7–13. [Google Scholar] [CrossRef] [Green Version]
- Barbalho, S.M.; Oshiiwa, M.; Sato Fontana, L.C.; Ribeiro Finalli, E.F.; Paiva Filho, M.E.; Machado Spada, A.P. Metabolic syndrome and atherogenic indices in school children: A worrying panorama in Brazil. Diabetes Metab. Syndr. 2017, 11 (Suppl. S1), S397–S401. [Google Scholar] [CrossRef]
- Hromnats’ka, N.M. Types of dislipidemia in children with metabolic syndrome. Wiad. Lek. 2014, 67, 306–310. [Google Scholar]
- Börnhorst, C.; Russo, P.; Veidebaum, T.; Tornaritis, M.; Molnár, D.; Lissner, L.; Marild, S.; De Henauw, S.; Moreno, L.A.; Intemann, T.; et al. Metabolic status in children and its transitions during childhood and adolescence-the IDEFICS/I.Family study. Int. J. Epidemiol. 2019, 48, 1673–1683. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Fu, J.; Jiang, Y.; Dong, G.; Wang, X.; Wu, W. TriGlycerides and high-density lipoprotein cholesterol ratio compared with homeostasis model assessment insulin resistance indexes in screening for metabolic syndrome in the chinese obese children: A cross section study. BMC Pediatr. 2015, 15, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsa, M.E.; Ioannidis, A.; Sachlas, A.; Dimopoulos, I.; Chatzipanagiotou, S.; Rojas Gil, A.P. The roles of triglyceride/high-density lipoprotein cholesterol ratio and uric acid as predisposing factors for metabolic syndrome in healthy children. Ann. Pediatr. Endocrinol. Metab. 2019, 24, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Gasevic, D.; Frohlich, J.; Mancini, G.J.; Lear, S.A. Clinical usefulness of lipid ratios to identify men and women with metabolic syndrome: A cross-sectional study. Lipids Health Dis. 2014, 13, 159. [Google Scholar] [CrossRef] [Green Version]
- Sonmez, A.; Yilmaz, M.I.; Saglam, M.; Unal, H.U.; Gok, M.; Cetinkaya, H.; Karaman, M.; Haymana, C.; Eyileten, T.; Oguz, Y.; et al. The role of plasma triglyceride/high-density lipoprotein cholesterol ratio to predict cardiovascular outcomes in chronic kidney disease. Lipids Health Dis. 2015, 14, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vekic, J.; Zeljkovic, A.; Cicero, A.F.G.; Janez, A.; Stoian, A.P.; Sonmez, A.; Rizzo, M. Atherosclerosis Development and Progression: The Role of Atherogenic Small, Dense LDL. Medicina 2022, 58, 299. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.N.; Hou, C.Y.; Hsu, W.H.; Tain, Y.L. Early-Life Origins of Metabolic Syndrome: Mechanisms and Preventive Aspects. Int. J. Mol. Sci. 2021, 22, 11872. [Google Scholar] [CrossRef]
- Wicklow, B.A.; Becker, A.; Chateau, D.; Palmer, K.; Kozyrskij, A.; Sellers, E.A. Comparison of anthropometric measurements in children to predict metabolic syndrome in adolescence: Analysis of prospective cohort data. Int. J. Obes. 2015, 39, 1070–1078. [Google Scholar] [CrossRef]
- de Quadros, T.M.B.; Gordia, A.P.; Andaki, A.C.R.; Mendes, E.L.; Mota, J.; Silva, L.R. Utility of anthropometric indicators to screen for clustered cardiometabolic risk factors in children and adolescents. J. Pediatr. Endocrinol. Metab. 2019, 32, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Higgins, V.; Adeli, K. Pediatric Metabolic Syndrome: Pathophysiology and Laboratory Assessment. EJIFCC 2017, 28, 25–42. [Google Scholar] [PubMed]
- Freeman, A.; Pennings, N. Insuline Resistance; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Contreras, D.; González-Rocha, A.; Clark, P.; Barquera, S.; Denova-Gutiérrez, E. Diagnostic accuracy of blood biomarkers and non-invasive scores for the diagnosis of NAFLD and NASH: Systematic review and meta-analysis. Ann. Hepatol. 2023, 28, 100873. [Google Scholar] [CrossRef] [PubMed]
Variable | Total n = 220 Mean (SD or %) | With MetS n= 59 Mean (SD or %) | Without MetS n = 161 Mean (SD or %) | p |
---|---|---|---|---|
BOYS | 110 (50%) | 21 (19.1%) | 89 (80.9%) | <0.05 |
GIRLS | 110 (50%) | 38 (34.5%) | 72 (65.5%) | |
AGE (years) | 9.1 (1.3) | 9.3 (1.2) | 9 (1.3) | 0.13 |
WC (cm) | 74.5 (11.6) | 83.6 (8.1) | 71.2 (10.9) | <0.001 |
WHtR (≥0.55) | 128 (57.9) | 55 (93.2) | 73 (45.1) | <0.001 |
BMI (kg/m2) | 22.2 (4.2) | 25.6 (3.1) | 21 (3.8) | <0.001 |
Overweight + obesity | 148 (67) | 57 (96.6) | 91 (56.2) | <0.001 |
BF (kg) | 13.3 (6.7) | 18.3 (5.7) | 11.5 (6.2) | <0.001 |
%BF | 30.1 (9.5) | 36.6 (6) | 27.6 (9.4) | <0.001 |
FFM (kg) | 28.4 (5.1) | 31.1 (5.1) | 27.4 (4.7) | <0.001 |
SBP (mmHg) | 101.6 (12) | 108.7 (12) | 98.9 (10.9) | <0.001 |
DBP (mmHg) | 66.1 (10.6) | 71.1 (10.7) | 64.2 (10) | <0.001 |
GLYCEMIA (mg/dL) | 88.3 (8.6) | 88.6 (10) | 88.2 (7.9) | 0.77 |
TC (mg/dL) | 181.8 (33.1) | 188.2 (36.4) | 179.5 (31.6) | 0.09 |
HDL-c (mg/dL) | 50.5 (11.7) | 40.4 (10.2) | 54.2 (89.8) | <0.001 |
LDL-c (mg/dL) | 108.3 (28.9) | 113.3 (32.9) | 106.4 (27.1) | 0.12 |
TG (mg/dL) | 102.3 (84.2) | 173.9 (119.8) | 88 (63.1) | <0.001 |
TG/HDL-c | 2.8 (2.5) | 5.2 (3.6) | 1.9 (1.1) | <0.001 |
Baseline insulin (μU/mL) | 8.6 86.8) | 12.4 (6.9) | 7.2 (6.3) | <0.001 |
HOMA-IR | 1.9 (1.4) | 2.7 (1.4) | 1.6 (1.2) | <0.001 |
Adiponectinemia (μg/mL) | 15 (5.6) | 12.3 (3.7) | 16 (5.9) | <0.001 |
Leptinemia (ng/mL) | 17.2 (10.7) | 23.9 (9.1) | 14.0 (9.7) | <0.001 |
Variable | 0 Components n= 51 Mean (SD or %) | 1 Component n= 53 Mean (SD or %) | 2 Components n= 57 Mean (SD or %) | ≥3 Components n= 59 Mean (SD or %) | r | p |
---|---|---|---|---|---|---|
WC (cm) | 62.3 (6.2) | 71.3 (9.8) | 79.2 (8.7) | 83.6 (8.1) | 0.70 | <0.001 |
WHtR (≥ 0.55) | 0.48 (0.03) | 0.53 (0.07) | 0.58 (0.05) | 0.6 (0.05) | 0.68 | <0.001 |
BMI (kg/m2) | 17.8 (2.0) | 20.9 (3.0) | 23.9 (3.4) | 25.6 (3.1) | 0.71 | <0.001 |
BF (kg) | 6.5 (2.9) | 11.3 (5.3) | 15.8 (5.7) | 18.3 (5.7) | 0.66 | <0.001 |
%BF | 20.1 (5.6) | 27.9 (9.4) | 33.7 (7.1) | 36.6 (6.0) | 0.66 | <0.001 |
FFM (kg) | 24.5 (84.5) | 27.4 (3.8) | 29.7 (84.3) | 31.1 (5.1) | 0.49 | <0.001 |
SBP (mmHg) | 93.8 (9.8) | 98.6 (10.0) | 103.8 (10.5) | 108.7 (12.0) | 0.47 | <0.001 |
DBP (mmHg) | 60.1 (8.3) | 65.4 (9.6) | 66.9 (10.8) | 71.1 (10.7) | 0.37 | <0.001 |
HDL-c (mg/dL) | 58.8 (9.6) | 53.6 (8.0) | 50.7 (10.1) | 40.4 (10.2) | 0.58 | <0.001 |
TG (mg/dL) | 66.3 (29.6) | 82.8 (48.4) | 132.7 (67.0) | 173.9 (119.8) | 0.61 | <0.001 |
TG/HDL | 1.2 (0.4) | 1.7 (0.81) | 2.8 (1.2) | 5.1 (3.6) | 0.61 | <0.001 |
Baseline insulinemia (μU/mL) | 5.1 (2.8) | 6.7 (4.6) | 9.5 (8.8) | 12.5 (6.9) | 0.41 | <0.001 |
HOMA-IR | 1.1 (0.65) | 1.5 (1.1) | 2.0 (1.5) | 2.7 (1.4) | 0.44 | <0.001 |
Adiponectinemia (μg/mL) | 17.3 (5.6) | 17.0 (6.4) | 13.8 (4.9) | 12.3 (3.7) | 0.38 | <0.001 |
Leptinaemia (ng/mL) | 8.0 (4.2) | 12.6 (8.8) | 20.2 (10.6) | 23.9 (9.1) | 0.59 | <0.001 |
Variable | AUC 95% CI | p | Cut-off Values | Youden Index |
---|---|---|---|---|
WC (cm) | 0.80 (0.72–0.88) | <0.001 | 77.50 | 0.51 |
WHtR (≥0.55) | 0.78 (0.70–0.87) | <0.001 | 0.53 | 0.53 |
BMI (kg/m2) | 0.79 (0.71–0.88) | <0.001 | 23.50 | 0.55 |
%BF | 0.78 (0.69–0.87) | <0.001 | 30.40 | 0.50 |
BF (kg) | 0.79 (0.71–0.88) | <0.001 | 10.25 | 0.46 |
FFM (kg) | 0.71 (0.61–0.82) | <0.001 | 29.75 | 0.37 |
SBP (mmHg) | 0.73 (0.62–0.74) | <0.001 | 109.50 | 0.40 |
DBP (mmHg) | 0.70 (0.59–0.81) | <0.001 | 64.50 | 0.33 |
HDL-c (mg/dL) | 0.85 (0.77–0.95) | <0.001 | 41.30 | 0.68 |
TG (mg/dL) | 0.81 (0.73–0.90) | <0.001 | 110.20 | 0.53 |
TG/HDL | 0.87 (0.80–0.95) | <0.001 | 2.33 | 0.59 |
Baseline insulinemia (μU/mL) | 0.77 (0.68–0.87) | <0.001 | 7.63 | 0.46 |
HOMA-IR | 0.77 (0.68–0.88) | <0.001 | 1.56 | 0.42 |
Adiponectinemia (μg/mL) | 0.71 (0.61–0.81) | <0.001 | 16.95 | 0.39 |
Leptinaemia (ng/mL) | 0.78 (0.69–0.87) | <0.001 | 14.00 | 0.49 |
Anthropometric Model (Non-Invasive) | |||
---|---|---|---|
Variable | OR (Adjusted) 95% CI | p | The Goodness of Fit and Diagnostic Accuracy of the Model |
Boys | 1 (reference) | <0.01 | Hosmer–Lemeshow (p > 0.05) R2 (Nagelkerke) = 0.48 S = 69.5% E = 88.8% Validity index = 83.6% YI = 0.583 |
Girls | 3.7 (1.6–8.4) | ||
BMI < 23.50 (kg/m2) | 1 (reference) | <0.01 | |
BMI ≥ 23.50 (kg/m2) | 5.9 (2.1–16.6) | ||
WHtR < 0.53 | 1 (reference) | <0.05 | |
WHtR ≥ 0.53 | 5.6 (1.3–23) | ||
SBP < 109.50 (mmHg) | 1 (reference) | <0.05 | |
SBP ≥ 109.50 (mmHg) | 2.2 (1.01–4.9) | ||
DBP < 64.50 (mm/Hg) | 1 (reference) | <0.05 | |
DBP ≥ 64.50 (mm/Hg) | 3.1 (1.2–7.7) | ||
Lipid Model A | |||
HDL-c ≥ 41.30 (mg/dL) | 1 (reference) | <0.001 | Hosmer–Lemeshow (p > 0.05) R2 (Nagelkerke) = 0.55 S = 62.7% E = 96.9% Validity index = 87.7% YI = 0.596 |
HDL-c < 41.30 (mg/dL) | 19.3 (8–46.7) | ||
TG < 110.20 (mg/dL) | 1 (reference) | <0.001 | |
TG ≥ 110.20 (mg/dL) | 8.0 (3.1–20.1) | ||
Lipid Model B | |||
TG/HDL-c < 2.33 | 1 (reference) | <0.001 | Hosmer–Lemeshow (p < 0.05) R2 (Nagelkerke) = 0.35 S = 83.3% E = 74.5% Validity index = 76.7% YI = 0.578 |
TG/HDL-c ≥ 2.33 | 14.6 (6.6–32.5) | ||
Hormonal Model | |||
Insulinemia < 7.63 (μU/mL) | 1 (reference) | <0.01 | Hosmer–Lemeshow (p > 0.05) R2 (Nagelkerke) = 0.49 S = 68.6% E = 85.1% Validity index = 79.8% YI = 0.537 |
Insulinemia ≥ 7.63 (μU/mL) | 5.0 (1.7–15.1) | ||
Leptinaemia < 14.00 (ng/mL) | 1 (reference) | <0.05 | |
Leptinaemia ≥ 14.00 (ng/mL) | 6.0 (1.5–23.9) | ||
Adiponectinemia ≥ 16.95 (μg/mL) | 1 (reference) | <0.05 | |
Adiponectinemia < 16.95 (μg/mL) | 9.1 (1.8–46.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solorzano, M.; Granfeldt, G.; Ulloa, N.; Molina-Recio, G.; Molina-Luque, R.; Aguayo, C.; Petermann-Rocha, F.; Martorell, M. Comparison of Diagnostic Models to Estimate the Risk of Metabolic Syndrome in a Chilean Pediatric Population: A Cross-Sectional Study. Metabolites 2023, 13, 293. https://doi.org/10.3390/metabo13020293
Solorzano M, Granfeldt G, Ulloa N, Molina-Recio G, Molina-Luque R, Aguayo C, Petermann-Rocha F, Martorell M. Comparison of Diagnostic Models to Estimate the Risk of Metabolic Syndrome in a Chilean Pediatric Population: A Cross-Sectional Study. Metabolites. 2023; 13(2):293. https://doi.org/10.3390/metabo13020293
Chicago/Turabian StyleSolorzano, Marlín, Gislaine Granfeldt, Natalia Ulloa, Guillermo Molina-Recio, Rafael Molina-Luque, Claudio Aguayo, Fanny Petermann-Rocha, and Miquel Martorell. 2023. "Comparison of Diagnostic Models to Estimate the Risk of Metabolic Syndrome in a Chilean Pediatric Population: A Cross-Sectional Study" Metabolites 13, no. 2: 293. https://doi.org/10.3390/metabo13020293
APA StyleSolorzano, M., Granfeldt, G., Ulloa, N., Molina-Recio, G., Molina-Luque, R., Aguayo, C., Petermann-Rocha, F., & Martorell, M. (2023). Comparison of Diagnostic Models to Estimate the Risk of Metabolic Syndrome in a Chilean Pediatric Population: A Cross-Sectional Study. Metabolites, 13(2), 293. https://doi.org/10.3390/metabo13020293