The Effects of a Short-Term Combined Exercise Program on Liver Steatosis Indices and the Lipidemic and Glycemic Profile in NAFLD Individuals: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design—Procedures
2.2.1. Baseline Measurements
2.2.2. Exercise Training Program
2.2.3. Blood Samples Analysis
2.2.4. Insulin Resistance and Liver Steatosis and Fibrosis Indices
2.2.5. Diet and Physical Activity Control
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stepanova, M.; Rafiq, N.; Makhlouf, H.; Agrawal, R.; Kaur, I.; Younoszai, Z.; McCullough, A.; Goodman, Z.; Younossi, Z.M. Predictors of All-Cause Mortality and Liver-Related Mortality in Patients with Non-Alcoholic Fatty Liver Disease (NAFLD). Dig. Dis. Sci. 2013, 58, 3017–3023. [Google Scholar] [CrossRef] [PubMed]
- Katsarou, A.; Moustakas, I.I.; Pyrina, I.; Lembessis, P.; Koutsilieris, M.; Chatzigeorgiou, A. Metabolic inflammation as an instigator of fibrosis during non-alcoholic fatty liver disease. World J. Gastroenterol. 2020, 26, 1993–2011. [Google Scholar] [CrossRef] [PubMed]
- Gan, L.; Chitturi, S.; Farrell, G.C. Mechanisms and Implications of Age-Related Changes in the Liver: Nonalcoholic Fatty Liver Disease in the Elderly. Curr. Gerontol. Geriatr. Res. 2011, 2011, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Philippou, A.; Chryssanthopοulos, C.; Maridaki, M.; Koutsilieris, M. The role of exercise in obesity. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 2861–2862. [Google Scholar] [CrossRef] [PubMed]
- Thoma, C.; Day, C.P.; Trenell, M.I. Lifestyle interventions for the treatment of non-alcoholic fatty liver disease in adults: A systematic review. J. Hepatol. 2012, 56, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Franco, I.; Bianco, A.; Mirizzi, A.; Campanella, A.; Bonfiglio, C.; Sorino, P.; Notarnicola, M.; Tutino, V.; Cozzolongo, R.; Giannuzzi, V.; et al. Physical Activity and Low Glycemic Index Mediterranean Diet: Main and Modification Effects on NAFLD Score. Results from a Randomized Clinical Trial. Nutrients 2021, 13, 66. [Google Scholar] [CrossRef] [PubMed]
- Iraji, H.; Minasian, V.; Kelishadi, R. Changes in Liver Enzymes and Metabolic Profile in Adolescents with Fatty Liver following Exercise Interventions. Pediatr. Gastroenterol. Hepatol. Nutr. 2021, 24, 54–64. [Google Scholar] [CrossRef]
- Nath, P.; Panigrahi, M.K.; Sahu, M.K.; Narayan, J.; Sahoo, R.K.; Patra, A.A.; Jena, S.; Patnaik, A.K.; Jena, A.; Singh, S.P. Effect of Exercise on NAFLD and Its Risk Factors: Comparison of Moderate versus Low Intensity Exercise. J. Clin. Transl. Hepatol. 2020, 8, 120–126. [Google Scholar] [CrossRef]
- Stine, J.G.; Long, M.T.; Corey, K.E.; Sallis, R.E.; Allen, A.M.; Armstrong, M.J.; Conroy, D.E.; Cuthbertson, D.J.; Duarte-Rojo, A.; Hallsworth, K.; et al. Physical Activity and Nonalcoholic Fatty Liver Disease: A Roundtable Statement from the American College of Sports Medicine. Med. Sci. Sports Exerc. 2023, 55, 1717–1726. [Google Scholar] [CrossRef]
- Vilar-Gomez, E.; Martinez-Perez, Y.; Calzadilla-Bertot, L.; Torres-Gonzalez, A.; Gra-Oramas, B.; Gonzalez-Fabian, L.; Friedman, S.L.; Diago, M.; Romero-Gomez, M. Weight Loss Through Lifestyle Modification Significantly Reduces Features of Nonalcoholic Steatohepatitis. Gastroenterology 2015, 149, 367–378.e5. [Google Scholar] [CrossRef]
- Wong, V.W.-S.; Wong, G.L.-H.; Chan, R.S.-M.; Shu, S.S.-T.; Cheung, B.H.-K.; Li, L.S.; Chim, A.M.-L.; Chan, C.K.-M.; Leung, J.K.-Y.; Chu, W.C.-W.; et al. Beneficial effects of lifestyle intervention in non-obese patients with non-alcoholic fatty liver disease. J. Hepatol. 2018, 69, 1349–1356. [Google Scholar] [CrossRef]
- Sullivan, S.; Kirk, E.P.; Mittendorfer, B.; Patterson, B.W.; Klein, S. Randomized trial of exercise effect on intrahepatic triglyceride content and lipid kinetics in nonalcoholic fatty liver disease. Hepatology 2012, 55, 1738–1745. [Google Scholar] [CrossRef]
- Philippou, A.; Chryssanthopoulos, C.; Maridaki, M.; Dimitriadis, G.; Koutsilieris, M. Exercise Metabolism in Health and Disease. In Cardiorespiratory Fitness in Cardiometabolic Diseases; Springer: Cham, Switzerland, 2019; pp. 57–96. [Google Scholar] [CrossRef]
- Promrat, K.; Kleiner, D.E.; Niemeier, H.M.; Jackvony, E.; Kearns, M.; Wands, J.R.; Fava, J.L.; Wing, R.R. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology 2010, 51, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Croci, I.; Byrne, N.M.; Chachay, V.S.; Hills, A.P.; Clouston, A.D.; O’moore-Sullivan, T.M.; Prins, J.B.; A Macdonald, G.; Hickman, I.J. Independent effects of diet and exercise training on fat oxidation in non-alcoholic fatty liver disease. World J. Hepatol. 2016, 8, 1137–1148. [Google Scholar] [CrossRef] [PubMed]
- Shojaee-Moradie, F.; Cuthbertson, D.J.; Barrett, M.; Jackson, N.C.; Herring, R.; Thomas, E.L.; Bell, J.; Kemp, G.J.; Wright, J.; Umpleby, A.M. Exercise Training Reduces Liver Fat and Increases Rates of VLDL Clearance but Not VLDL Production in NAFLD. J. Clin. Endocrinol. Metab. 2016, 101, 4219–4228. [Google Scholar] [CrossRef] [PubMed]
- Babu, A.F.; Csader, S.; Lok, J.; Gómez-Gallego, C.; Hanhineva, K.; El-Nezami, H.; Schwab, U. Positive Effects of Exercise Intervention without Weight Loss and Dietary Changes in NAFLD-Related Clinical Parameters: A Systematic Review and Meta-Analysis. Nutrients 2021, 13, 3135. [Google Scholar] [CrossRef] [PubMed]
- Fealy, C.E.; Haus, J.M.; Solomon, T.P.J.; Flask, C.A.; McCullough, A.J.; Kirwan, J.P.; Nieuwoudt, S.; Foucher, J.A.; Scelsi, A.R.; Malin, S.K.; et al. Short-term exercise reduces markers of hepatocyte apoptosis in nonalcoholic fatty liver disease. J. Appl. Physiol. 2012, 113, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Haus, J.M.; Solomon, T.P.; Kelly, K.R.; Fealy, C.E.; Kullman, E.L.; Scelsi, A.R.; Lu, L.; Pagadala, M.R.; McCullough, A.J.; Flask, C.A.; et al. Improved Hepatic Lipid Composition Following Short-Term Exercise in Nonalcoholic Fatty Liver Disease. J. Clin. Endocrinol. Metab. 2013, 98, E1181–E1188. [Google Scholar] [CrossRef] [PubMed]
- Malin, S.K.; Mulya, A.; Fealy, C.E.; Haus, J.M.; Pagadala, M.R.; Scelsi, A.R.; Huang, H.; Flask, C.A.; McCullough, A.J.; Kirwan, J.P. Fetuin-A is linked to improved glucose tolerance after short-term exercise training in nonalcoholic fatty liver disease. J. Appl. Physiol. 2013, 115, 988–994. [Google Scholar] [CrossRef]
- Kullman, E.L.; Kelly, K.R.; Haus, J.M.; Fealy, C.E.; Scelsi, A.R.; Pagadala, M.R.; Flask, C.A.; McCullough, A.J.; Kirwan, J.P.; Heiston, E.M.; et al. Short-term aerobic exercise training improves gut peptide regulation in nonalcoholic fatty liver disease. J. Appl. Physiol. 2016, 120, 1159–1164. [Google Scholar] [CrossRef]
- Brzycki, M. Strength Testing—Predicting a One-Rep Max from Reps-to-Fatigue. J. Phys. Educ. Recreat. Dance 2013, 64, 88–90. [Google Scholar] [CrossRef]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Kim, D.; Kim, H.J.; Lee, C.-H.; Yang, J.I.; Kim, W.; Kim, Y.J.; Yoon, J.-H.; Cho, S.-H.; Sung, M.-W.; et al. Hepatic steatosis index: A simple screening tool reflecting nonalcoholic fatty liver disease. Dig. Liver Dis. 2010, 42, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Bedogni, G.; Kahn, H.S.; Bellentani, S.; Tiribelli, C. A simple index of lipid overaccumulation is a good marker of liver steatosis. BMC Gastroenterol. 2010, 10, 98. [Google Scholar] [CrossRef] [PubMed]
- Long, M.T.; Pedley, A.; Colantonio, L.D.; Massaro, J.M.; Hoffmann, U.; Muntner, P.; Fox, C.S. Development and Validation of the Framingham Steatosis Index to Identify Persons with Hepatic Steatosis. Clin. Gastroenterol. Hepatol. 2016, 14, 1172–1180.e2. [Google Scholar] [CrossRef] [PubMed]
- Kahn, H.S. The “lipid accumulation product” performs better than the body mass index for recognizing cardiovascular risk: A population-based comparison. BMC Cardiovasc. Disord. 2005, 5, 26. [Google Scholar] [CrossRef] [PubMed]
- Sterling, R.K.; Lissen, E.; Clumeck, N.; Sola, R.; Correa, M.C.; Montaner, J.; Sulkowski, M.S.; Torriani, F.J.; Dieterich, D.T.; Thomas, D.L.; et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 2006, 43, 1317–1325. [Google Scholar] [CrossRef]
- Angulo, P.; Hui, J.M.; Marchesini, G.; Bugianesi, E.; George, J.; Farrell, G.C.; Enders, F.; Saksena, S.; Burt, A.D.; Bida, J.P.; et al. The NAFLD fibrosis score: A noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology 2007, 45, 846–854. [Google Scholar] [CrossRef]
- Sorbi, D.; Boynton, J.; Lindor, K.D. The Ratio of Aspartate Aminotransferase to Alanine Aminotransferase: Potential Value in Differentiating Nonalcoholic Steatohepatitis from Alcoholic Liver Disease. Am. J. Gastroenterol. 1999, 94, 1018–1022. [Google Scholar] [CrossRef]
- Calori, G.; Lattuada, G.; Ragogna, F.; Garancini, M.P.; Crosignani, P.; Villa, M.; Bosi, E.; Ruotolo, G.; Piemonti, L.; Perseghin, G. Fatty liver index and mortality: The cremona study in the 15th year of follow-up. Hepatology 2011, 54, 145–152. [Google Scholar] [CrossRef]
- Angulo, P.; Kleiner, D.E.; Dam-Larsen, S.; Adams, L.A.; Björnsson, E.S.; Charatcharoenwitthaya, P.; Mills, P.R.; Keach, J.C.; Lafferty, H.D.; Stahler, A.; et al. Liver Fibrosis, but No Other Histologic Features, Is Associated with Long-term Outcomes of Patients with Nonalcoholic Fatty Liver Disease. Gastroenterology 2015, 149, 389–397.e10. [Google Scholar] [CrossRef] [PubMed]
- Van der Windt, D.J.; Sud, V.; Zhang, H.; Tsung, A.; Huang, H. The Effects of Physical Exercise on Fatty Liver Disease. Gene Expr. 2018, 18, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Farzanegi, P.; Dana, A.; Ebrahimpoor, Z.; Asadi, M.; Azarbayjani, M.A. Mechanisms of beneficial effects of exercise training on non-alcoholic fatty liver disease (NAFLD): Roles of oxidative stress and inflammation. Eur. J. Sport Sci. 2019, 19, 994–1003. [Google Scholar] [CrossRef] [PubMed]
- Gidaro, A.; Manetti, R.; Delitala, A.P.; Salvi, E.; Bergamaschini, L.; Vidili, G.; Castelli, R. Prothrombotic and Inflammatory Markers in Elderly Patients with Non-Alcoholic Hepatic Liver Disease before and after Weight Loss: A Pilot Study. J. Clin. Med. 2012, 10, 4906. [Google Scholar] [CrossRef] [PubMed]
- Kirwan, J.P.; del Aguila, L.F. Insulin signalling, exercise and cellular integrity. Biochem. Soc. Trans. 2003, 31, 1281–1285. [Google Scholar] [CrossRef] [PubMed]
- Asp, S.; Daugaard, J.R.; Richter, E.A. Eccentric exercise decreases glucose transporter GLUT4 protein in human skeletal muscle. J. Physiol. 1995, 482, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Del Aguila, L.F.; Claffey, K.P.; Kirwan, J.P. TNF-α impairs insulin signaling and insulin stimulation of glucose uptake in C2C12 muscle cells. Am. J. Physiol -Endocrinol. Metab. 1999, 276, E849–E855. [Google Scholar] [CrossRef]
- Stožer, A.; Vodopivc, P.; Križančić Bombek, L. Pathophysiology of Exercise-Induced Muscle Damage and Its Structural, Functional, Metabolic, and Clinical Consequences. Physiol. Res. 2020, 69, 565–598. [Google Scholar] [CrossRef]
- Gakis, A.G.; Nomikos, T.; Philippou, A.; Antonopoulou, S. The Involvement of Lipid Mediators in the Mechanisms of Exercise-Induced Muscle Damage. Physiologia 2023, 3, 305–328. [Google Scholar] [CrossRef]
- Schoenfeld, B.J. The Mechanisms of Muscle Hypertrophy and Their Application to Resistance Training. J. Strength Cond. Res. 2010, 24, 2857–2872. [Google Scholar] [CrossRef]
- Grant, A.; Gow, I.; Zammit, V.; Shennan, D. Regulation of protein synthesis in lactating rat mammary tissue by cell volume. Biochim. Biophys. Acta BBA-Gen. Subj. 2000, 1475, 39–46. [Google Scholar] [CrossRef]
- Millar, I.; Barber, M.; Lomax, M.; Travers, M.; Shennan, D. Mammary Protein Synthesis Is Acutely Regulated by the Cellular Hydration State. Biochem. Biophys. Res. Commun. 1997, 230, 351–355. [Google Scholar] [CrossRef]
No of Patient | Type of Drug/Agent | Active Substance (AS) |
---|---|---|
2 | SSRI, anti-inflammatory | escilatopram, mesazaline |
4 | anti-hypertensive, anti-inflammatory, anti-hyperlipidemic | ramipril, acetylsalicylic acid atorvastatin |
5 | anti-hypertensive | nebivolol |
6 | anti-hyperlipidemic, anti-hypertensive | simvastatin, olmesartan medoxomil |
7 | anti-hypertensive, anti-inflammatory, anti-hyperlipidemic | furosemide, acetylsalicylic acid, bisoprolol, ramipril, amlodipine besylate, rosuvasta |
8 | anti-hypertensive | olmesartan medoxomil, amlodipine, hydrochlorothiazide |
9 | anti-inflammatory, hypothyroidism | acetylsalicylic acid, Levothyroxine sodium |
12 | anti-diabetic, anti-hypertensive, anti-inflammatory, anti-hyperlipidemic | insulin degludec-iraglutide, insulin glulisine, acetylsalicylic acid, betaxolol, atorvastatin, olmesartan medoxomil |
16 | anti-hyperlipidemic, anti-hypertensive | amlodipine-valsartan, fenofibrate |
19 | antidepressants | citalopram |
Variable | Pre-Intervention | Post-Intervention | Statistics |
---|---|---|---|
Age (yrs) | 47.3 ± 12.3 | ||
Waist circumference (cm) | 113.2 ± 10.8 | 110.4 ± 10.8 | P = 0.000 d = 1.67 CI: 1.96–3.49 |
Hip circumference (cm) | 113.3 ± 8.5 | 112.5 ± 8.6 | P = 0.007 Z value = −2.68 r = 0.42 CI: 0.21–1.24 |
Waist/Hip ratio | 1.00 ± 0.09 | 0.98 ± 0.1 | P = 0.000 d = 0.92 CI: 0.01–0.03 |
Body weight (kg) | 97.1 ± 18.5 | 96.9 ± 18.6 | P = 0.392 d = 0.20 |
BMI (kg/m2) | 32.4 ± 3.4 | 32.39 ± 3.4 | P = 0.397 d = 0.19 |
Triglycerides (mg/dL) | 135 ± 50 | 116 ± 45 | P = 0.046 d = 0.51 CI: 1.18–35.12 |
Total cholesterol (mg/dL) | 195.8 ± 41.8 | 186.9 ± 31.8 | P = 0.039 d = 0.50 CI: 0.50–17.30 |
HDL (mg/dL) | 45.0 ± 13.1 | 43.3 ± 12.7 | P = 0.17 Z value = −1.369 r = 0.22 CI: −0.67–3.93 |
LDL (mg/dL) | 124.0 ± 37.7 | 120.9 ± 30.5 | P = 0.392 d = 0.20 CI: −4.24–10.34 |
AST (U/L) | 24.5 ± 11.1 | 26.0 ± 8.2 | P = 0.38 Z value = −0.886 r = 0.27 CI: −7.10–4.27 |
ALT (U/L) | 31.4 ± 16.8 | 29.7 ± 9.2 | P = 0.561 d = 0.13 CI: −4.56–8.15 |
γ-GT (U/L) | 42.5 ± 69.5 | 29.2 ± 30.9 | P = 0.10 Z value = −1.631 r = 0.26 CI:-5.08–31.68 |
CRP (mg/dL) | 2.6 ± 4.5 | 1.6 ± 1.9 | P = 0.24 Z value = −1.165 r = 0.18 CI: 0–2 |
Albumin (g/dL) | 4.4 ± 0.3 | 1.6 ± 1.9 | P = 0.271 d = 0.25 CI: −0.27–0.08 |
Variable | Cut-off Point | Pre-Intervention | Post-Intervention | Statistics |
---|---|---|---|---|
HSI | <30 >36 | 43.7 ± 4.90 | 42.63 ± 4.0 | P = 0.234 d = 0.28 CI: −0.76–2.94 |
FLI | ≤30 ≥60 | 77.3 ± 18.41 | 71.80 ± 22.3 | P = 0.004 Z value = −2.91 r = 0.46 CI: 1.38–9.52 |
FSI | <23 ≥23 | 93.4 ± 60.90 | 103.85 ± 79.41 | P = 0.510 d = 0.15 CI: |
LAP | <20 ≥80 | 76.9 ± 30.20 | 63.17 ± 27.2 | P = 0.009 d = 0.65 CI: 3.91–23.51 |
FIB-4 | ≤1.3 ≥2.67 | 0.97 ± 0.49 | 1.03 ± 0.6 | P = 0.09 Z value = −1.68 r = 0.27 CI: −0.33–0.21 |
NFS | <−1.455 >0.676 | −0.80 ± 0.96 | −0.88 ± 0.9 | P = 0.71 Z value = −0.37 r = 0.06 CI: −0.28–0.45 |
AAR | >0.80 | 0.87 ± 0.30 | 0.90 ± 0.2 | P = 0.20 Z value = −1.27 r = 0.20 CI: −0.19–0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voudouris, D.; Horianopoulou, M.; Apostolopoulou, Z.; Chryssanthopoulos, C.; Bardopoulou, M.; Maridaki, M.; Vassilakopoulos, T.; Koutsilieris, M.; Philippou, A. The Effects of a Short-Term Combined Exercise Program on Liver Steatosis Indices and the Lipidemic and Glycemic Profile in NAFLD Individuals: A Pilot Study. Metabolites 2023, 13, 1074. https://doi.org/10.3390/metabo13101074
Voudouris D, Horianopoulou M, Apostolopoulou Z, Chryssanthopoulos C, Bardopoulou M, Maridaki M, Vassilakopoulos T, Koutsilieris M, Philippou A. The Effects of a Short-Term Combined Exercise Program on Liver Steatosis Indices and the Lipidemic and Glycemic Profile in NAFLD Individuals: A Pilot Study. Metabolites. 2023; 13(10):1074. https://doi.org/10.3390/metabo13101074
Chicago/Turabian StyleVoudouris, Dimitrios, Maria Horianopoulou, Zoi Apostolopoulou, Costas Chryssanthopoulos, Mari Bardopoulou, Maria Maridaki, Theodoros Vassilakopoulos, Michael Koutsilieris, and Anastassios Philippou. 2023. "The Effects of a Short-Term Combined Exercise Program on Liver Steatosis Indices and the Lipidemic and Glycemic Profile in NAFLD Individuals: A Pilot Study" Metabolites 13, no. 10: 1074. https://doi.org/10.3390/metabo13101074
APA StyleVoudouris, D., Horianopoulou, M., Apostolopoulou, Z., Chryssanthopoulos, C., Bardopoulou, M., Maridaki, M., Vassilakopoulos, T., Koutsilieris, M., & Philippou, A. (2023). The Effects of a Short-Term Combined Exercise Program on Liver Steatosis Indices and the Lipidemic and Glycemic Profile in NAFLD Individuals: A Pilot Study. Metabolites, 13(10), 1074. https://doi.org/10.3390/metabo13101074