Lipidomic Analysis of Cervicovaginal Fluid for Elucidating Prognostic Biomarkers and Relevant Phospholipid and Sphingolipid Pathways in Preterm Birth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Study Subjects
2.3. CVF Samples Extraction
2.4. LC-MS Condition
2.5. Lipidomics Data Processing
2.6. Statistical Analysis
3. Results
3.1. Lipid Identification
3.2. Clinical Characteristics of Participants
3.3. Untargeted Lipid Profiling of CVF between PTB and TB
3.4. Application of Univariate and Multivariate Statis Analysis
3.5. Evaluation of the Diagnostic Ability of Lipid Biomarkers
3.6. Comparison New Lipid Biomarkers between PTB and TB
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goldenberg, R.L.; Culhane, J.F.; Iams, J.D.; Romero, R. Epidemiology and causes of preterm birth. Lancet 2008, 371, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Crump, C. Preterm birth and mortality in adulthood: A systematic review. J. Perinatol. 2020, 40, 833–843. [Google Scholar] [CrossRef] [PubMed]
- Walani, S.R. Global burden of preterm birth. Int. J. Gynecol. Obstet. 2020, 150, 31–33. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, Z.A.O.; Ozgu-Erdinc, A.S. Prediction of preterm birth: Maternal characteristics, ultrasound markers, and biomarkers: An updated overview. J. Pregnancy 2018, 2018, 8367571. [Google Scholar]
- Graça, G.; Diaz, S.O.; Pinto, J.; Barros, A.S.; Duarte, I.F.; Goodfellow, B.J.; Galhano, E.; Pita, C.; Almeida, M.d.C.; Carreira, I.M.; et al. Can Biofluids Metabolic Profiling Help to Improve Healthcare during Pregnancy? Spectrosc. Int. J. 2012, 27, 128367. [Google Scholar] [CrossRef] [Green Version]
- Casas, M.; Valvi, D.; Luque, N.; Ballesteros-Gomez, A.; Carsin, A.E.; Fernandez, M.F.; Koch, H.M.; Mendez, M.A.; Sunyer, J.; Rubio, S.; et al. Dietary and sociodemographic determinants of bisphenol A urine concentrations in pregnant women and children. Env. Int 2013, 56, 10–18. [Google Scholar] [CrossRef]
- Needham, L.L.; Sexton, K. Introduction and overview: Assessing children’s exposure to hazardous environmental chemicals: An overview of selected research challenges and complexities. J. Expo. Sci. Environ. Epidemiol. 2000, 10, 611–629. [Google Scholar] [CrossRef]
- Bandyopadhyay, S.; Dasgupta, D.; Sarkar, N.; Chakraborty, M. A Review on Current scenario of Lipid Metabolic Disorders. Int. J. Pharm. Biol. Sci. 2021, 11, 170–182. [Google Scholar]
- Behrman, R.E.; Butler, A.S. Preterm Birth: Causes, Consequences, and Prevention; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Bewick, V.; Cheek, L.; Ball, J. Statistics review 13: Receiver operating characteristic curves. Crit. Care 2004, 8, 508–512. [Google Scholar] [CrossRef] [Green Version]
- Gerson, K.D.; Yang, N.; Anton, L.; Levy, M.; Ravel, J.; Elovitz, M.A.; Burris, H.H. Second trimester short cervix is associated with decreased abundance of cervicovaginal lipid metabolites. Am. J. Obs. Gynecol 2022, 227, 273.e1–273.e18. [Google Scholar] [CrossRef]
- Ghartey, J.; Bastek, J.A.; Brown, A.G.; Anglim, L.; Elovitz, M.A. Women with preterm birth have a distinct cervicovaginal metabolome. Am. J. Obs. Gynecol. 2015, 212, 776.e1–776.e12. [Google Scholar] [CrossRef] [Green Version]
- Burris, H.H.; Gerson, K.D.; Woodward, A.; Redhunt, A.; Ledyard, R.; Brennan, K.; Baccarelli, A.A.; Hecht, J.L.; Collier, A.Y.; Hacker, M.R. Cervical microRNA expression and spontaneous preterm birth. Am. J. Obs. Gynecol MFM 2023, 5, 100783. [Google Scholar] [CrossRef]
- Ansari, A.; Lee, H.; You, Y.-A.; Jung, Y.; Park, S.; Kim, S.M.; Hwang, G.-S.; Kim, Y.J. Identification of Potential Biomarkers in the Cervicovaginal Fluid by Metabolic Profiling for Preterm Birth. Metabolites 2020, 10, 349. [Google Scholar] [CrossRef]
- Catov, J.M.; Bodnar, L.M.; Kip, K.E.; Hubel, C.; Ness, R.B.; Harger, G.; Roberts, J.M. Early pregnancy lipid concentrations and spontaneous preterm birth. Am. J. Obstet. Gynecol. 2007, 197, 610.e1–610.e7. [Google Scholar] [CrossRef]
- Cinque, B.; Di Marzio, L.; Centi, C.; Di Rocco, C.; Riccardi, C.; Cifone, M.G. Sphingolipids and the immune system. Pharmacol. Res. 2003, 47, 421–437. [Google Scholar] [CrossRef]
- Cox, S.; King, M.; Casey, M.; MacDonald, P. Interleukin-1 beta,-1 alpha, and-6 and prostaglandins in vaginal/cervical fluids of pregnant women before and during labor. J. Clin. Endocrinol. Metab. 1993, 77, 805–815. [Google Scholar]
- Wang, C.; Zhu, W.; Wei, Y.; Su, R.; Feng, H.; Hadar, E.; Hod, M.; Yang, H. The associations between early pregnancy lipid profiles and pregnancy outcomes. J. Perinatol. 2017, 37, 127–133. [Google Scholar] [CrossRef]
- Herrera, E. Lipid metabolism in pregnancy and its consequences in the fetus and newborn. Endocrine 2002, 19, 43–55. [Google Scholar] [CrossRef]
- Nagle, J.F.; Tristram-Nagle, S. Structure of lipid bilayers. Biochim. Biophys. Acta (BBA)-Rev. Biomembr. 2000, 1469, 159–195. [Google Scholar] [CrossRef] [Green Version]
- Babayan, V.K. Medium chain triglycerides and structured lipids. Lipids 1987, 22, 417–420. [Google Scholar] [CrossRef]
- Dawson, R. The animal phospholipids: Their structure, metabolism and biological significance. Biol. Rev. 1957, 32, 188–229. [Google Scholar] [CrossRef]
- Fakhr, Y.; Brindley, D.N.; Hemmings, D.G. Physiological and pathological functions of sphingolipids in pregnancy. Cell. Signal. 2021, 85, 110041. [Google Scholar] [CrossRef] [PubMed]
- Mizugishi, K.; Inoue, T.; Hatayama, H.; Bielawski, J.; Pierce, J.S.; Sato, Y.; Takaori-Kondo, A.; Konishi, I.; Yamashita, K. Sphingolipid pathway regulates innate immune responses at the fetomaternal interface during pregnancy. J. Biol. Chem. 2015, 290, 2053–2068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandra, K.; Pereira Ados, S.; Vanhoenacker, G.; David, F.; Sandra, P. Comprehensive blood plasma lipidomics by liquid chromatography/quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 2010, 1217, 4087–4099. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Han, P.; Man, J.; Tian, Y.; Wang, F.; Wang, J. Discovery of lipid profiles of type 2 diabetes associated with hyperlipidemia using untargeted UPLC Q-TOF/MS-based lipidomics approach. Clin. Chim. Acta 2021, 520, 53–62. [Google Scholar] [CrossRef]
- t’Kindt, R.; Jorge, L.; Dumont, E.; Couturon, P.; David, F.; Sandra, P.; Sandra, K. Profiling and characterizing skin ceramides using reversed-phase liquid chromatography-quadrupole time-of-flight mass spectrometry. Anal. Chem. 2012, 84, 403–411. [Google Scholar] [CrossRef]
- Lee, J.Y.; Seo, S.; Shin, B.; Hong, S.H.; Kwon, E.; Park, S.; Hur, Y.M.; Lee, D.K.; Kim, Y.J.; Han, S.B. Development of a New Biomarker Model for Predicting Preterm Birth in Cervicovaginal Fluid. Metabolites 2022, 12, 734. [Google Scholar] [CrossRef]
- Zhao, Q.; Ma, Z.; Wang, X.; Liang, M.; Wang, W.; Su, F.; Yang, H.; Gao, Y.; Ren, Y. Lipidomic biomarkers of extracellular vesicles for the prediction of preterm birth in the early second trimester. J. Proteome Res. 2020, 19, 4104–4113. [Google Scholar] [CrossRef]
- Sarafian, M.H.; Gaudin, M.; Lewis, M.R.; Martin, F.-P.; Holmes, E.; Nicholson, J.K.; Dumas, M.-E. Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography–mass spectrometry. Anal. Chem. 2014, 86, 5766–5774. [Google Scholar] [CrossRef]
- Lee, D.K.; Long, N.P.; Jung, J.; Kim, T.J.; Na, E.; Kang, Y.P.; Kwon, S.W.; Jang, J. Integrative lipidomic and transcriptomic analysis of X-linked adrenoleukodystrophy reveals distinct lipidome signatures between adrenomyeloneuropathy and childhood cerebral adrenoleukodystrophy. Biochem. Biophys. Res. Commun. 2019, 508, 563–569. [Google Scholar] [CrossRef]
- Welti, R.; Wang, X. Lipid species profiling: A high-throughput approach to identify lipid compositional changes and determine the function of genes involved in lipid metabolism and signaling. Curr. Opin. Plant Biol. 2004, 7, 337–344. [Google Scholar] [CrossRef]
- Lin, J.-T.; Woodruff, C.L.; McKeon, T.A. Non-aqueous reversed-phase high-performance liquid chromatography of synthetic triacylglycerols and diacylglycerols. J. Chromatogr. A 1997, 782, 41–48. [Google Scholar] [CrossRef]
- Longini, M.; Perrone, S.; Vezzosi, P.; Marzocchi, B.; Kenanidis, A.; Centini, G.; Rosignoli, L.; Buonocore, G. Association between oxidative stress in pregnancy and preterm premature rupture of membranes. Clin. Biochem. 2007, 40, 793–797. [Google Scholar] [CrossRef]
- Xue, Y.; Guo, C.; Hu, F.; Sun, D.; Liu, J.; Mao, S. Molecular mechanisms of lipid metabolism disorder in livers of ewes with pregnancy toxemia. Animal 2019, 13, 992–999. [Google Scholar] [CrossRef]
- Herrera, E.; Ortega-Senovilla, H. Maternal lipid metabolism during normal pregnancy and its implications to fetal development. Clin. Lipidol. 2010, 5, 899–911. [Google Scholar] [CrossRef] [Green Version]
- Herrera, E.; Ortega-Senovilla, H. Lipid metabolism during pregnancy and its implications for fetal growth. Curr. Pharm. Biotechnol. 2014, 15, 24–31. [Google Scholar] [CrossRef]
- Morillon, A.-C.; Yakkundi, S.; Thomas, G.; Gethings, L.A.; Langridge, J.I.; Baker, P.N.; Kenny, L.C.; English, J.A.; McCarthy, F.P. Association between phospholipid metabolism in plasma and spontaneous preterm birth: A discovery lipidomic analysis in the cork pregnancy cohort. Metabolomics 2020, 16, 19. [Google Scholar] [CrossRef] [Green Version]
- Högdén, A.; Antovic, A.; Berg, E.; Bremme, K.; Chaireti, R. Obstetric outcomes in patients with primary thrombotic and obstetric antiphospholipid syndrome and its relation to the antiphospholipid antibody profile. Lupus 2019, 28, 868–877. [Google Scholar] [CrossRef]
- Reiss, D.; Beyer, K.; Engelmann, B. Delayed oxidative degradation of polyunsaturated diacyl phospholipids in the presence of plasmalogen phospholipids in vitro. Biochem. J. 1997, 323, 807–814. [Google Scholar] [CrossRef] [Green Version]
- Engelmann, B.; Brautigam, C.; Thiery, J. Plasmalogen phospholipids as potential protectors against lipid peroxidation of low-density lipoproteins. Biochem. Biophys. Res. Commun. 1994, 204, 1235–1242. [Google Scholar] [CrossRef]
- Kerstell, J.; Svanborg, A.; Vikrot, O. Plasmalogens in Human Plasma During Pregnancy: A Study of Healthy Non-pregnant and Pregnant Women. Acta Med. Scand. 1967, 181, 147–151. [Google Scholar] [CrossRef]
Compounds | p-Value | log2 (FC) | VIP |
---|---|---|---|
Cer 34:1; O2 | 1.56 × 10−8 | −2.33 | 1.95 |
PC 30:1 | 4.60 × 10−11 | 5.60 | 2.00 |
PC 32:0 | 1.06 × 10−3 | −1.42 | 1.14 |
PC 32:1 | 9.12 × 10−6 | −1.96 | 1.48 |
PC 34:1 | 3.53 × 10−8 | −2.10 | 1.76 |
PC 34:3 | 5.91 × 10−4 | −1.85 | 1.19 |
PC 36:1 | 3.25×10−9 | −2.64 | 1.86 |
PC 36:2 | 4.04 × 10−7 | −1.95 | 1.65 |
PC 36:3 | 9.32 × 10−4 | −1.85 | 1.15 |
PC 42:6 | 1.57 × 10−7 | −3.05 | 1.70 |
PE 34:0 | 1.66 × 10−7 | −2.67 | 1.69 |
PE 34:1 | 1.10 × 10−3 | −1.69 | 1.13 |
PE 34:2 | 1.96 × 10−4 | −2.69 | 1.27 |
PE 36:1 | 1.72 × 10−7 | −2.92 | 1.69 |
PE 36:2 | 1.57 × 10−8 | −3.26 | 1.80 |
PE 38:1 | 6.35 × 10−5 | −2.65 | 1.36 |
plasmenyl-PC 32:0 | 1.37 × 10−7 | −3.92 | 1.88 |
plasmenyl-PC 34:0 | 1.38 × 10−8 | −3.10 | 1.97 |
plasmenyl-PC 34:1 | 2.65 × 10−5 | −2.92 | 1.57 |
plasmenyl-PC 36:0 | 7.80 × 10−9 | −3.21 | 1.90 |
plasmenyl-PE 32:0 | 4.42 × 10−6 | −3.39 | 1.72 |
plasmenyl-PE 32:1 | 3.41 × 10−6 | −1.41 | 1.59 |
plasmenyl-PE 34:0 | 3.03 × 10−6 | −3.23 | 1.74 |
plasmenyl-PE 34:1 | 8.53 × 10−6 | −2.90 | 1.61 |
plasmenyl-PE 36:0 | 7.86 × 10−9 | −4.64 | 1.98 |
plasmenyl-PE 36:1 | 1.72 × 10−5 | −3.31 | 1.51 |
plasmenyl-PE 36:2 | 2.09 × 10−4 | −3.55 | 1.32 |
SM 32:1 | 2.36 × 10−9 | −3.42 | 1.99 |
SM 34:0 | 3.47 × 10−7 | −2.70 | 1.86 |
SM 34:1 | 1.42 × 10−8 | −2.78 | 1.99 |
SM 34:2 | 1.26 × 10−9 | −2.69 | 1.88 |
SM 36:1 | 7.43 × 10−8 | −2.19 | 1.90 |
SM 40:1 | 3.27 × 10−8 | −2.18 | 1.89 |
SM 42:1 | 3.15 × 10−8 | −2.26 | 1.92 |
SM 42:2 | 9.90 × 10−8 | −2.25 | 1.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, S.H.; Lee, J.-Y.; Seo, S.; Shin, B.; Jeong, C.H.; Bae, E.; Kim, J.; Lee, D.; An, B.; Shim, M.; et al. Lipidomic Analysis of Cervicovaginal Fluid for Elucidating Prognostic Biomarkers and Relevant Phospholipid and Sphingolipid Pathways in Preterm Birth. Metabolites 2023, 13, 177. https://doi.org/10.3390/metabo13020177
Hong SH, Lee J-Y, Seo S, Shin B, Jeong CH, Bae E, Kim J, Lee D, An B, Shim M, et al. Lipidomic Analysis of Cervicovaginal Fluid for Elucidating Prognostic Biomarkers and Relevant Phospholipid and Sphingolipid Pathways in Preterm Birth. Metabolites. 2023; 13(2):177. https://doi.org/10.3390/metabo13020177
Chicago/Turabian StyleHong, Se Hee, Ji-Youn Lee, Sumin Seo, Bohyun Shin, Cho Hee Jeong, Eunbin Bae, Jiyu Kim, Donghee Lee, Byungchan An, Minki Shim, and et al. 2023. "Lipidomic Analysis of Cervicovaginal Fluid for Elucidating Prognostic Biomarkers and Relevant Phospholipid and Sphingolipid Pathways in Preterm Birth" Metabolites 13, no. 2: 177. https://doi.org/10.3390/metabo13020177
APA StyleHong, S. H., Lee, J. -Y., Seo, S., Shin, B., Jeong, C. H., Bae, E., Kim, J., Lee, D., An, B., Shim, M., Shin, J. H., Lee, D. -K., Kim, Y. J., & Han, S. B. (2023). Lipidomic Analysis of Cervicovaginal Fluid for Elucidating Prognostic Biomarkers and Relevant Phospholipid and Sphingolipid Pathways in Preterm Birth. Metabolites, 13(2), 177. https://doi.org/10.3390/metabo13020177