Exposure to Heavy Metals and Serum Adiponectin Levels among Workers: A 2-Year Follow-Up Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Participants
2.2. Measurement of Field Air Sampling
2.3. Assessment of Urinary Metal Concentrations
2.4. Measurement of Serum Adiponectin Levels
2.5. Measurement of Other Covariates
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Subjects
3.2. Correlations of Urinary Metal Levels with Serum Adiponectin
3.3. The Contributions of Multiple Metal Exposures to Serum Adiponectin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Antonini, J.M. Health effects of welding. Crit. Rev. Toxicol. 2003, 33, 61–103. [Google Scholar] [CrossRef]
- La Vecchia, G.M.; Maestrelli, P. New welding processes and health effects of welding. G. Ital. Di Med. Del Lav. Ed Ergon. 2011, 33, 252–256. [Google Scholar]
- Kahl, V.F.S.; da Silva, J. Inorganic elements in occupational settings: A review on the effects on telomere length and biology. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2021, 872, 503418. [Google Scholar] [CrossRef]
- Antonini, J.M.; Lewis, A.B.; Roberts, J.R.; Whaley, D.A. Pulmonary effects of welding fumes: Review of worker and experimental animal studies. Am. J. Ind. Med. 2003, 43, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Akselsson, K.R.; Desaedeleer, G.G.; Johansson, T.B.; Winchester, J.W. Particle size distribution and human respiratory deposition of trace metals in indoor work environments. Ann. Occup. Hyg. 1976, 19, 225–238. [Google Scholar] [PubMed] [Green Version]
- Kumar, P.; Mishra, V.; Yadav, S.; Yadav, A.; Garg, S.; Poria, P.; Farooqi, F.; Dumée, L.F.; Sharma, R.S. Heavy metal pollution and risks in a highly polluted and populated indian river-city pair using the systems approach. Environ. Sci. Pollut. Res. Int. 2022, 29, 60212–60231. [Google Scholar] [CrossRef] [PubMed]
- Alfaifi, H.; El-Sorogy, A.S.; Qaysi, S.; Kahal, A.; Almadani, S.; Alshehri, F.; Zaidi, F.K. Evaluation of heavy metal contamination and groundwater quality along the red sea coast, southern saudi arabia. Mar. Pollut. Bull. 2021, 163, 111975. [Google Scholar] [CrossRef]
- Bulka, C.M.; Persky, V.W.; Daviglus, M.L.; Durazo-Arvizu, R.A.; Argos, M. Multiple metal exposures and metabolic syndrome: A cross-sectional analysis of the national health and nutrition examination survey 2011–2014. Environ. Res. 2019, 168, 397–405. [Google Scholar] [CrossRef]
- Aguilar, M.; Bhuket, T.; Torres, S.; Liu, B.; Wong, R.J. Prevalence of the metabolic syndrome in the united states, 2003–2012. Jama 2015, 313, 1973–1974. [Google Scholar] [CrossRef] [Green Version]
- Ibfelt, E.; Bonde, J.P.; Hansen, J. Exposure to metal welding fume particles and risk for cardiovascular disease in denmark: A prospective cohort study. Occup. Environ. Med. 2010, 67, 772–777. [Google Scholar] [CrossRef]
- Brand, P.; Bauer, M.; Gube, M.; Lenz, K.; Reisgen, U.; Spiegel-Ciobanu, V.E.; Kraus, T. Relationship between welding fume concentration and systemic inflammation after controlled exposure of human subjects with welding fumes from metal inert gas brazing of zinc-coated materials. J. Occup. Environ. Med. 2014, 56, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Arita, Y.; Kihara, S.; Ouchi, N.; Takahashi, M.; Maeda, K.; Miyagawa, J.; Hotta, K.; Shimomura, I.; Nakamura, T.; Miyaoka, K.; et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 1999, 257, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Kadowaki, T.; Yamauchi, T. Adiponectin and adiponectin receptors. Endocr. Rev. 2005, 26, 439–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lara-Castro, C.; Fu, Y.; Chung, B.H.; Garvey, W.T. Adiponectin and the metabolic syndrome: Mechanisms mediating risk for metabolic and cardiovascular disease. Curr. Opin. Lipidol. 2007, 18, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Kadowaki, T.; Yamauchi, T.; Kubota, N.; Hara, K.; Ueki, K.; Tobe, K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Investig. 2006, 116, 1784–1792. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fasshauer, M.; Blüher, M. Adipokines in health and disease. Trends Pharmacol. Sci. 2015, 36, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Esfahani, M.; Movahedian, A.; Baranchi, M.; Goodarzi, M.T. Adiponectin: An adipokine with protective features against metabolic syndrome. Iran. J. Basic Med. Sci. 2015, 18, 430–442. [Google Scholar]
- Nesic, J.; Ljujic, B.; Rosic, V.; Djukic, A.; Rosic, M.; Petrovic, I.; Zornic, N.; Jovanovic, I.P.; Petrovic, S.; Djukic, S. Adiponectin and interleukin-33: Possible early markers of metabolic syndrome. J. Clin. Med. 2022, 12, 132. [Google Scholar] [CrossRef]
- Toora, B.D.; Rajagopal, G. Measurement of creatinine by jaffe’s reaction—Determination of concentration of sodium hydroxide required for maximum color development in standard, urine and protein free filtrate of serum. Indian J. Exp. Biol. 2002, 40, 352–354. [Google Scholar]
- Carrico, C.; Gennings, C.; Wheeler, D.C.; Factor-Litvak, P. Characterization of weighted quantile sum regression for highly correlated data in a risk analysis setting. J. Agric. Biol. Environ. Stat. 2015, 20, 100–120. [Google Scholar] [CrossRef]
- Poręba, R.; Gać, P.; Poręba, M.; Andrzejak, R. Environmental and occupational exposure to lead as a potential risk factor for cardiovascular disease. Environ. Toxicol. Pharmacol. 2011, 31, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Burroughs Peña, M.S.; Rollins, A. Environmental exposures and cardiovascular disease: A challenge for health and development in low- and middle-income countries. Cardiol. Clin. 2017, 35, 71–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, A.M.; Lo, K.; Zheng, T.Z.; Yang, J.L.; Bai, Y.N.; Feng, Y.Q.; Cheng, N.; Liu, S.M. Environmental heavy metals and cardiovascular diseases: Status and future direction. Chronic Dis. Transl. Med. 2020, 6, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (thms) (arsenic (as), cadmium (cd), chromium (cr)(vi), mercury (hg), and lead (pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Liu, A.; Li, F.; Tinkov, A.A.; Liu, L.; Zhou, J.C. Associations between metabolic syndrome and four heavy metals: A systematic review and meta-analysis. Environ. Pollut. 2021, 273, 116480. [Google Scholar] [CrossRef] [PubMed]
- Rhee, S.Y.; Hwang, Y.C.; Woo, J.T.; Sinn, D.H.; Chin, S.O.; Chon, S.; Kim, Y.S. Blood lead is significantly associated with metabolic syndrome in korean adults: An analysis based on the korea national health and nutrition examination survey (knhanes), 2008. Cardiovasc. Diabetol. 2013, 12, 9. [Google Scholar] [CrossRef] [Green Version]
- Ettinger, A.S.; Bovet, P.; Plange-Rhule, J.; Forrester, T.E.; Lambert, E.V.; Lupoli, N.; Shine, J.; Dugas, L.R.; Shoham, D.; Durazo-Arvizu, R.A.; et al. Distribution of metals exposure and associations with cardiometabolic risk factors in the “modeling the epidemiologic transition study”. Environ. Health A Glob. Access Sci. Source 2014, 13, 90. [Google Scholar] [CrossRef] [Green Version]
- Buha, A.; Đukić-Ćosić, D.; Ćurčić, M.; Bulat, Z.; Antonijević, B.; Moulis, J.M.; Goumenou, M.; Wallace, D. Emerging links between cadmium exposure and insulin resistance: Human, animal, and cell study data. Toxics 2020, 8, 63. [Google Scholar] [CrossRef]
- Kawakami, T.; Sugimoto, H.; Furuichi, R.; Kadota, Y.; Inoue, M.; Setsu, K.; Suzuki, S.; Sato, M. Cadmium reduces adipocyte size and expression levels of adiponectin and peg1/mest in adipose tissue. Toxicology 2010, 267, 20–26. [Google Scholar] [CrossRef]
- Kawakami, T.; Nishiyama, K.; Kadota, Y.; Sato, M.; Inoue, M.; Suzuki, S. Cadmium modulates adipocyte functions in metallothionein-null mice. Toxicol. Appl. Pharmacol. 2013, 272, 625–636. [Google Scholar] [CrossRef]
- Kawakami, T.; Hanao, N.; Nishiyama, K.; Kadota, Y.; Inoue, M.; Sato, M.; Suzuki, S. Differential effects of cobalt and mercury on lipid metabolism in the white adipose tissue of high-fat diet-induced obesity mice. Toxicol. Appl. Pharmacol. 2012, 258, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Karvonen-Gutierrez, C.A.; Mukherjee, B.; Herman, W.H.; Park, S.K. Urinary metals and adipokines in midlife women: The study of women’s health across the nation (swan). Environ. Res. 2021, 196, 110426. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.Y.; Lai, C.H.; Chuang, H.C.; Pan, C.H.; Yen, C.C.; Lin, W.Y.; Chen, J.K.; Lin, L.Y.; Chuang, K.J. Physicochemistry and cardiovascular toxicity of metal fume pm2.5: A study of human coronary artery endothelial cells and welding workers. Sci. Rep. 2016, 6, 33515. [Google Scholar] [CrossRef]
- Ademuyiwa, O.; Ugbaja, R.N.; Idumebor, F.; Adebawo, O. Plasma lipid profiles and risk of cardiovascular disease in occupational lead exposure in abeokuta, nigeria. Lipids Health Dis. 2005, 4, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.; Chen, Z.; Dai, B.; Li, G.; Zhu, G. Low-level lead exposure and cardiovascular disease: The roles of telomere shortening and lipid disturbance. J. Toxicol. Sci. 2018, 43, 623–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirivarasai, J.; Kaojarern, S.; Chanprasertyothin, S.; Panpunuan, P.; Petchpoung, K.; Tatsaneeyapant, A.; Yoovathaworn, K.; Sura, T.; Kaojarern, S.; Sritara, P. Environmental lead exposure, catalase gene, and markers of antioxidant and oxidative stress relation to hypertension: An analysis based on the egat study. BioMed Res. Int. 2015, 2015, 856319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sule, K.; Umbsaar, J.; Prenner, E.J. Mechanisms of co, ni, and mn toxicity: From exposure and homeostasis to their interactions with and impact on lipids and biomembranes. Biochim. Et Biophys. Acta. Biomembr. 2020, 1862, 183250. [Google Scholar] [CrossRef] [PubMed]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic mechanisms of five heavy metals: Mercury, lead, chromium, cadmium, and arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Wise, S.S.; Aboueissa, A.E.; Martino, J.; Wise, J.P., Sr. Hexavalent chromium-induced chromosome instability drives permanent and heritable numerical and structural changes and a DNA repair-deficient phenotype. Cancer Res. 2018, 78, 4203–4214. [Google Scholar] [CrossRef]
Total Workers (n = 96) | Welding Workers (n = 70) | Office Workers (n = 26) | p Value | Total Workers (n = 131) | Welding Workers (n = 100) | Office Workers (n = 31) | p Value | |
---|---|---|---|---|---|---|---|---|
First Year | Second Year | |||||||
Continuous variables a | ||||||||
Age (years) | 46.43 (12.04) | 44.08 (11.15) | 52.74 (12.28) | 0.001 | 46.23 (12.80) | 44.66 (12.39) | 51.29 (12.97) | 0.011 |
BMI (kg/m2) | 25.21 (3.33) | 25.15 (3.37) | 25.36 (3.27) | 0.784 | 25.25 (3.27) | 25.11 (3.29) | 25.70 (3.23) | 0.381 |
Albumin (g/dL) | 4.71 (0.21) | 4.74 (0.21) | 4.62 (0.19) | 0.011 | 4.60 (0.23) | 4.62 (0.22) | 4.51 (0.24) | 0.015 |
TC (mg/dL) | 190.40 (56.77) | 192.79 (64.07) | 183.96 (29.33) | 0.501 | 191.04 (55.96) | 192.47 (61.69) | 186.42 (31.35) | 0.601 |
TG (mg/dL) | 144.73 (201.03) | 150.66 (231.96) | 128.77 (68.58) | 0.638 | 140.24 (187.07) | 145.92 (211.42) | 121.94 (60.79) | 0.535 |
UA (mg/dL) | 6.69 (1.50) | 6.68 (1.56) | 6.70 (1.32) | 0.952 | 6.44 (1.25) | 6.38 (1.22) | 6.59 (1.35) | 0.469 |
FPG (mg/dL) | 94.55 (8.75) | 94.56 (9.32) | 94.54 (7.15) | 0.993 | 96.04 (9.44) | 96.07 (10.06) | 95.94 (7.25) | 0.945 |
UC (mg/dL) | 133.82 (72.36) | 143.53 (76.32) | 107.70 (53.36) | 0.030 | 122.77 (62.68) | 128.92 (65.51) | 102.93 (48.30) | 0.043 |
Job tenure (years) | 22.75 (15.40) | 20.75 (15.28) | 28.12 (14.70) | 0.037 | 22.34 (16.63) | 20.88 (16.61) | 26.92 (16.11) | 0.083 |
Adiponectin (ug/dL) | 15.06 (8.73) | 14.76 (8.02) | 15.17 (9.04) | 0.841 | 13.69 (6.93) | 13.55 (7.30) | 14.16 (5.62) | 0.666 |
Categorical variables b | ||||||||
Current Smoking | 49 (51.0) | 39 (55.7) | 10 (38.5) | 0.170 | 75 (57.8) | 62 (62.0) | 13 (41.9) | 0.062 |
Current Exercise | 26 (27.1) | 17 (24.3) | 9 (34.6) | 0.315 | 34 (26.0) | 24 (24.0) | 10 (32.3) | 0.359 |
Urinary Metals (μg/L) | Total Workers | Welding Workers | Office Workers | p Value | |
---|---|---|---|---|---|
Continuous Variables [GM (GSD)] a | |||||
Urine Cr | First year | 3.07 (1.59) | 3.22 (2.70) | 2.73 (1.66) | 0.205 |
Second year | 2.65 (1.35) | 2.66 (1.30) | 2.62 (1.33) | 0.578 | |
Urine Mn | First year | 2.13 (2.21) | 2.24 (2.42) | 1.90 (2.16) | 0.132 |
Second year | 2.89 (1.84) | 2.94 (1.85) | 2.75 (1.73) | 0.621 | |
Urine Co | First year | 0.61 (2.05) | 0.66 (2.13) | 0.59 (1.66) | 0.308 |
Second year | 0.66 (1.29) | 0.75 (1.27) | 0.62 (1.21) | 0.675 | |
Urine Ni | First year | 10.92 (1.71) | 11.18 (1.46) | 10.32 (1.74) | 0.279 |
Second year | 26.67 (1.82) | 28.77 (1.71) | 25.91 (1.75) | 0.599 | |
Urine Zn | First year | 484.27 (2.00) | 515.39 (1.85) | 415.50 (2.00) | 0.139 |
Second year | 472.98 (1.64) | 491.55 (1.78) | 427.91 (1.83) | 0.408 | |
Urine Cd | First year | 0.62 (1.82) | 0.64 (1.93) | 0.56 (1.76) | 0.504 |
Second year | 0.64 (1.75) | 0.65 (1.31) | 0.62 (1.69) | 0.571 | |
Urine Pb | First year | 6.17 (2.88) | 6.29 (3.14) | 5.87 (2.64) | 0.421 |
Second year | 31.95 (1.26) | 32.26 (1.22) | 30.95 (1.27) | 0.360 | |
Urine Cu | First year | 105.93 (2.02) | 108.44 (1.54) | 100.00 (2.10) | 0.242 |
Second year | 119.95 (2.16) | 125.25 (2.21) | 117.97 (2.03) | 0.703 |
Exposure Markers (log μg/L) | Welding Workers | Office Workers | ||
---|---|---|---|---|
Serum Adiponectin (log μg/mL) a | ||||
β b (95% CI) | p Value | β b (95% CI) | p Value | |
Urine Cr | −0.088 (−0.148, −0.027) | 0.004 | 0.022 (−0.088, 0.133) | 0.695 |
Urine Mn | −0.174 (−0.267, −0.081) | <0.001 | 0.020 (−0.116, 0.156) | 0.776 |
Urine Co | −0.094 (−0.158, −0.029) | 0.004 | 0.017 (−0.082, 0.116) | 0.731 |
Urine Ni | −0.108 (−0.208, −0.008) | 0.033 | −0.004 (−0.157, 0.148) | 0.956 |
Urine Zn | −0.095 (−0.213, 0.022) | 0.112 | −0.030 (−0.173, 0.112) | 0.677 |
Urine Cd | −0.067 (−0.115, −0.018) | 0.007 | 0.007 (−0.068, 0.083) | 0.850 |
Urine Pb | −0.089 (−0.163, −0.015) | 0.018 | 0.029 (−0.068, 0.126) | 0.554 |
Urine Cu | −0.025 (−0.214, 0.165) | 0.800 | −0.127 (−0.273, 0.527) | 0.533 |
β Coefficients a | p Value | Weight (%) | ||||||
---|---|---|---|---|---|---|---|---|
log Pb | log Mn | log Ni | log Cd | log Cr | log Co | |||
Unadjusted | −0.0435 | 0.048 | 49.4 | 22.4 | 15.3 | 6.3 | 5.3 | 1.4 |
Adjusted b | −0.0478 | 0.026 | 30.9 | 8.6 | 2.1 | 5.5 | 25.7 | 27.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.-J.; Ho, A.-C.; Chen, S.-Y.; Pan, C.-H.; Chuang, H.-C.; Lai, C.-H. Exposure to Heavy Metals and Serum Adiponectin Levels among Workers: A 2-Year Follow-Up Study. Metabolites 2023, 13, 158. https://doi.org/10.3390/metabo13020158
Wu C-J, Ho A-C, Chen S-Y, Pan C-H, Chuang H-C, Lai C-H. Exposure to Heavy Metals and Serum Adiponectin Levels among Workers: A 2-Year Follow-Up Study. Metabolites. 2023; 13(2):158. https://doi.org/10.3390/metabo13020158
Chicago/Turabian StyleWu, Chen-Jung, A-Chuan Ho, Shih-Ya Chen, Chih-Hong Pan, Hsiao-Chi Chuang, and Ching-Huang Lai. 2023. "Exposure to Heavy Metals and Serum Adiponectin Levels among Workers: A 2-Year Follow-Up Study" Metabolites 13, no. 2: 158. https://doi.org/10.3390/metabo13020158
APA StyleWu, C. -J., Ho, A. -C., Chen, S. -Y., Pan, C. -H., Chuang, H. -C., & Lai, C. -H. (2023). Exposure to Heavy Metals and Serum Adiponectin Levels among Workers: A 2-Year Follow-Up Study. Metabolites, 13(2), 158. https://doi.org/10.3390/metabo13020158