Decomposition Characteristics of Lignocellulosic Biomass in Subtropical Rhododendron Litters under Artificial Regulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Experimental Design
2.3. Analytical Methods and Calculations
2.4. Statistical Analysis
3. Results
3.1. Initial Characteristics of Lignin, Cellulose, and Hemicellulose in Litter of Three Forest Stands
3.2. Characteristics of the Final Decomposition Rate of the Three Stands of Litter
3.3. Dynamic Changes in Lignin, Cellulose, and Hemicellulose in the Decomposition Process of Litters
3.4. Final Release Characteristics of Lignin, Cellulose, and Hemicellulose from Litters
4. Discussion
4.1. Characteristics of Decomposition Rates of Forest Litter
4.2. Variation Characteristics of Lignin, Cellulose, and Hemicellulose Contents in Litter
4.3. Final Release Characteristics of Litter Lignin, Cellulose, and Hemicellulose
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, J.; Guo, R.; Li, D.; Zhang, J.; Han, S. Nitrogen addition, drought and mixture effects on litter decomposition and nitrogen immobilization in a temperate forest. Plant Soil 2017, 416, 165–179. [Google Scholar] [CrossRef]
- Müller, D.B.; Vogel, C.; Bai, Y.; Vorholt, J.A. The plant microbiota: Systems-level insights and perspectives. Ann. Rev. Genet. 2016, 50, 211–234. [Google Scholar] [CrossRef] [Green Version]
- Jia, T.; Wang, Y.; Chai, B. Bacterial community characteristics and enzyme activities in Bothriochloa ischaemum litter over progressive phytoremediation years in a copper tailings dam. Front. Microbiol. 2020, 11, 565806. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wu, F.; Yang, W.; Xu, L.; Ni, X.; He, J. Effects of forest gaps on litter lignin and cellulose dynamics vary seasonally in an alpine forest. Forests 2016, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Růžek, M.; Tahovská, K.; Guggenberger, G.; Oulehle, F. Litter decomposition in European coniferous and broadleaf forests under experimentally elevated acidity and nitrogen addition. Plant Soil 2021, 463, 471–485. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Zhou, W.; Hu, W.; Hu, J.; Hu, M. Changes in litter traits induced by vegetation restoration accelerate litter decomposition in Robinia pseudoacacia plantations. Land Degrad. Dev. 2022, 33, 179–192. [Google Scholar] [CrossRef]
- He, W.; Wu, F.; Zhang, D.; Yang, W.; Tan, B.; Zhao, Y. The effects of forest gaps on cellulose degradation in the foliar litter of two shrub species in an alpine fir forest. Plant Soil 2015, 393, 109–122. [Google Scholar] [CrossRef]
- He, W.; Ma, Z.; Pei, J.; Teng, M.; Zeng, L.; Yan, Z. Effects of predominant tree species mixing on lignin and cellulose degradation during leaf litter decomposition in the three gorges reservoir, China. Forests 2019, 10, 360. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wang, B.; Liu, Z. Coniferous litter extracts inhibit the litter decomposition of Catalpa fargesii Bur. and Eucommia ulmoides Oliver. Acta. Oecol. 2018, 93, 7–13. [Google Scholar] [CrossRef]
- Du, J.; Zhang, Y.; Cui, M.; Yang, J.; Lin, Z.; Zhang, H. Evidence for negative effects of ZnO nanoparticals on leaf litter decomposition in freshwater ecosystems. Environ. Sci. Nano. 2017, 4, 2377–2387. [Google Scholar] [CrossRef]
- Liu, Z.; Lv, Y.; Ding, R.; Chen, X.; Pu, G. Light pollution changes the toxicological effects of cadmium on microbial community structure and function associated with leaf litter decomposition. Int. J. Mol. Sci. 2020, 21, 422. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Song, Y.; Song, C. Effects of temperature increase and nitrogen addition on the early litter decomposition in permafrost peatlands. Catena 2022, 209, 105801. [Google Scholar] [CrossRef]
- Quan, W.; Wang, A.; Li, C.; Xie, L. Allelopathic potential and allelochemical composition in different soil layers of Rhododendron delavayi forest, southwest China. Front. Ecol. Evol. 2022, 10, 963116. [Google Scholar] [CrossRef]
- Qian, C.; Quan, W.; Li, C.; Xiang, Z. Analysis of volatile terpenoid compounds in Rhododendron species by multidimensional gas chromatography with quadrupole time-of-flight mass spectrometry. Microchem. J. 2019, 149, 104064. [Google Scholar] [CrossRef]
- Pan, Y.; Quan, W.; Li, C.; Hao, J.; Gao, Y. Analysis of allelochemicals in the leaves of four alpine rhododendrons by gas chromatography-mass spectrometry. BioResources 2021, 16, 3096–3102. [Google Scholar] [CrossRef]
- Delserone, L.M. World Reference Base (WRB) for soil resources. Ref. Rev. 2010, 24, 50–51. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q.; Ma, J.; Zhang, H.; Meng, T.; Zuo, F.; Li, Y. Characteristics and flux estimation of atmospheric wet deposition of inorganic nitrogen in several locations of Qixingguan District of Bijie. Guizhou Sci. 2020, 38, 68–74. (in Chinese). [Google Scholar]
- Fan, F.; Zhou, Z.; Qin, H.; Tan, J.; Ding, G. Exogenous brassinosteroid facilitates xylem development in Pinus massoniana seedlings. Int. J. Mol. Sci. 2021, 22, 7615. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Cheng, C.; Zhang, C.; Xue, J.; Zhang, Y.; Wang, C.; Dang, R.; Yang, S. Pb4CL2 inducing lignin accumulation in superficial scald ‘Chili’ (Pyrus bretschneideri) pear fruit. Agronomy 2022, 12, 2650. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583. [Google Scholar] [CrossRef]
- Olson, J.S. Energy storage and the balance of producers and decomposers in ecological systems. Ecology 1963, 44, 322–331. [Google Scholar] [CrossRef]
- Su, Y.; Le, J.; Han, W.; Wang, C.; Li, K.; Liu, X. Long-term nitrogen addition consistently decreased litter decomposition rates in an alpine grassland. Plant Soil 2022, 479, 495–509. [Google Scholar] [CrossRef]
- Tao, J.; Chen, Q.; Chen, S.; Lu, P.; Chen, Y.; Jin, J. Metagenomic insight into the microbial degradation of organic compounds in fermented plant leaves. Environ. Res. 2022, 214, 113902. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Zhu, C.; Zhang, J.; Li, Z.; Liu, Y.; Song, X.; Gao, Z. Nitrogen fertilization in bamboo forest accelerates the shoot growth and alters the lignification process in shoots. Ind. Crops. Prod. 2022, 187, 115368. [Google Scholar] [CrossRef]
- Jia, L.; Fang, L.; Hu, Y. Decomposition of leaf litter in pure and mixed stands of poplar and black locust. Chin. J. Appl. Ecol. 1998, 9, 463–467. (in Chinese). [Google Scholar]
- Chen, Y.; Liu, Y.; Zhang, J.; Yang, W.; Deng, C.; He, R. Cumulative cellulolytic enzyme activities and initial litter quality in prediction of cellulose degradation in an alpine meadow of the eastern Tibetan Plateau. J. Plant Ecol. 2020, 13, 51–58. [Google Scholar] [CrossRef]
- Cleveland, C.; Reed, S.C.; Keller, A.B.; Nemergut, D.R.; O’Neill, S.P.; Ostertag, R.; Vitousek, P.M. Litter quality versus soil microbial community controls over decomposition: A quantitative analysis. Oecologia 2014, 174, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Veen, G.F.C.; Keiser, A.D.; van der Putten, W.H.; Wardle, D.A.; Hart, M. Variation in home-field advantage and ability in leaf litter decomposition across successional gradients. Funct. Ecol. 2018, 32, 1563–1574. [Google Scholar] [CrossRef] [Green Version]
- Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: Fourteen years on. Soil Biol. Biochem. 2017, 105, A3–A8. [Google Scholar] [CrossRef]
- Berg, B.; McClaugherty, C. Decomposition as a Process: Some Main Features. In Plant Litter; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Yue, K.; Peng, C.; Yang, W.; Peng, Y.; Zhang, C.; Huang, C.; Wu, F. Degradation of lignin and cellulose during foliar litter decomposition in an alpine forest river. Ecosphere 2016, 7, e01523. [Google Scholar] [CrossRef]
- Manninen, S.; Kivimaki, S.; Leith, I.D.; Leeson, S.R.; Sheppard, L.J. Nitrogen deposition does not enhance Sphagnum decomposition. Sci. Total Environ. 2016, 571, 314–322. [Google Scholar] [CrossRef]
- Mo, J.; Brown, S.; Xue, J. Response of litter decomposition to simulated N deposition in disturbed, rehabilitated and mature forests in subtropical China. Plant Soil 2006, 282, 135–151. [Google Scholar] [CrossRef]
- Wang, S.; Wang, N.; Xu, J.; Zhang, X.; Dou, S. Contribution of microbial residues obtained from lignin and cellulose on humus formation. Sustainability 2019, 11, 4777. [Google Scholar] [CrossRef] [Green Version]
- Lovett, G.M.; Arthur, M.A.; Crowley, K.F. Effects of calcium on the rate and extent of litter decomposition in a northern hardwoodforest. Ecosystems 2016, 19, 87–97. [Google Scholar] [CrossRef]
- Tláskal, V.; Voříšková, J.; Baldrian, P. Bacterial succession on decomposing leaf litter exhibits a specific occurrence pattern of cellulolytic taxa and potential decomposers of fungal mycelia. FEMS Microbiol. Ecol. 2016, 92, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çakır, M.; Makineci, E. Litter decomposition in pure and mixed Quercus and Fagus stands as influenced by arthropods in Belgrad Forest, Turkey. J. For. Res. 2020, 31, 1123–1137. [Google Scholar] [CrossRef]
- Gnankambary, Z.; Bayala, J.; Malmer, A. Decomposition and nutrient release from mixed plant litters of contrasting quality in an agroforestry parkland in the south-Sudanese zone of West Africa. Nutr. Cycl. Agroecosyst. 2008, 82, 1–13. [Google Scholar] [CrossRef]
- Jiang, X.; Cao, L.; Zhang, R.; Yana, L.; Mao, Y.; Yang, Y. Effects of nitrogen addition and litter properties on litter decomposition and enzyme activities of individual fungi. Appl. Soil Ecol. 2014, 80, 108–115. [Google Scholar] [CrossRef]
- Yu, Z.; Huang, Z.; Wang, M.; Liu, R.; Zheng, L.; Wan, X. Nitrogen addition enhances home-field advantage during litter decomposition in subtropical forest plantations. Soil Bio. Biochem. 2015, 90, 188–196. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, H.; Zhang, W.; Huang, J.; Fu, S.; Liu, Z.; Mo, J. Effects of nitrogen addition on litter decomposition and nutrient release in two tropical plantations with N2-fixing vs. non-N2-fixing tree species. Plant Soil 2016, 399, 61–74. [Google Scholar] [CrossRef]
Forest Stands | Lignin Content/% | Cellulose Content/% | Hemicellulose Content/% |
---|---|---|---|
Rhododendron delavayi | 11.41 ± 0.28 b | 11.21 ± 0.07 b | 3.61 ± 0.15 b |
Rhododendron agastum | 13.01 ± 0.09 a | 14.24 ± 0.09 a | 4.15 ± 0.49 a |
Mixed forests | 11.38 ± 0.25 b | 5.87 ± 0.06 c | 3.91 ± 0.18 ab |
Variable | Stands | Treatments | Stands × Treatments |
---|---|---|---|
Lignin final content | <0.001 | <0.001 | <0.001 |
Cellulose final content | <0.001 | <0.001 | <0.001 |
Hemicellulose final content | <0.001 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Lin, J.; Hao, J.; Li, C.; Quan, W. Decomposition Characteristics of Lignocellulosic Biomass in Subtropical Rhododendron Litters under Artificial Regulation. Metabolites 2023, 13, 279. https://doi.org/10.3390/metabo13020279
Zhang P, Lin J, Hao J, Li C, Quan W. Decomposition Characteristics of Lignocellulosic Biomass in Subtropical Rhododendron Litters under Artificial Regulation. Metabolites. 2023; 13(2):279. https://doi.org/10.3390/metabo13020279
Chicago/Turabian StyleZhang, Puhang, Jian Lin, Jiangtao Hao, Chaochan Li, and Wenxuan Quan. 2023. "Decomposition Characteristics of Lignocellulosic Biomass in Subtropical Rhododendron Litters under Artificial Regulation" Metabolites 13, no. 2: 279. https://doi.org/10.3390/metabo13020279
APA StyleZhang, P., Lin, J., Hao, J., Li, C., & Quan, W. (2023). Decomposition Characteristics of Lignocellulosic Biomass in Subtropical Rhododendron Litters under Artificial Regulation. Metabolites, 13(2), 279. https://doi.org/10.3390/metabo13020279