Changes in Uterine Metabolome Associated with Metritis Development and Cure in Lactating Holstein Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics and Animals
2.2. Metabolomic Data Acquisition and Processing
2.3. Metabolomic Statistical Analysis
3. Results
3.1. Number of Cows Enrolled Per Farm and Descriptive Data
3.2. Changes in Uterine Metabolome in Cows Developing Metritis
3.3. Changes in Uterine Metabolome in Cows Being Cured versus Cows Not Being Cured of Metritis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stojkov, J.; von Keyserlingk, M.A.; Marchant-Forde, J.N.; Weary, D.M. Assessment of visceral pain associated with metritis in dairy cows. J. Dairy Sci. 2015, 98, 5352–5361. [Google Scholar] [CrossRef] [PubMed]
- Lima, F.S.; Vieira-Neto, A.; Vasconcellos, G.S.; Mingoti, R.D.; Karakaya, E.; Sole, E.; Bisinotto, R.S.; Martinez, N.; Risco, C.A.; Galvao, K.N.; et al. Efficacy of ampicillin trihydrate or ceftiofur hydrochloride for treatment of metritis and subsequent fertility in dairy cows. J. Dairy Sci. 2014, 97, 5401–5414. [Google Scholar] [CrossRef] [PubMed]
- Pinedo, P.; Santos, J.E.P.; Chebel, R.C.; Galvao, K.N.; Schuenemann, G.M.; Bicalho, R.C.; Gilbert, R.O.; Rodriguez Zas, S.; Seabury, C.M.; Rosa, G.; et al. Early-lactation diseases and fertility in 2 seasons of calving across US dairy herds. J. Dairy Sci. 2020, 103, 10560–10576. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, E.B.; Cunha, F.; Daetz, R.; Figueiredo, C.C.; Chebel, R.C.; Santos, J.E.; Risco, C.A.; Jeong, K.C.; Machado, V.S.; Galvão, K.N. Using chitosan microparticles to treat metritis in lactating dairy cows. J. Dairy Sci. 2020, 103, 7377–7391. [Google Scholar] [CrossRef] [PubMed]
- Lima, F.S.; Vieira-Neto, A.; Snodgrass, J.A.; De Vries, A.; Santos, J.E.P. Economic comparison of systemic antimicrobial therapies for metritis in dairy cows. J. Dairy Sci. 2019, 102, 7345–7358. [Google Scholar] [CrossRef]
- Perez-Baez, J.; Silva, T.V.; Risco, C.A.; Chebel, R.C.; Cunha, F.; De Vries, A.; Santos, J.E.P.; Lima, F.S.; Pinedo, P.; Schuenemann, G.M.; et al. The economic cost of metritis in dairy herds. J. Dairy Sci. 2021, 104, 3158–3168. [Google Scholar] [CrossRef]
- Benzaquen, M.E.; Risco, C.A.; Archbald, L.F.; Melendez, P.; Thatcher, M.J.; Thatcher, W.W. Rectal temperature, calving-related factors, and the incidence of puerperal metritis in postpartum dairy cows. J. Dairy Sci. 2007, 90, 2804–2814. [Google Scholar] [CrossRef]
- Jeon, S.J.; Lima, F.S.; Vieira-Neto, A.; Machado, V.S.; Lima, S.F.; Bicalho, R.C.; Santos, J.E.P.; Galvao, K.N. Shift of uterine microbiota associated with antibiotic treatment and cure of metritis in dairy cows. Vet. Microbiol. 2018, 214, 132–139. [Google Scholar] [CrossRef]
- Galvao, K.N.; Bicalho, R.C.; Jeon, S.J. Symposium review: The uterine microbiome associated with the development of uterine disease in dairy cows. J. Dairy Sci. 2019, 102, 11786–11797. [Google Scholar] [CrossRef]
- Jeon, S.J.; Vieira-Neto, A.; Gobikrushanth, M.; Daetz, R.; Mingoti, R.D.; Parize, A.C.; de Freitas, S.L.; da Costa, A.N.; Bicalho, R.C.; Lima, S.; et al. Uterine Microbiota Progression from Calving until Establishment of Metritis in Dairy Cows. Appl. Environ. Microbiol. 2015, 81, 6324–6332. [Google Scholar] [CrossRef]
- Hubner, A.; Canisso, I.F.; Peixoto, P.M.; Coelho, W.M., Jr.; Ribeiro, L.; Aldridge, B.M.; Menta, P.; Machado, V.S.; Lima, F.S. Characterization of metabolic profile, health, milk production, and reproductive outcomes of dairy cows diagnosed with concurrent hyperketonemia and hypoglycemia. J. Dairy Sci. 2022, 105, 9054–9069. [Google Scholar] [CrossRef] [PubMed]
- Martinez, N.; Risco, C.A.; Lima, F.S.; Bisinotto, R.S.; Greco, L.F.; Ribeiro, E.S.; Maunsell, F.; Galvao, K.; Santos, J.E. Evaluation of peripartal calcium status, energetic profile, and neutrophil function in dairy cows at low or high risk of developing uterine disease. J. Dairy Sci. 2012, 95, 7158–7172. [Google Scholar] [CrossRef] [PubMed]
- Dervishi, E.; Zhang, G.; Hailemariam, D.; Goldansaz, S.A.; Deng, Q.; Dunn, S.M.; Ametaj, B.N. Alterations in innate immunity reactants and carbohydrate and lipid metabolism precede occurrence of metritis in transition dairy cows. Res. Vet. Sci. 2016, 104, 30–39. [Google Scholar] [CrossRef]
- Contreras, G.A.; Sordillo, L.M. Lipid mobilization and inflammatory responses during the transition period of dairy cows. Comp. Immunol. Microbiol. Infect. Dis. 2011, 34, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.J.; Cunha, F.; Vieira-Neto, A.; Bicalho, R.C.; Lima, S.; Bicalho, M.L.; Galvao, K.N. Blood as a route of transmission of uterine pathogens from the gut to the uterus in cows. Microbiome 2017, 5, 109. [Google Scholar] [CrossRef]
- Figueiredo, C.C.; Balzano-Nogueira, L.; Bisinotto, D.Z.; Ruiz, A.R.; Duarte, G.A.; Conesa, A.; Galvao, K.N.; Bisinotto, R.S. Differences in uterine and serum metabolome associated with metritis in dairy cows. J. Dairy Sci. 2023, 106, 3525–3536. [Google Scholar] [CrossRef]
- Chapinal, N.; Carson, M.; Duffield, T.F.; Capel, M.; Godden, S.; Overton, M.; Santos, J.E.; LeBlanc, S.J. The association of serum metabolites with clinical disease during the transition period. J. Dairy Sci. 2011, 94, 4897–4903. [Google Scholar] [CrossRef]
- Machado, V.S.; Celestino, M.L.; Oliveira, E.B.; Lima, F.S.; Ballou, M.A.; Galvao, K.N. The association of cow related factors assessed at metritis diagnosis with metritis cure risk, fertility, milk yield, and culling for untreated and ceftiofur-treated dairy cows. J. Dairy Sci. 2020, 103, 9261–9276. [Google Scholar] [CrossRef]
- Merenda, V.R.; Ruiz-Munoz, J.; Zare, A.; Chebel, R.C. Predictive models to identify Holstein cows at risk of metritis and clinical cure and reproductive/productive failure following antimicrobial treatment. Prev. Vet. Med. 2021, 194, 105431. [Google Scholar] [CrossRef]
- de Oliveira, E.B.; Ferreira, F.C.; Galvao, K.N.; Youn, J.; Tagkopoulos, I.; Silva-Del-Rio, N.; Pereira, R.V.V.; Machado, V.S.; Lima, F.S. Integration of statistical inferences and machine learning algorithms for prediction of metritis cure in dairy cows. J. Dairy Sci. 2021, 104, 12887–12899. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, T.; Gan, Z.; Li, H.; Li, Y.; Zhang, Y.; Zhao, X. Metabolomic analysis of untargeted bovine uterine secretions in dairy cows with endometritis using ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Res. Vet. Sci. 2021, 139, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Djukovic, D.; Gowda, G.A.N.; Raftery, D. Mass Spectrometry and NMR Spectroscopy-Based Quantitative Metabolomics. In Proteomic and Metabolomic Approaches to Biomarker Discovery; Academic Press: Cambridge, MA, USA, 2013; pp. 279–297. [Google Scholar] [CrossRef]
- Hailemariam, D.; Mandal, R.; Saleem, F.; Dunn, S.M.; Wishart, D.S.; Ametaj, B.N. Metabolomics Approach Reveals Altered Plasma Amino Acid and Sphingolipid Profiles Associated with Patholological State in Transition Dairy Cows. Curr. Metabol. 2014, 2, 184–195. [Google Scholar] [CrossRef]
- Dervishi, E.; Zhang, G.; Dunn, S.M.; Mandal, R.; Wishart, D.S.; Ametaj, B.N. GC-MS Metabolomics Identifies Metabolite Alterations That Precede Subclinical Mastitis in the Blood of Transition Dairy Cows. J. Proteome Res. 2017, 16, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Dervishi, E.; Zhang, G.; Hailemariam, D.; Mandal, R.; Wishart, D.S.; Ametaj, B.N. Urine metabolic fingerprinting can be used to predict the risk of metritis and highlight the pathobiology of the disease in dairy cows. Metabolomics 2018, 14, 83. [Google Scholar] [CrossRef] [PubMed]
- Chenault, J.R.; McAllister, J.F.; Chester, S.T., Jr.; Dame, K.J.; Kausche, F.M.; Robb, E.J. Efficacy of ceftiofur hydrochloride sterile suspension administered parenterally for the treatment of acute postpartum metritis in dairy cows. J. Am. Vet. Med. Assoc. 2004, 224, 1634–1639. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, I.M.; Lewis, G.S.; LeBlanc, S.; Gilbert, R.O. Defining postpartum uterine disease in cattle. Theriogenology 2006, 65, 1516–1530. [Google Scholar] [CrossRef]
- Ospina, P.; Nydam, D.; Stokol, T.; Overton, T. Comparison between Individual and Pooled Samples of Non-esterified Fatty Acids (NEFA) and B-hydroxybutyrate (BHBA) in Transition Dairy Cows to Determine Herd Alarm Level Status. In Proceedings of the Forty-Third Annual Conference of the American Association of Bovine Practitioners, Knoxville, TN, USA, 10–11 February 2010; p. 185. [Google Scholar]
- Reynolds, C.K.; Aikman, P.C.; Lupoli, B.; Humphries, D.J.; Beever, D.E. Splanchnic metabolism of dairy cows during the transition from late gestation through early lactation. J. Dairy Sci. 2003, 86, 1201–1217. [Google Scholar] [CrossRef]
- Luo, Z.Z.; Shen, L.H.; Jiang, J.; Huang, Y.X.; Bai, L.P.; Yu, S.M.; Yao, X.P.; Ren, Z.H.; Yang, Y.X.; Cao, S.Z. Plasma metabolite changes in dairy cows during parturition identified using untargeted metabolomics. J. Dairy Sci. 2019, 102, 4639–4650. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Cronin, J.G.; Bromfield, J.J. Tolerance and Innate Immunity Shape the Development of Postpartum Uterine Disease and the Impact of Endometritis in Dairy Cattle. Annu. Rev. Anim. Biosci. 2019, 7, 361–384. [Google Scholar] [CrossRef]
- Bromfield, J.J.; Santos, J.E.; Block, J.; Williams, R.S.; Sheldon, I.M. Physiology and endocrinology symposium: Uterine infection: Linking infection and innate immunity with infertility in the high-producing dairy cow. J. Anim. Sci. 2015, 93, 2021–2033. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Cronin, J.G.; Pospiech, M.; Turner, M.L. Symposium review: Mechanisms linking metabolic stress with innate immunity in the endometrium. J. Dairy Sci. 2018, 101, 3655–3664. [Google Scholar] [CrossRef] [PubMed]
- Xie, N.; Zhang, L.; Gao, W.; Huang, C.; Huber, P.E.; Zhou, X.; Li, C.; Shen, G.; Zou, B. NAD(+) metabolism: Pathophysiologic mechanisms and therapeutic potential. Signal Transduct. Target. Ther. 2020, 5, 227. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, H.B.S.; Williams, C.; King, S.J.; Allison, S.J. Nicotinamide adenine dinucleotide (NAD+): Essential redox metabolite, co-substrate and an anti-cancer and anti-ageing therapeutic target. Biochem. Soc. Trans. 2020, 48, 733–744. [Google Scholar] [CrossRef] [PubMed]
- Jong, C.J.; Azuma, J.; Schaffer, S. Mechanism underlying the antioxidant activity of taurine: Prevention of mitochondrial oxidant production. Amino Acids 2012, 42, 2223–2232. [Google Scholar] [CrossRef] [PubMed]
- Marcinkiewicz, J.; Strus, M.; Walczewska, M.; Machul, A.; Mikolajczyk, D. Influence of taurine haloamines (TauCl and TauBr) on the development of Pseudomonas aeruginosa biofilm: A preliminary study. Adv. Exp. Med. Biol. 2013, 775, 269–283. [Google Scholar] [CrossRef]
- Jeon, S.J.; Galvao, K.N. An Advanced Understanding of Uterine Microbial Ecology Associated with Metritis in Dairy Cows. Genom. Inform. 2018, 16, e21. [Google Scholar] [CrossRef]
- Putzer, H.; Laalami, S.; Brakhage, A.A.; Condon, C.; Grunberg-Manago, M. Aminoacyl-tRNA synthetase gene regulation in Bacillus subtilis: Induction, repression and growth-rate regulation. Mol. Microbiol. 1995, 16, 709–718. [Google Scholar] [CrossRef]
- Yu, H.; Guo, Z.; Shen, S.; Shan, W. Effects of taurine on gut microbiota and metabolism in mice. Amino Acids 2016, 48, 1601–1617. [Google Scholar] [CrossRef]
- Greene, J.M.; Feugang, J.M.; Pfeiffer, K.E.; Stokes, J.V.; Bowers, S.D.; Ryan, P.L. L-Arginine enhances cell proliferation and reduces apoptosis in human endometrial RL95-2 cells. Reprod. Biol. Endocrinol. 2013, 11, 15. [Google Scholar] [CrossRef]
- Yang, Z.; Luo, F.; Liu, G.; Luo, Z.; Ma, S.; Gao, H.; He, H.; Tao, J. Plasma Metabolomic Analysis Reveals the Relationship between Immune Function and Metabolic Changes in Holstein Peripartum Dairy Cows. Metabolites 2022, 12, 953. [Google Scholar] [CrossRef]
- Wu, G.; Bazer, F.W.; Tuo, W.; Flynn, S.P. Unusual abundance of arginine and ornithine in porcine allantoic fluid. Biol. Reprod. 1996, 54, 1261–1265. [Google Scholar] [CrossRef] [PubMed]
- Osorio, J.S.; Trevisi, E.; Ji, P.; Drackley, J.K.; Luchini, D.; Bertoni, G.; Loor, J.J. Biomarkers of inflammation, metabolism, and oxidative stress in blood, liver, and milk reveal a better immunometabolic status in peripartal cows supplemented with Smartamine M or MetaSmart. J. Dairy Sci. 2014, 97, 7437–7450. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Wu, T.; Zhang, H.; Loor, J.J.; Wang, M.; Peng, A.; Wang, H. Jugular infusion of arginine has a positive effect on antioxidant mechanisms in lactating dairy cows challenged intravenously with lipopolysaccharide1. J. Anim. Sci. 2018, 96, 3850–3855. [Google Scholar] [CrossRef]
- McDougall, S.; Macaulay, R.; Compton, C. Association between endometritis diagnosis using a novel intravaginal device and reproductive performance in dairy cattle. Anim. Reprod. Sci. 2007, 99, 9–23. [Google Scholar] [CrossRef]
- Pleticha, S.; Drillich, M.; Heuwieser, W. Evaluation of the Metricheck device and the gloved hand for the diagnosis of clinical endometritis in dairy cows. J. Dairy Sci. 2009, 92, 5429–5435. [Google Scholar] [CrossRef] [PubMed]
Compounds | FC 1 | Log2(FC) | Raw.pval | −log10(p) |
---|---|---|---|---|
1 Maltose 2 Nicotinamide 3 Maltotriose 4 1,5-anhydroglucitol 5 Panose 6 Glucose 7 Adenosine 8 Linoleic acid 9 Alpha-aminoadipic acid 10 Taurine 11 Hypotaurine 12 Inosine 13 Thymine | 8.2008 2.2286 8.2341 2.1199 6.5977 4.0647 2.0373 2.6882 3.9039 2.6779 2.0738 2.5176 0.38734 |
3.0358 1.1562 3.0416 1.084 2.722 2.0231 1.0266 1.4266 1.9649 1.4211 1.0523 1.332 −1.3683 |
0.001909 0.0027633 0.0072505 0.012228 0.013923 0.016681 0.021417 0.02161 0.022083 0.026722 0.055062 0.078835 0.080836 |
2.7192 2.5586 2.1396 1.9127 1.8563 1.7778 1.6692 1.6653 1.6559 1.5731 1.2591 1.1033 1.0924 |
Compounds | t.stat | p-Value | −log10(p) | FDR 1 |
---|---|---|---|---|
1 Allantoin 2 Hypotaurine 3 Uric acid 4 1-hexadecanol 5 Cellobiose 6 Glucuronic acid 7 Erythritol 8 5-aminovaleric acid 9 Pipecolinic acid 10 Creatinine 11 Citric acid 12 Lactic acid 13 3-ureidopropionate 14 Xylitol 15 Allantoic acid 16 Isothreonic acid 17 Phenylacetic acid 18 Nicotinamide 19 4-hydroxyphenylacetic acid 20 Hippuric acid 21 Nervonic acid 22 Cadaverine 23 Glycine 24 Glycocyamine 25 Succinic acid 26 Pseudo uridine 27 Putrescine 28 D-erythro-sphingosine 29 Ribitol 30 Phenaceturic acid 31 Oxoproline 32 Xylulose 33 Arabitol 34 Cysteine 35 Ribose 36 Threonic acid 37 3-(4-hydroxyphenyl) propionic acid 38 Hydrocinnamic acid 39 Maltose 40 Catechol 41 P-cresol 42 Sorbitol 43 Glycolic acid 44 Octadecanol 45 Behenic acid 46 Glyceric acid 47 Maltotriose 48 2-hydroxybutanoic acid 49 2-deoxypentotol 50 Tyrosine |
4.4416 4.252 4.1915 −4.1581 4.1178 4.0816 4.0113 −3.951 −3.9048 3.8466 3.8016 3.755 3.7381 3.6841 3.6706 3.6278 −3.6003 3.5962 −3.5726 3.5171 −3.452 −3.4318 3.4276 3.4252 −3.3832 3.3478 −3.2783 −3.2286 3.2244 3.2082 3.1472 3.114 3.1024 3.0958 3.0776 3.0125 −2.9573 −2.9345 2.9032 2.8957 2.8655 2.8519 −2.8469 −2.7999 −2.767 2.6815 2.6716 2.6675 2.6377 2.5708 |
15.3971 × 10−5 9.9863 × 10−5 0.00012129 0.00013494 0.00015347 0.00017218 0.00021499 0.00025986 0.0003002 0.00035973 0.00041339 0.00047699 0.0005024 0.00059224 0.00061711 0.00070238 0.00076317 0.00077266 0.00082918 0.00097869 0.001187 0.0012597 0.0012756 0.0012847 0.001 4529 0.0016107 0.0019694 0.0022705 0.0022982 0.0024068 0.0028608 0.0031399 0.0032436 0.0033043 0.0034762 0.0041638 0.004844 0.005154 0.00561 0.0057249 0.0062093 0.0064385 0.0065247 0.0073937 0.0080657 0.010078 0.01034 0.01045 0.011282 0.013372 |
4.2678 4.0006 3.9162 3.8699 3.814 3.764 3.6676 3.5853 3.5226 3.444 3.3836 3.3215 3.2989 3.2275 3.2096 3.1534 3.1174 3.112 3.0813 3.0094 2.9255 2.8997 2.8943 2.8912 2.8378 2.793 2.7057 2.6439 2.6386 2.6186 2.5435 2.5031 2.489 2.4809 2.4589 2.3805 2.3148 2.2879 2.251 2.2422 2.207 2.1912 2.1854 2.1311 2.0934 1.9966 1.9855 1.9809 1.9476 1.8738 |
0.0049933 0.0049933 0.0049933 0.0049933 0.0049933 0.0049933 0.0053441 0.0056519 0.0058039 0.0062594 0.0065391 0.0067244 0.0067244 0.0071585 0.0071585 0.007469 0.007469 0.007469 0.0075936 0.0085146 0.0093138 0.0093138 0.0093138 0.0093138 0.010112 0.010779 0.012692 0.013789 0.013789 0.01396 0.016058 0.01691 0.01691 0.01691 0.017282 0.020125 0.02278 0.0236 0.024903 0.024903 0.026352 0.026402 0.026402 0.029239 0.031187 0.037881 0.037881 0.037881 0.040064 0.046533 |
Compounds | t.stat | p-Value | −log10(p) | FDR 1 |
---|---|---|---|---|
1 4-hydroxyphenylacetic acid 2 Phenylacetic acid 3 Hypotaurine 4 Maltose 5 Pipecolinic acid 6 Sophorose 7 Nicotinamide 8 Glutaric acid 9 Galactinol 10 Panose 11 5-aminovaleric acid 12 Lactic acid 13 Fructose 14 Maltotriose 15 Hydrocinnamic acid 16 2-hydroxybutanoic acid 17 Glycine 18 3-(4-hydroxyphenyl) propionic acid 19 Piperidone 20 Taurine 21 Arachidonic acid 22 Oxoproline 23 3-ureidopropionate 24 Lactinol 25 Cholesterol 26 Cystine 27 Glucose 28 Nervonic acid 29 Xylose 30 Creatinine 31 1,2-anhydro-myo-inositol 32 Myo-inositol 33 Serine 34 Citric acid 35 Isoleucine 36 Glutamic acid 37 Cellobiose 38 1-hexadecanol 39 Threonic acid 40 1-monoolein 41 Uric acid 42 Oleic acid 43 Ribose 44 Cysteine 45 Nicotinic acid 46 Linoleic acid 47 D-erythro-sphingosine 48 Thymidine 49 Pseudo uridine 50 Isothreonic acid | −7.6977 −7.2237 6.479 6.281 −6.2315 6.2077 5.9226 −5.5935 5.3672 5.282 −5.2647 5.2319 5.0786 4.9746 −4.9171 4.3955 4.2499 4.1443 4.024 4.0158 3.9972 3.9167 3.8288 3.7716 3.761 3.7455 3.7383 −3.6912 −3.5946 3.588 3.5793 3.562 −3.4475 3.4404 3.3787 3.3418 3.3172 −3.312 3.2696 3.246 3.2416 −3.236 3.2332 3.165 −3.1618 3.116 −3.061 −3.0488 3.0166 2.9366 | 8.2798 × 10−10 4.2118 × 10−9 5.5259 × 10−8 1.0965 × 10−7 1.3013 × 10−7 1.4129 × 10−7 3.7817 × 10−7 1.1722 × 10−6 2.5392 × 10−6 3.3924 × 10−6 3.5981 × 10−6 4.0207 × 10−6 6.75 × 10−6 9.5721 × 10−6 1.1603 × 10−5 6.4644 × 10−5 0.00010331 0.00014462 0.00021137 0.00021689 0.00022992 0.00029544 0.00038759 0.00046193 0.00047709 0.00050011 0.00051127 0.00058986 0.00078901 0.00080456 0.0008259 0.00086949 0.00122 0.0012457 0.0014918 0.0016601 0.0017826 0.0018093 0.0020431 0.0021857 0.0022137 0.0022489 0.0022673 0.0027498 0.0027745 0.0031546 0.0036766 0.0038021 0.0041551 0.0051679 | 9.082 8.3755 7.2576 6.96 6.8856 6.8499 6.4223 5.931 5.5953 5.4695 5.4439 5.3957 5.1707 5.019 4.9354 4.1895 3.9859 3.8398 3.6749 3.6638 3.6384 3.5295 3.4116 3.3354 3.3214 3.3009 3.2914 3.2292 3.1029 3.0944 3.0831 3.0607 2.9136 2.9046 2.8263 2.7799 2.749 2.7425 2.6897 2.6604 2.6549 2.648 2.6445 2.5607 2.5568 2.5011 2.4346 2.42 2.3814 2.2867 | 1.4407 × 10−7 3.6643 × 10−7 3.205 × 10−6 4.0975 × 10−6 4.0975 × 10−6 4.0975 × 10−6 9.4003 × 10−6 2.5495 × 10−5 4.9091 × 10−5 5.6915 × 10−5 5.6915 × 10−5 5.83 × 10−5 9.0346 × 10−5 0.00011897 0.00013459 0.000703 0.0010574 0.001398 0.001887 0.001887 0.001905 0.0023367 0.0029322 0.0032948 0.0032948 0.0032948 0.0032948 0.0036656 0.0046357 0.0046357 0.0046357 0.0047279 0.006375 0.006375 0.0074162 0.0080237 0.0082846 0.0082846 0.0091154 0.0091746 0.0091746 0.0091746 0.0091746 0.010728 0.010728 0.011933 0.013611 0.013783 0.014755 0.017984 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira, E.B.; Monteiro, H.F.; Pereira, J.M.V.; Williams, D.R.; Pereira, R.V.; Silva Del Rio, N.; Menta, P.R.; Machado, V.S.; Lima, F.S. Changes in Uterine Metabolome Associated with Metritis Development and Cure in Lactating Holstein Cows. Metabolites 2023, 13, 1156. https://doi.org/10.3390/metabo13111156
de Oliveira EB, Monteiro HF, Pereira JMV, Williams DR, Pereira RV, Silva Del Rio N, Menta PR, Machado VS, Lima FS. Changes in Uterine Metabolome Associated with Metritis Development and Cure in Lactating Holstein Cows. Metabolites. 2023; 13(11):1156. https://doi.org/10.3390/metabo13111156
Chicago/Turabian Stylede Oliveira, Eduardo B., Hugo F. Monteiro, Jessica M. V. Pereira, Deniece R. Williams, Richard V. Pereira, Noelia Silva Del Rio, Paulo R. Menta, Vinicius S. Machado, and Fabio S. Lima. 2023. "Changes in Uterine Metabolome Associated with Metritis Development and Cure in Lactating Holstein Cows" Metabolites 13, no. 11: 1156. https://doi.org/10.3390/metabo13111156
APA Stylede Oliveira, E. B., Monteiro, H. F., Pereira, J. M. V., Williams, D. R., Pereira, R. V., Silva Del Rio, N., Menta, P. R., Machado, V. S., & Lima, F. S. (2023). Changes in Uterine Metabolome Associated with Metritis Development and Cure in Lactating Holstein Cows. Metabolites, 13(11), 1156. https://doi.org/10.3390/metabo13111156