Cytokinin Translocation to, and Biosynthesis and Metabolism within, Cereal and Legume Seeds: Looking Back to Inform the Future
Abstract
:1. Introduction
2. The Complex of Cytokinins within Cereal Kernels, and within Pods and Seeds of Legumes
2.1. Cereals
2.2. Legumes
2.3. cis Derivatives
2.4. Complexity Issues
3. Sites of Cytokinin Biosynthesis during Pod and Seed Development and Maturation
3.1. Legumes
3.1.1. Source of Cytokinin in Legumes
3.1.2. Sites of Cytokinin Accumulation within Legume Pods and Seeds
Chickpea
Lupins
Soybean
Pea
3.1.3. Summary
3.2. Cereals
3.2.1. Source of Cytokinins in Cereals
3.2.2. Sites of Cytokinin Accumulation in Cereal Grains
Wheat
Rice
Maize
Barley
3.2.3. Summary
4. Where to from Here?
4.1. The Cytokinin Complex
4.2. Seed Set and the Transition from Syncytial Endosperm to Cellularisation
4.3. Morphogenesis and the Transition to Storage Functions
4.4. Conclusions
Funding
Conflicts of Interest
References
- Jameson, P.E.; Song, J. Cytokinin: A key driver of seed yield. J. Exp. Bot. 2016, 67, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, I.; Scheirlinck, M.-T.; Otto, E.; Bartrina, I.; Schmidt, R.-C.; Schmülling, T. Cytokinin regulates the activity of the inflorescence meristem and components of seed yield in oilseed rape, J. Exp. Bot. 2020, 71, 7146–7159. [Google Scholar] [CrossRef] [PubMed]
- Sakakibara, H. Cytokinin biosynthesis and transport for systemic nitrogen signaling. Plant J. 2021, 105, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.N.; Lai, N.; Kisiala, A.B.; Emery, R.J.N. Isopentenyltransferases as master regulators of crop performance: Their function, manipulation, and genetic potential for stress adaptation and yield improvement. Plant Biotechnol. J. 2021, 19, 1297–1313. [Google Scholar] [CrossRef] [PubMed]
- Szala, K.; Dmochowska-Boguta, M.; Bocian, J.; Orczyk, W.; Nadolska-Orczyk, A. Transgenerational paternal inheritance of TaCKX GFMs expression patterns indicate a way to select wheat lines with better parameters for yield-related traits. Int. J. Mol. Sci. 2023, 24, 8196. [Google Scholar] [CrossRef]
- Letham, D.S.; Shannon, J.S.; McDonald, I.R. The structure of zeatin, a factor inducing cell division. Proc. Chem. Soc. Lond. 1964, 1984, 230–231. [Google Scholar]
- Jameson, P.E. Zeatin: The 60th anniversary of its identification. Plant Physiol. 2023, 192, 34–55. [Google Scholar] [CrossRef]
- Pegler, J.L.; Grof, C.P.; Patrick, J.W. Sugar loading of crop seeds—A partnership of phloem, plasmodesmal and membrane transport. New Phytol. 2023, 239, 1584–1602. [Google Scholar] [CrossRef]
- Liu, J.; Wu, M.-W.; Liu, C.-M. Cereal endosperms: Development and storage product accumulation. Ann. Rev. Plant Biol. 2022, 73, 255–291. [Google Scholar] [CrossRef]
- Hertig, C.; Rutten, T.; Melzer, M.; Schippers, J.H.M.; Thiel, J. Dissection of developmental programs and regulatory modules directing endosperm transfer cell and aleurone identity in the syncytial endosperm of barley. Plants 2023, 12, 1594. [Google Scholar] [CrossRef]
- Eeuwens, C.J.; Schwabe, W.W. Seed and pod wall development in Pisum sativum, L. in relation to extracted and applied hormones. J. Exp. Bot. 1975, 26, 1–14. [Google Scholar] [CrossRef]
- Davey, J.E.; van Staden, J. Cytokinin activity in Lupinus albus. IV. Distribution in seeds. Physiol. Plant. 1979, 63, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Emery, R.J.N.; Ma, Q.; Atkins, C.A. The forms and sources of cytokinins in developing white lupine seeds and fruits. Plant Physiol. 2000, 123, 1593–1604. [Google Scholar] [CrossRef]
- Chaudhury, A.M.; Koltunow, A.; Payne, T.; Luo, M.; Tucker, M.R.; Dennis, E.S.; Peacock, W.J. Control of early seed development. Annu. Rev. Cell Dev, Biol. 2001, 17, 677–699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-F.; Tong, J.-H.; Bai, A.-N.; Liu, C.-M.; Xiao, L.-T.; Xue, H.-W. Phytohormone dynamics in developing endosperm influence rice grain shape and quality. J. Integr. Plant Biol. 2020, 62, 1625–1637. [Google Scholar] [CrossRef] [PubMed]
- Letham, D.S. Regulators of cell division in plant tissues I. Inhibitors and stimulants of cell division in developing fruits: Their properties and activity in relation to the cell division period. N. Z. J. Bot. 1963, 1, 336–350. [Google Scholar] [CrossRef]
- Letham, D.S. Purification of factors inducing cell division extracted from plum fruitlets. Life Sci. 1963, 3, 152–157. [Google Scholar] [CrossRef]
- Miller, C.O. Cytokinins in Zea mays. Ann. N. Y. Acad. Sci. 1967, 144, 251–257. [Google Scholar] [CrossRef]
- Mothes, K.; Engelbrecht, L. Kinetin-induced directed transport of substances in excised leaves in the dark. Phytochemistry 1961, 1, 58–62. [Google Scholar] [CrossRef]
- McIntyre, K.E.; Bush, D.R.; Argueso, C.T. cytokinin regulation of source-sink relationships in plant-pathogen interactions. Front. Plant Sci. 2021, 12, 677585. [Google Scholar] [CrossRef]
- Miller, C.O.; Witham, F.H. A kinetin-like factor from maize and other sources. In Addendum to Regulateurs de la Croissance Vegétalé; Nitsch, J.P., Ed.; Coll. Int. Centre Nat. Recherche Sci.: Gif-sur-Yvette, France, 1964; [Refer Jameson, 2023 [7] for copy in supplementary material]. [Google Scholar]
- Miller, C.O. Evidence for the natural occurrence of zeatin and derivatives: Compounds from maize which promote cell division. Proc. Natl. Acad. Sci. USA 1965, 54, 1052–1058. [Google Scholar] [CrossRef] [PubMed]
- Letham, D.S. Purification and probable identity of a new cytokinin in sweet corn extracts. Life Sci. 1966, 5, 551–554. [Google Scholar] [CrossRef]
- Letham, D.S. Isolation and probable identity of a third cytokinin in sweet corn extracts. Life Sci. 1966, 5, 1999–2004. [Google Scholar] [CrossRef]
- Letham, D.S. Cytokinins from Zea mays. Phytochemistry 1973, 12, 2445–2455. [Google Scholar] [CrossRef]
- Summons, R.E.; Duke, C.C.; Eichholzer, J.V.; Entsch, B.; Letham, D.S.; MacLeod, J.K.; Parker, C.W. Mass spectrometric analysis of cytokinins in plant tissues. II. Quantitation of cytokinins in Zea mays kernels using deuterium labelled standards. Biomed. Mass Spectrom. 1979, 6, 407–413. [Google Scholar] [CrossRef]
- Summons, R.E.; Entsch, B.; Letham, D.S.; Gollnow, B.I.; Macleod, J.K. Regulators of cell division in plant tissues: XXVIII. Metabolites of zeatin in sweet-corn kernels: Purifications and identifications using high-performance liquid chromatography and chemical-ionization mass spectrometry. Planta 1980, 147, 422–434. [Google Scholar] [CrossRef]
- Summons, R.E.; Palni, L.M.; Letham, D.S. Determination of intact zeatin nucleotide by direct chemical ionisation mass spectrometry. FEBS Lett. 1983, 151, 122–126. [Google Scholar] [CrossRef]
- Badenoch-Jones, J.; Letham, D.S.; Parker, C.W.; Rolfe, B.G. Quantitation of cytokinins in biological samples using antibodies against zeatin riboside. Plant Physiol. 1984, 75, 1117–1125. [Google Scholar] [CrossRef]
- Hocart, C.H.; Badenoch-Jones, J.; Parker, C.W.; Letham, D.S.; Summons, R.E. Cytokinins of dry Zea mays seed: Quantification by radioimmunoassay and gas chromatography-mass spectrometry. J. Plant Growth Regul. 1988, 7, 179–196. [Google Scholar] [CrossRef]
- Hluska, T.; Dobrev, P.I.; Tarkowská, D.; Frébortová, J.; Zalabák, D.; Kopečný, D.; Plíhal, O.; Kokáš, F.; Briozzo, P.; Zatloukal, M.; et al. Cytokinin metabolism in maize: Novel evidence of cytokinin abundance, interconversions and formation of a new trans-zeatin metabolic product with a weak anticytokinin activity. Plant Sci. 2016, 247, 127–137. [Google Scholar] [CrossRef]
- Veach, Y.K.; Martin, R.C.; Mok, D.W.; Malbeck, J.; Vankova, R.; Mok, M.C. O-glucosylation of cis-zeatin in maize. Characterization of genes, enzymes, and endogenous cytokinins. Plant Physiol. 2003, 131, 1374–1380. [Google Scholar] [CrossRef] [PubMed]
- Miyawaki, K.; Tarkowski, P.; Matsumoto-Kitano, M.; Kato, T.; Sato, S.; Tarkowska, D.; Tabata, S.; Sandberg, G.; Kakimoto, T. Roles of Arabidopsis ATP/ADP isopentenyltransferases and tRNA isopentenyltransferases in cytokinin biosynthesis. Proc. Natl. Acad. Sci. USA 2006, 103, 16598–16603. [Google Scholar] [CrossRef] [PubMed]
- Kojima, M.; Kamada-Nobusada, T.; Komatsu, H.; Takei, K.; Kuroha, T.; Mizutani, M.; Ashikari, M.; Ueguchi-Tanaka, M.; Matsuoka, M.; Suzuki, K.; et al. Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography tandem mass spectrometry: An application for hormone profiling in Oryza sativa. Plant Cell Physiol. 2009, 50, 1201–1214. [Google Scholar] [CrossRef] [PubMed]
- Takei, K.; Yamaya, T.; Sakakibara, H. Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin J. Biol Chem. 2004, 279, 41866–41872. [Google Scholar] [CrossRef]
- Kiba, T.; Mizutani, K.; Nakahara, A.; Takebayashi, Y.; Kojima, M.; Hobo, T.; Osakabe, Y.; Osakabe, K.; Sakakibara, H. The trans-zeatin-type side-chain modification of cytokinins controls rice growth. Plant Physiol. 2023, 192, 2457–2474. [Google Scholar] [CrossRef] [PubMed]
- Kurakawa, T.; Ueda, N.; Maekawa, M.; Kobayashi, K.; Kojima, M.; Nagato, Y.; Sakakibara, H.; Kyozuka, J. Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 2007, 445, 652–655. [Google Scholar] [CrossRef]
- Lomin, S.N.; Krivosheev, D.M.; Steklov, M.Y.; Arkhipov, D.V.; Osolodkin, D.I.; Schmülling, T.; Romanov, G.A. Plant membrane assays with cytokinin receptors underpin the unique role of free cytokinin bases as biologically active ligands. J. Exp. Bot. 2015, 66, 1851–1863. [Google Scholar] [CrossRef]
- Romanov, G.A.; Schmülling, T. On the biological activity of cytokinin free bases and their ribosides. Planta 2021, 255, 27. [Google Scholar] [CrossRef]
- Galuszka, P.; Popelková, H.; Werner, T.; Frébortová, J.; Pospíšilová, H.; Mik, V.; Köllmer, I.; Schmülling, T.; Frébort, I. Biochemical characterization of cytokinin oxidases/dehydrogenases from Arabidopsis thaliana expressed in Nicotiana tabacum L. J. Plant Growth Regul. 2007, 26, 255–267. [Google Scholar] [CrossRef]
- Hošek, P.; Hoyerová, K.; Kiran, N.S.; Dobrev, P.I.; Zahajská, L.; Filepová, R.; Motyka, V.; Müller, K.; Kaminek, M. Distinct metabolism of N-glucosides of isopentenyladenine and trans-zeatin determines cytokinin metabolic spectrum in Arabidopsis. New Phytol. 2020, 225, 2423–2438. [Google Scholar] [CrossRef]
- Kojima, M.; Makita, N.; Miyata, K.; Yoshino, M.; Iwase, A.; Ohashi, M.; Surjana, A.; Kudo, T.; Takeda-Kamiya, N.; Toyooka, K.; et al. A cell wall–localized cytokinin/purine riboside nucleosidase is involved in apoplastic cytokinin metabolism in Oryza sativa. Proc. Natl. Acad. Sci. USA 2023, 120, e2217708120. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, A.W. Changes in growth-substance contents during growth of wheat grains. Ann. Appl. Biol. 1972, 72, 327–334. [Google Scholar] [CrossRef]
- Jameson, P.E.; McWha, J.A.; Wright, G.J. Cytokinins and changes in their activity during the development of grains of wheat (Triticum aestivum L.). Zeit. Pflanzenphysiol. 1982, 106, 27–36. [Google Scholar] [CrossRef]
- Lenton, J.R.; Appleford, N.E.J. Cytokinins and early growth in wheat. Monogr. Br. Plant Growth Regul. Group 1986, 14, 99–113. [Google Scholar]
- Nguyen, H.N.; Perry, L.; Kisiala, A.; Olechowski, H.; Emery, R.J.N. Cytokinin activity during early kernel development corresponds positively with yield potential and later stage ABA accumulation in field-grown wheat (Triticum aestivum L.). Planta 2020, 252, 76. [Google Scholar] [CrossRef]
- van Voorthuizen, M.J.; Song, J.; Novák, O.; Jameson, P.E. Plant growth regulators INCYDE and TD-K underperform in cereal field trials. Plants 2021, 10, 2309. [Google Scholar] [CrossRef]
- Jabłoński, B.; Ogonowska, H.; Szala, K.; Bajguz, A.; Orczyk, W.; Nadolska-Orczyk, A. Silencing of TaCKX1 mediates expression of other TaCKX genes to increase yield parameters in wheat. Int. J. Mol. Sci. 2020, 21, 4809. [Google Scholar] [CrossRef]
- Sayavedra-Soto, L.A.; Durley, R.C.; Trione, E.J.; Morris, R.O. Identification of cytokinins in young wheat spikes (Triticum aestivum cv. Chinese Spring). J. Plant Growth Regul. 1988, 7, 169–178. [Google Scholar] [CrossRef]
- Kudo, T.; Makita, N.; Kojima, M.; Tokunaga, H.; Sakakibara, H. Cytokinin activity of cis-zeatin and phenotypic alterations induced by overexpression of putative cis-zeatin-O-glucosyltransferase in rice. Plant Physiol. 2012, 160, 319–331. [Google Scholar] [CrossRef]
- Faix, B.; Radchuk, V.; Nerlich, A.; Hümmer, C.; Radchuk, R.; Emery, R.J.; Keller, H.; Götz, K.P.; Weschke, W.; Geigenberger, P.; et al. Barley grains, deficient in cytosolic small subunit of ADP-glucose pyrophosphorylase, reveal coordinate adjustment of C:N metabolism mediated by an overlapping metabolic-hormonal control. Plant J. 2012, 69, 1077–1093. [Google Scholar] [CrossRef]
- Gibb, M.; Kisiala, A.B.; Morrison, E.N.; Emery, R.J.N. The origins and roles of methylthiolated cytokinins: Evidence from among life kingdoms. Front. Cell Dev. Biol. 2020, 8, 605672. [Google Scholar] [CrossRef] [PubMed]
- Powell, A.F.; Paleczny, A.R.; Olechowski, H.; Emery, R.J.N. Changes in cytokinin form and concentration in developing kernels correspond with variation in yield among field-grown barley cultivars. Plant Physiol. Biochem. 2013, 64, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Holubová, K.; Hensel, G.; Vojta, P.; Tarkowski, P.; Bergougnoux, V.; Galuszka, P. Modification of barley plant productivity through regulation of cytokinin content by reverse-genetics approaches. Front. Plant Sci. 2018, 9, 1676. [Google Scholar] [CrossRef]
- Takagi, M.; Yokota, T.; Murofushi, N.; Ota, Y.; Takahashi, N. Fluctuation of endogenous cytokinin contents in rice during its life cycle. Quantification of cytokinins by selected ion monitoring using deuterium-labelled internal standards. Agric. Biol. Chem. 1985, 49, 3271–3277. [Google Scholar]
- Takagi, M.; Yokota, T.; Murofushi, N.; Takahashi, N. Quantitative changes of free-base, riboside, ribotide and glucoside cytokinins in developing rice grains. Plant Growth Regul. 1989, 8, 349–364. [Google Scholar] [CrossRef]
- Koshimizu, K.; Matsubara, S.; Kusaki, T.; Mitsui, T. Isolation of a new cytokinin from immature yellow lupin seeds, Agric. Biol. Chem. 1967, 31, 795–801. [Google Scholar]
- Davey, J.E.; van Staden, J. A cytokinin complex in the developing fruits of Lupinus albus. Physiol. Plant 1977, 39, 221–224. [Google Scholar] [CrossRef]
- Davey, J.E.; van Staden, J. Cytokinin activity in Lupinus albus. III. Distribution in fruits. Physiol. Plant 1978, 43, 87–93. [Google Scholar] [CrossRef]
- Summons, R.E.; Entsch, B.; Parker, C.W.; Letham, D.S. Mass spectrometric analysis of cytokinins in plant tissues. III. Quantitation of the cytokinin glycoside complex of lupin pods by stable isotope dilution. FEBS Lett. 1979, 107, 21–25. [Google Scholar] [CrossRef]
- Summons, R.E.; Letham, D.S.; Gollnow, D.I.; Parker, C.W.; Entsch, B.; MacLeod, J.K.; Rolfe, B.G. Cytokinin translocation and metabolism in species of the Leguminosae: Studies in relation to shoot and nodule development. In The Metabolism and Molecular Activities of Cytokinins; Guern, J., Peaud-Lenoel, C., Eds.; Springer: Berlin, Germany, 1981; pp. 69–79. [Google Scholar]
- Emery, R.J.N.; Leport, L.; Barton, J.E.; Turner, N.C.; Atkins, C.A. cis-isomers of cytokinins predominate in chickpea seeds throughout their development. Plant Physiol. 1998, 117, 1515–1523. [Google Scholar] [CrossRef]
- Quesnelle, P.E.; Emery, R.J.N. cis-Cytokinins that predominate in Pisum sativum during early embryogenesis will accelerate embryo growth in vitro. Can. J. Bot. 2007, 85, 91–103. [Google Scholar] [CrossRef]
- Long, C.; Held, M.; Hayward, A.; Nisler, J.; Spíchal, L.; Emery, R.J.N.; Moffatt, B.A.; Guinel, F.C. Seed development, seed germination and seedling growth in the R50 (sym16) pea mutant are not directly linked to altered cytokinin homeostasis. Physiol. Plant 2012, 145, 341–359. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.E.; Ninan, A.; Cripps-Guazzone, N.; Shaw, M.; Song, J.; Ík, I.P.; Novák, O.E.; Tegeder, M.; Jameson, P.E. Concurrent overexpression of amino acid permease AAP1(3a) and SUT1 sucrose transporter in pea resulted in increased seed number and changed cytokinin and protein levels. Funct. Plant Biol. 2021, 48, 889–904. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.; Nishiyama, R.; Watanabe, Y.; Vankova, R.; Tanaka, M.; Seki, M.; Ham, I.H.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Tran, L.-S.P. Identification and expression analysis of cytokinin metabolic genes in soybean under normal and drought conditions in relation to cytokinin levels. PLoS ONE 2012, 7, e42411. [Google Scholar] [CrossRef]
- Kambhampati, S.; Kurepin, L.V.; Kisiala, A.B.; Bruce, K.E.; Cober, E.R.; Morrison, M.J.; Emery, R.J.N. Yield associated traits correlate with cytokinin profiles in developing pods and seeds of field-grown soybean cultivars. Field Crops Res. 2017, 214, 175–184. [Google Scholar] [CrossRef]
- Nguyen, H.N.; Kambhampati, S.; Kisiala, A.; Seegobin, M.; Emery, R.J.N. The soybean (Glycine max L.) cytokinin oxidase/dehydrogenase multigene family; identification of natural variations for altered cytokinin content and seed yield. Plant Direct 2021, 5, e00308. [Google Scholar] [CrossRef]
- Schmitz, R.Y.; Skoog, F.; Playtis, A.J.; Leonard, N.J. Cytokinins: Synthesis and biological activity of geometric and position isomers of zeatin. Plant Physiol. 1972, 50, 702–705. [Google Scholar] [CrossRef]
- Mok, M.C.; Mok, D.W.S.; Armstrong, D.J. Differential cytokinin structure-activity relationships in Phaseolus. Plant Physiol. 1978, 61, 72–75. [Google Scholar] [CrossRef]
- Kamínek, M.; Pačes, V.; Corse, J.; Challice, J.S. Effect of stereospecific hydroxylation of N6-(D2-isopentenyl)adenosine on cytokinin activity. Planta 1979, 145, 239–243. [Google Scholar] [CrossRef]
- Tay, S.A.B.; McLeod, J.K.; Palni, L.M.S. On the reported occurrence of cis-zeatin riboside as a free cytokinin in tobacco shoots. Plant Sci. 1986, 43, 131–134. [Google Scholar] [CrossRef]
- Schäfer, M.; Brütting, C.; Meza-Canales, I.D.; Großkinsky, D.K.; Vankova, R.; Baldwin, I.T.; Meldau, S. The role of cis-zeatin-type cytokinins in plant growth regulation and mediating responses to environmental interactions. J. Exp. Bot. 2015, 66, 4873–4884. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Kaur, P.; Gaikwad, K. Role of cytokinins in seed development in pulses and oilseed crops: Current status and future perspective. Front. Genet. 2022, 13, 940660. [Google Scholar] [CrossRef] [PubMed]
- Bassil, N.V.; Mok, D.W.S.; Mok, M.C. Partial purification of a cis-trans-isomerase of zeatin from immature seed of Phaseolus vulgaris L. Plant Physiol. 1993, 102, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Hluska, T.; Šebeka, M.; Lenobel, R.; Frébort, I.; Galuszka, P. Purification of maize nucleotide pyrophosphatase/phosphodiesterase casts doubt on the existence of zeatin cis–trans isomerase in plants. Front. Plant Sci. 2017, 8, 1473. [Google Scholar] [CrossRef]
- Hluska, T.; Hlusková, L.; Emery, R.J.N. The hulks and the deadpools of the cytokinin universe: A dual strategy for cytokinin production, translocation, and signal transduction. Biomolecules 2021, 1, 209. [Google Scholar] [CrossRef]
- Yonekura-Sakakibara, K.; Kojima, M.; Yamaya, T.; Sakakibara, H. Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiol. 2004, 134, 1654–1661. [Google Scholar] [CrossRef]
- Choi, J.; Lee, J.; Kim, K.; Cho, M.; Ryu, H.; An, G.; Hwang, I. Functional identification of OsHk6 as a homotypic cytokinin receptor in rice with preferential affinity for iP. Plant Cell Physiol. 2012, 53, 1334–1343. [Google Scholar] [CrossRef]
- Mauk, C.S.; Langille, A.R. Physiology of tuberization in Solanum tuberosum L. Plant Physiol. 1978, 62, 438–442. [Google Scholar] [CrossRef]
- Nicander, B.; Bjorkman, P.O.; Tillberg, E. Identification of an N-glucoside of cis-zeatin from potato tuber sprouts. Plant Physiol. 1995, 109, 513–516. [Google Scholar] [CrossRef]
- Lomin, S.N.; Myakushina, Y.A.; Kolachevskaya, O.O.; Getman, I.A.; Arkhipov, D.V.; Savelieva, E.M.; Osolodkin, D.I.; Romanov, G.A. Cytokinin perception in potato: New features of canonical players. J. Exp. Bot. 2018, 69, 3839–3853. [Google Scholar] [CrossRef]
- Tan, S.; Debellé, F.; Gamas, P.; Frugier, F. Diversification of cytokinin phosphotransfer signaling genes in Medicago truncatula and other legume genomes. BMC Genom. 2019, 20, 373. [Google Scholar] [CrossRef]
- Martin, R.C.; Mok, M.C.; Habben, J.E.; Mok, D.W. A maize cytokinin gene encoding an O-glucosyltransferase specific to cis-zeatin. Proc. Natl. Acad. Sci. USA 2001, 98, 5922–5926. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Jiang, L.; Jameson, P.E. Co-ordinate regulation of cytokinin gene family members during flag leaf and reproductive development in wheat. BMC Plant Biol. 2012, 12, 78. [Google Scholar] [CrossRef] [PubMed]
- Martin, R.C.; Mok, M.C.; Mok, D.W. Isolation of a cytokinin gene, ZOG1, encoding zeatin O-glucosyltransferase from Phaseolus lunatus. Proc. Natl. Acad. Sci. USA 1999, 96, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Zalabák, D.; Galuszka, P.; Mrízová, K.; Podlesáková, K.; Gu, R.; Frébortová, J. Biochemical characterization of the maize cytokinin dehydrogenase family and cytokinin profiling in developing maize plantlets in relation to the expression of cytokinin dehydrogenase genes. Plant Physiol. Biochem. 2014, 74, 283–293. [Google Scholar] [CrossRef]
- Summons, R.E.; MacLeod, J.K.; Parker, C.W.; Letham, D.S. The occurrence of raphanatin as an endogenous cytokinin in radish seed: Identification and quantitation by GC-MS using deuterium-labelled standards. FEBS Lett. 1977, 82, 211–214. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, J.; Song, J.; Jameson, P.E. Cytokinin glucosyl transferases, key regulators of cytokinin homeostasis, have potential value for wheat improvement. Plant Biotech J. 2021, 19, 878–896. [Google Scholar] [CrossRef]
- Tsago, Y.; Chen, Z.; Cao, H.; Sunusi, M.; Khan, A.U.; Shi, C.; Jin, X. Rice gene, OsCKX2-2, regulates inflorescence and grain size by increasing endogenous cytokinin content. Plant Growth Regul. 2020, 92, 283–294. [Google Scholar] [CrossRef]
- Beever, J.; Woolhouse, H. Increased cytokinin from root system of Perilla frutescens and flower and fruit development. Nature New Biol. 1973, 246, 31–32. [Google Scholar] [CrossRef]
- Letham, D.S.; Williams, M.W. Regulators of cell division in plant tissues. VUI. The cytokinins of the apple fruit. Physiol. Plant. 1969, 22, 925–936. [Google Scholar] [CrossRef]
- Letham, D.S. Cytokinins as Phytohormones—Sites of Biosynthesis, Translocation, and Function of Translocated Cytokinin. In Cytokinins: Chemistry, Activity, and Function; Mok, D.W., Mok, M.C., Eds.; CRC Press: Boca Raton, FL, USA, 1994; Chapter 5; pp. 57–80. [Google Scholar]
- Hahn, H.; de Zacks, R.; Kende, H. Cytokinin formation in pea seeds. Naturwissenschaften 1974, 61, 170. [Google Scholar] [CrossRef] [PubMed]
- Krechting, H.C.; Varga, A.; Bruinsma, J. Absence of cytokinin biosynthesis in pea seeds developing in vitro. Z. Pflanzenphysiol. 1978, 87, 91–93. [Google Scholar] [CrossRef]
- Van Staden, J.; Button, J. The cytokinin content of aseptically cultured pea fruits. Z. Pflanzenphysiol. 1978, 87, 129–135. [Google Scholar] [CrossRef]
- Miyawaki, K.; Matsumoto-Kitano, M.; Kakimoto, T. Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: Tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J. 2004, 37, 128–138. [Google Scholar] [CrossRef] [PubMed]
- Noodén, L.D.; Letham, D.S. Translocation of zeatin riboside and zeatin in soybean explants. J. Plant Growth Regul. 1983, 2, 265–279. [Google Scholar] [CrossRef]
- Jameson, P.E.; Letham, D.S.; Zhang, R.; Parker, C.W.; Badenoch-Jones, J. Cytokinin translocation and metabolism in lupin species. I. Zeatin riboside introduced into the xylem at the base of Lupinus angustifolius stems. Aust. J. Plant Physiol. 1987, 14, 695–718. [Google Scholar] [CrossRef]
- Singh, S.; Letham, D.S.; Jameson, P.E.; Zhang, R.; Parker, C.W.; Badenoch-Jones, J.; Noodén, L.D. Cytokinin biochemistry in relation to leaf senescence. IV. Cytokinin metabolism in soybean explants. Plant Physiol. 1988, 88, 788–794. [Google Scholar] [CrossRef]
- Zhang, R.; Letham, D.S. Cytokinin translocation and metabolism in lupin species. III. Translocation of xylem cytokinin into the seeds of lateral shoots of Lupinus angustifolius. Plant Sci. 1990, 70, 65–71. [Google Scholar] [CrossRef]
- Radchuk, V.; Belew, Z.M.; Gündel, A.; Mayer, S.; Hilo, A.; Hensel, G.; Sharma, R.; Neumann, K.; Ortleb, S.; Wagner, S.; et al. SWEET11b transports both sugar and cytokinin in developing barley grains. Plant Cell 2023, 35, 2186–2207. [Google Scholar] [CrossRef]
- Pate, J.S.; Sharkey, P.J.; Lewis, O.A.M. Phloem bleeding from legume fruits -a technique for study of fruit nutrition. Planta 1974, 120, 229–243. [Google Scholar] [CrossRef]
- Taylor, J.S.; Thompson, B.; Pate, J.S.; Atkins, C.A.; Pharis, R.P. Cytokinins in the phloem sap of white lupin (Lupinus albus L.). Plant Physiol. 1990, 94, 1714–1720. [Google Scholar] [CrossRef] [PubMed]
- Weber, H.; Borisjuk, L.; Wobus, U. Molecular physiology of legume seed development. Ann. Rev. Plant Biol. 2005, 56, 253–279. [Google Scholar] [CrossRef] [PubMed]
- Slater, S.M.H.; Yuan, H.Y.; Lulsdorf, M.M. Comprehensive hormone profiling of the developing seeds of four grain legumes. Plant Cell Rep. 2013, 32, 1939–1952. [Google Scholar] [CrossRef] [PubMed]
- Sundaresan, V. Control of seed size in plants. Proc. Natl. Acad. Sci. USA 2005, 102, 17887–17888. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Kisiala, A.; Andreas, P.; Emery, R.J.N.; Narine, S. Soybean seed development: Fatty acid and phytohormone metabolism and their interactions. Curr. Genomics 2016, 17, 241–260. [Google Scholar] [CrossRef]
- Burrows, W.J.; Carr, D.J. Cytokinin content of pea seeds during their growth and development. Physiol. Plant 1970, 23, 1064–1070. [Google Scholar] [CrossRef]
- Ninan, A.S.; Shah, A.; Song, J.; Jameson, P.E. Differential gene expression in the meristem and during early fruit growth of Pisum sativum L. identifies potential targets for breeding. Int. J. Mol. Sci. 2017, 18, 428. [Google Scholar] [CrossRef]
- Ozga, J.A.; van Huizen, R.; Reinecke, D.M. Hormone and seed-specific regulation of pea fruit growth. Plant Physiol. 2002, 128, 1379–1389. [Google Scholar] [CrossRef]
- Wang, L.; Ruan, Y.L. Regulation of cell division and expansion by sugar and auxin signaling. Front. Plant Sci. 2013, 4, 163. [Google Scholar] [CrossRef]
- Weber, H.; Borisjuk, L.; Heim, U.; Buchner, P.; Wobus, U. Seed coat associated invertases of Fava bean control both unloading and storage functions: Cloning of cDNAs and cell type-specific expression. Plant Cell 1995, 7, 1835–1846. [Google Scholar]
- Götz, K.-P.; Staroske, N.; Radchuk, R.; Emery, R.N.; Wutzke, K.-D.; Herzog, H.; Weber, H. Uptake and allocation of carbon and nitrogen in Vicia narbonensis plants with increased seed sink strength achieved by seed specific expression of an amino acid permease. J. Exp. Bot. 2007, 58, 3183–3195. [Google Scholar] [CrossRef] [PubMed]
- Rijavec, T.; Kovac, M.; Kladnik, A.; Chourey, P.S.; Dermastia, M. A comparative study on the role of cytokinins in caryopsis development in the maize miniature1 seed mutant and its wild type. J. Integr. Plant Biol. 2009, 51, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.-L. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Ann. Rev. Plant Biol. 2014, 65, 33–67. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, J.; Huang, Z.; Wang, Z.; Zhu, Q.; Liu, L. Correlation of cytokinin levels in the endosperms and roots with cell number and cell division activity during endosperm development in rice. Ann Bot. 2002, 90, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Murofushi, N.; Inoue, A.; Watanabe, N.; Yasua, O.; Takahashi, N. Identification of cytokinins in root exudate of the rice plant. Plant Cell Physiol. 1983, 24, 87–92. [Google Scholar] [CrossRef]
- Parker, C.W.; Badenoch-Jones, J.; Letham, D.S. Radioimmunoassay for quantifying the cytokinins cis-zeatin and cis-zeatin riboside and its application to xylem sap samples. J. Plant Growth Regul. 1989, 8, 93–105. [Google Scholar] [CrossRef]
- Badenoch-Jones, J.; Parker, C.W.; Letham, D.S.; Singh, S. Effect of cytokinins supplied via the xylem at multiples of endogenous concentrations on transpiration and senescence in derooted seedlings of oat and wheat. Plant Cell Environ. 1996, 19, 504–516. [Google Scholar] [CrossRef]
- Morris, R.O. Hormonal regulation of seed development. In Cellular and Molecular Biology of Plant Seed Development; Larkins, B.A., Vasil, I.K., Eds.; Springer: Dordrecht, The Netherlands, 1997; Advances in cellular and molecular biology of plants; Volume 4, pp. 117–148. [Google Scholar]
- Banowetz, G.M.; Ammar, K.; Chen, D.D. Post anthesis temperatures influence cytokinin accumulation and wheat kernel weight. Plant Cell Environ. 1999, 22, 309–316. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, J.; Song, J.; Jameson, P.E. Cytokinin dehydrogenase: A genetic target for yield improvement in wheat. Plant Biotech J. 2020, 18, 614–630. [Google Scholar] [CrossRef]
- Hess, J.R.; Carman, J.G.; Banowetz, G.M. Hormones in wheat kernels during embryony. J. Plant Physiol. 2002, 159, 379–386. [Google Scholar] [CrossRef]
- Gao, X.; Francis, D.; Ormrod, J.C.; Bennett, M.D. Changes in cell number and cell division activity during endosperm development in allohexaploid wheat, Triticum aestivum L. J. Exp. Bot. 1992, 43, 1603–1609. [Google Scholar] [CrossRef]
- Morris, R.O.; Blevins, D.G.; Dietrich, J.T.; Durley, R.C.; Gelvin, S.B.; Gray, J.; Hommes, N.G.; Kaminek, M.; Mathews, L.J.; Meilan, R.; et al. Cytokinins in plant pathogenic bacteria and developing cereal grains. Funct. Plant Biol. 1993, 20, 621–637. [Google Scholar] [CrossRef]
- Guo, L.; Luo, X.; Li, M.; Joldersma, D.; Plunkert, M.; Liu, Z. Mechanism of fertilization-induced auxin synthesis in the endosperm for seed and fruit development. Nat. Commun. 2022, 13, 3985. [Google Scholar] [CrossRef] [PubMed]
- Jenner, C.F.; Rathjen, A.J. Physiological basis of genetic differences in the growth of grains of six varieties of wheat. Funct. Plant Biol. 1978, 5, 249–262. [Google Scholar] [CrossRef]
- Jameson, P.E. Cytokinins and Development of Starch Accumulating Structures. Ph. D. Thesis, University of Canterbury, Christchurch, New Zealand, 1982. [Google Scholar]
- Mizutani, M.; Naganuma, T.; Tsutsumi, K.; Saitoh, Y. The syncytium-specific expression of the Orysa;KRP3 CDK inhibitor: Implication of its involvement in the cell cycle control in the rice (Oryza sativa L.) syncytial endosperm. J. Exp. Bot. 2010, 61, 791–798. [Google Scholar] [CrossRef]
- Zhang, H.; Tan, G.; Yang, L.; Yang, J.; Zhang, J.; Zhao, B. Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice. Plant Physiol. Biochem. 2009, 47, 195–204. [Google Scholar] [CrossRef]
- Doll, N.M.; Depége-Fargeix, N.; Rogowsky, P.M.; Widiez, T. Signaling in early maize kernel development. Mol. Plant 2017, 10, 375–388. [Google Scholar] [CrossRef]
- Wu, H.; Becraft, P.W.; Dannenhoffer, J.M. Maize endosperm development: Tissues, cells, molecular regulation and grain quality improvement. Front. Plant Sci. 2022, 13, 852082. [Google Scholar] [CrossRef]
- Cheikh, N.; Jones, R.J. Disruption of maize kernel growth and development by heat stress (role of cytokinin/abscisic acid balance). Plant Physiol. 1994, 106, 45–51. [Google Scholar] [CrossRef]
- Brugière, N.; Jiao, S.; Hantke, S.; Zinselmeier, C.; Roessler, J.A.; Niu, X.; Jones, R.J.; Habben, J.E. Cytokinin oxidase gene expression in maize is localized to the vasculature, and is induced by cytokinins, abscisic acid, and abiotic stress. Plant Physiol. 2003, 132, 1228–1240. [Google Scholar] [CrossRef]
- Brugière, N.; Humbert, S.; Rizzo, N.; Bohn, J.; Habben, J.E. A member of the maize isopentenyl transferase gene family, Zea mays isopentenyl transferase 2 (ZmIPT2), encodes a cytokinin biosynthetic enzyme expressed during kernel development. Cytokinin biosynthesis in maize. Plant Mol. Biol. 2008, 67, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Rijavec, T.; Jain, M.; Dermastia, M.; Chourey, P.S. Spatial and temporal profiles of cytokinin biosynthesis and accumulation in developing caryopses of maize. Ann. Bot. 2011, 107, 1235–1245. [Google Scholar] [CrossRef]
- Lur, H.S.; Setter, T.L. Role of auxin in maize endosperm development (timing of nuclear dna endoreduplication, zein expression, and cytokinin). Plant Physiol. 1993, 103, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.H.; Chourey, P. Genetic evidence that invertase-mediated release of hexoses is critical for appropriate carbon partitioning and normal seed development in maize. Theor. Appl. Genet. 1999, 98, 485–495. [Google Scholar] [CrossRef]
- Vyroubalová, S.; Václavíková, K.; Turecková, V.; Novák, O.; Smehilová, M.; Hluska, T.; Ohnoutková, L.; Frébort, I.; Galuszka, P. Characterization of new maize genes putatively involved in cytokinin metabolism and their expression during osmotic stress in relation to cytokinin levels. Plant Physiol. 2009, 151, 433–447. [Google Scholar] [CrossRef]
- Chen, J.; Lausser, A.; Dresselhaus, T. Hormonal responses during early embryogenesis in maize. Biochem. Soc. Trans. 2014, 42, 325–331. [Google Scholar] [CrossRef]
- Fu, Y.; Li, S.; Xu, L.; Ji, C.; Xiao, Q.; Shi, D.; Wang, G.; Wang, W.; Wang, J.; Wang, J.; et al. RNA sequencing of cleanly isolated early endosperms reveals coenocyte-to-cellularization transition features in maize. Seed Biol. 2023, 2, 8. [Google Scholar] [CrossRef]
- Zhang, R.; Tucker, M.R.; Burton, R.A.; Shirley, N.J.; Little, A.; Morris, J.; Milne, L.; Houston, K.; Hedley, P.E.; Waugh, R.; et al. The dynamics of transcript abundance during cellularization of developing barley endosperm. Plant Physiol. 2016, 170, 1549–1565. [Google Scholar] [CrossRef]
- Thiel, J.; Riewe, D.; Rutten, T.; Melzer, M.; Friedel, S.; Bollenbeck, F.; Weschke, W.; Weber, H. Differentiation of endosperm transfer cells of barley: A comprehensive analysis at the micro-scale. Plant J. 2012, 71, 639–655. [Google Scholar] [CrossRef]
- Mrízová, K.; Jiskrová, E.; Vyroubalová, Š.; Novák, O.; Ohnoutková, L.; Pospíšilová, H.; Frébort, I.; Harwood, W.A.; Galuszka, P. Overexpression of cytokinin dehydrogenase genes in barley (Hordeum vulgare cv. Golden Promise) fundamentally affects morphology and fertility. PLoS ONE 2013, 8, e79029. [Google Scholar] [CrossRef]
- Gasparis, S.; Przyborowski, M.; Kała, M.; Nadolska-Orczyk, A. Knockout of the HvCKX1 or HvCKX3 gene in barley (Hordeum vulgare L.) by RNA-guided Cas9 nuclease affects the regulation of cytokinin metabolism and root morphology. Cells 2019, 8, 782. [Google Scholar] [CrossRef] [PubMed]
- Monat, C.; Padmarasu, S.; Lux, T.; Wicker, T.; Gundlach, H.; Himmelbach, A.; Ens, J.; Li, C.; Muehlbauer, G.J.; Schulman, A.H.; et al. TRITEX: Chromosome-scale sequence assembly of Triticeae genomes with open-source tools. Genome Biol. 2019, 20, 284. [Google Scholar] [CrossRef] [PubMed]
- Yamburenko, M.V.; Kieber, J.J.; Schaller, G.E. Dynamic patterns of expression for genes regulating cytokinin metabolism and signaling during rice inflorescence development. PLoS ONE 2017, 12, e0176060. [Google Scholar] [CrossRef] [PubMed]
- Day, R.C.; Herridge, R.P.; Ambrose, B.A.; Macknight, R.C. Transcriptome analysis of proliferating Arabidopsis endosperm reveals biological implications for the control of syncytial division, cytokinin signaling, and gene expression regulation. Plant Physiol. 2008, 148, 1964–1984. [Google Scholar] [CrossRef]
- Chen, L.; Jameson, G.B.; Guo, Y.; Song, J.; Jameson, P.E. The LONELY GUY gene family: From mosses to wheat, the key to the formation of active cytokinins in plants. Plant Biotechnol. J. 2022, 20, 625–645. [Google Scholar] [CrossRef]
- Hu, H.; Wang, P.; Angessa, T.T.; Zhang, X.Q.; Chalmers, K.J.; Zhou, G.; Hill, C.B.; Jia, Y.; Simpson, C.; Fuller, J.; et al. Genomic signatures of barley breeding for environmental adaptation to the new continents. Plant Biotechnol. J. 2023, 21, 1719–1721. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Z.; Zhang, R.; Yang, C.; Zhang, X.; Chang, S.; Chen, Q.; Rossi, V.; Zhao, L.; Xiao, J.; et al. Type I MADS-box transcription factor TaMADS-GS regulates grain size by stabilizing cytokinin signalling during endosperm cellularization in wheat. Plant Biotechnol. J. 2023; ahead of print. [Google Scholar] [CrossRef]
- Radchuk, V.; Borisjuk, L. Physical, metabolic and developmental functions of the seed coat. Front. Plant Sci. 2014, 5, 510. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jameson, P.E. Cytokinin Translocation to, and Biosynthesis and Metabolism within, Cereal and Legume Seeds: Looking Back to Inform the Future. Metabolites 2023, 13, 1076. https://doi.org/10.3390/metabo13101076
Jameson PE. Cytokinin Translocation to, and Biosynthesis and Metabolism within, Cereal and Legume Seeds: Looking Back to Inform the Future. Metabolites. 2023; 13(10):1076. https://doi.org/10.3390/metabo13101076
Chicago/Turabian StyleJameson, Paula E. 2023. "Cytokinin Translocation to, and Biosynthesis and Metabolism within, Cereal and Legume Seeds: Looking Back to Inform the Future" Metabolites 13, no. 10: 1076. https://doi.org/10.3390/metabo13101076
APA StyleJameson, P. E. (2023). Cytokinin Translocation to, and Biosynthesis and Metabolism within, Cereal and Legume Seeds: Looking Back to Inform the Future. Metabolites, 13(10), 1076. https://doi.org/10.3390/metabo13101076