Assessment of the Nutritional Value of Stems and Leaves of Australian Adzuki Bean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vegetative Material and Preparation
2.2. Measurement of Proximate Chemical Composition
2.3. Extraction of Phenolics and Measurement of TPC
2.4. Targeted Phenolic Profiling Using LC-MS/MS
2.5. Screening for Acetylcholinesterase Inhibition Activity
2.6. Apparent In Vitro Dry Matter Digestibility
2.7. Rumen Fluid Collection
2.8. Total Gas Production
2.9. Total Methane Production
2.10. Amylase Neutral Detergent Fibre
2.11. Ammonia
2.12. Volatile Fatty Acids
2.13. Data Analysis
3. Results and Discussion
3.1. Proximate Nutritional Composition
3.2. Total Phenolic Contents
3.3. Phenolic Profiling by LC-MS/MS
3.4. Acetylcholinesterase Inhibitory Activity
3.5. In Vitro Digestibility
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manickavasagan, A.S. Adzuki Bean. In Pulses: Processing and Product Development; Manickavasagan, A., Thirunathan, P., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–15. [Google Scholar]
- Yin, Z.-C.; Guo, W.-Y.; Liang, J.; Xiao, H.-Y.; Hao, X.-Y.; Hou, A.-F.; Zong, X.-X.; Leng, T.-R.; Wang, Y.-J.; Wang, Q.-Y.; et al. Effects of multiple N, P, and K fertilizer combinations on adzuki bean (Vigna angularis) yield in a semi-arid region of northeastern China. Sci. Rep. 2019, 9, 19408. [Google Scholar] [CrossRef] [PubMed]
- AgriFutures. Azuki Beans. Available online: https://www.agrifutures.com.au/farm-diversity/azuki-beans/ (accessed on 19 February 2023).
- TrendEconomy. Small Red (Adzuki) Beans (Phaseolus/Vigna angularis), Dried, Shelled, Whether or Not Skinned/Split|Imports and Exports. 2020. Available online: https://trendeconomy.com/data/commodity_h2/071332 (accessed on 19 February 2023).
- Johnson, J.B.; Neupane, P.; Bhattarai, S.P.; Trotter, T.; Naiker, M. Partitioning of nutritional and phytochemical constituents in nine adzuki bean genotypes from Australia. J. Agric. Food Res. 2022, 10, 100398. [Google Scholar] [CrossRef]
- Hacker, R.B.; Robertson, M.J.; Price, R.J.; Bowman, A.M. Evolution of mixed farming systems for the delivery of triple bottom line outcomes: A synthesis of the Grain & Graze program. Anim. Prod. Sci. 2009, 49, 966–974. [Google Scholar] [CrossRef]
- McGrath, S.R.; Thomas, D.T.; Greer, A.W. Dual-purpose cropping: The opportunity for a step change in production in the temperate region of Australia. Anim. Prod. Sci. 2021, 61, i–iv. [Google Scholar] [CrossRef]
- Hashem, N.M.; Gonzalez-Bulnes, A.; Simal-Gandara, J. Polyphenols in Farm Animals: Source of Reproductive Gain or Waste? Antioxidants 2020, 9, 1023. [Google Scholar] [CrossRef] [PubMed]
- Castillo, C.; Pereira, V.; Abuelo, Á.; Hernández, J. Effect of Supplementation with Antioxidants on the Quality of Bovine Milk and Meat Production. Sci. World J. 2013, 2013, 616098. [Google Scholar] [CrossRef] [PubMed]
- Prommachart, R.; Cherdthong, A.; Navanukraw, C.; Pongdontri, P.; Taron, W.; Uriyapongson, J.; Uriyapongson, S. Effect of Dietary Anthocyanin-Extracted Residue on Meat Oxidation and Fatty Acid Profile of Male Dairy Cattle. Animals 2021, 11, 322. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.B.; Neupane, P.; Bhattarai, S.P.; Trotter, T.; Naiker, M. Phenolic profiles and potential anti-Alzheimer activity of Australian adzuki bean. In Proceedings of the 72nd Australasian Grain Science Conference, Canberra, Australia, 24–26 August 2022; p. 48. [Google Scholar]
- Jo, Y.-H.; Yuk, H.-G.; Lee, J.-H.; Kim, J.-C.; Kim, R.; Lee, S.-C. Antioxidant, tyrosinase inhibitory, and acetylcholinesterase inhibitory activities of green tea (Camellia sinensis L.) seed and its pericarp. Food Sci. Biotechnol. 2012, 21, 761–768. [Google Scholar] [CrossRef]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications); US Agricultural Research Service: Washington, DC, USA, 1970. [Google Scholar]
- Batley, R.J.; Johnson, J.B.; Mani, J.S.; Broszczak, D.A.; Naiker, M. Finding alternative uses for Australian rosella (Hibiscus sabdariffa) byproducts: Nutritional potential and in vitro digestibility studies. Anim. Prod. Sci. 2022, 62, 581–589. [Google Scholar] [CrossRef]
- Baethgen, W.E.; Alley, M.M. A manual colorimetric procedure for measuring ammonium nitrogen in soil and plant Kjeldahl digests. Commun. Soil Sci. Plant Anal. 1989, 20, 961–969. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, version 4.2.3; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Fulkerson, W.J.; Neal, J.S.; Clark, C.F.; Horadagoda, A.; Nandra, K.S.; Barchia, I. Nutritive value of forage species grown in the warm temperate climate of Australia for dairy cows: Grasses and legumes. Livest. Sci. 2007, 107, 253–264. [Google Scholar] [CrossRef]
- Durmic, Z.; Moate, P.J.; Jacobs, J.L.; Vadhanabhuti, J.; Vercoe, P.E. In vitro fermentability and methane production of some alternative forages in Australia. Anim. Prod. Sci. 2016, 56, 641–645. [Google Scholar] [CrossRef]
- McCrabb, G.J.; Hendricksen, R.E. Gross energy content of some native pasture grasses in tropical Australia. Asian-Australas. J. Anim. Sci. 2000, 13, 124. [Google Scholar]
- Bovolenta, S.; Spanghero, M.; Dovier, S.; Orlandi, D.; Clementel, F. Chemical composition and net energy content of alpine pasture species during the grazing season. Anim. Feed Sci. Technol. 2008, 140, 164–177. [Google Scholar] [CrossRef]
- Kammes, K.L.; Allen, M.S. Rates of particle size reduction and passage are faster for legume compared with cool-season grass, resulting in lower rumen fill and less effective fiber. J. Dairy Sci. 2012, 95, 3288–3297. [Google Scholar] [CrossRef] [PubMed]
- Vieira, R.F.; Vieira, C.; de Andrade, G.A. Comparações agronômicas de feijões dos gêneros Vigna e Phaseolus com o feijão-comum (Phaseolus vulgaris L.). Pesqui. Agropecuária Bras. 1992, 27, 841–850. [Google Scholar]
- Satter, L.D.; Slyter, L.L. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 1974, 32, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.F.P.; Dixon, R.M.; Costa, D.F.A. Nitrogen recycling and feed efficiency of cattle fed protein-restricted diets. Anim. Prod. Sci. 2019, 59, 2093–2107. [Google Scholar] [CrossRef]
- Russell, J.B.; Rychlik, J.L. Factors That Alter Rumen Microbial Ecology. Science 2001, 292, 1119–1122. [Google Scholar] [CrossRef] [PubMed]
Variety | Protein Content (%) | Gross Energy Content (MJ/kg) | ||
---|---|---|---|---|
Leaves | Stems | Leaves | Stems | |
AVTAB#1 | 19.5 | 7.4 | 17.0 | 14.5 |
AVTAB#3 | 20.8 | 7.4 | 17.6 | 16.1 |
AVTAB#4 | 20.4 | 8.1 | 15.8 | 14.8 |
AVTAB#5 | 21.7 | 7.4 | 18.0 | 15.3 |
AVTAB#6 | 22.3 | 8.9 | 18.0 | 15.6 |
AVTAB#7 | 21.0 | 7.5 | 16.9 | 16.0 |
AVTAB#8 | 20.2 | 7.9 | 17.9 | 16.0 |
AVTAB#9 | 24.0 | 8.9 | 17.7 | 16.0 |
AVTAB#10 | 22.6 | 12.8 | 16.0 | 15.4 |
Compound | AVTAB#1 | AVTAB#3 | AVTAB#4 | AVTAB#5 | AVTAB#6 | AVTAB#7 | AVTAB#8 | AVTAB#9 | AVTAB#10 | ANOVA |
---|---|---|---|---|---|---|---|---|---|---|
Gallic acid | 0.05 ± 0.00 c | 0.16 ± 0.00 ab | 0.13 ± 0.00 b | 0.14 ± 0.01 b | 0.15 ± 0.03 ab | 0.19 ± 0.02 a | 0.11 ± 0.01 b | 0.19 ± 0.00 a | 0.14 ± 0.01 b | <0.001 |
Protocatechuic acid | 0.78 ± 0.06 ab | 0.95 ± 0.08 a | 0.69 ± 0.01 b | 0.80 ± 0.05 ab | 0.80 ± 0.06 ab | 0.42 ± 0.07 c | 0.97 ± 0.03 a | 0.86 ± 0.03 ab | 0.84 ± 0.04 ab | <0.001 |
Gentisic acid | 0.25 ± 0.13 d | 0.47 ± 0.04 c | 0.25 ± 0.01 cd | 0.18 ± 0.04 d | 0.25 ± 0.01 cd | 1.29 ± 0.05 a | 1.30 ± 0.04 a | 0.81 ± 0.09 b | 0.41 ± 0.00 cd | <0.001 |
4-hydroxybenzoic acid | 0.83 ± 0.02 c | 1.35 ± 0.25 ab | 1.18 ± 0.01 bc | 1.34 ± 0.05 ab | 1.01 ± 0.13 bc | 1.24 ± 0.04 bc | 1.67 ± 0.04 a | 1.24 ± 0.08 bc | 1.42 ± 0.10 ab | 0.001 |
Neochlorogenic acid | ND | ND | ND | ND | ND | 0.29 ± 0.07 | ND | ND | ND | - |
(+)-Catechin | ND | ND | ND | ND | 0.05 ± 0.01 | ND | ND | 0.27 ± 0.01 | ND | <0.001 |
Caffeic acid | 0.91 ± 0.01 a | 0.64 ± 0.01 b | 0.47 ± 0.05 cd | 0.46 ± 0.01 cd | 0.72 ± 0.05 b | 0.52 ± 0.01 c | 0.95 ± 0.03 a | 0.63 ± 0.02 b | 0.40 ± 0.01 d | <0.001 |
Chlorogenic acid | 0.32 ± 0.02 a | 0.09 ± 0.00 d | 0.09 ± 0.00 d | 0.08 ± 0.01 d | 0.21 ± 0.01 b | 0.17 ± 0.02 bc | 0.15 ± 0.01 c | 0.16 ± 0.01 bc | 0.18 ± 0.01 bc | <0.001 |
Cyanidin 3-glucoside | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
Salicylic acid | 3.03 ± 0.00 c | 2.49 ± 0.12 d | 1.79 ± 0.04 e | 1.90 ± 0.03 e | 2.67 ± 0.10 d | 8.24 ± 0.02 a | 3.96 ± 0.02 b | 3.87 ± 0.03 b | 2.46 ± 0.05 d | <0.001 |
Vanillic acid | 0.79 ± 0.03 a | 0.29 ± 0.01 cd | 0.37 ± 0.04 cd | 0.59 ± 0.07 b | 0.80 ± 0.09 a | 0.25 ± 0.03 d | 0.30 ± 0.00 cd | 0.39 ± 0.04 cd | 0.43 ± 0.02 bc | <0.001 |
Syringic acid | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
p-Coumaric acid | 1.26 ± 0.07 de | 1.57 ± 0.20 cd | 1.11 ± 0.02 e | 1.31 ± 0.03 de | 1.79 ± 0.15 bc | 2.29 ± 0.08 a | 2.00 ± 0.00 ab | 2.06 ± 0.07 ab | 1.90 ± 0.09 abc | <0.001 |
Malvidin 3-glucoside | 0.04 ± 0.00 a | 0.01 ± 0.00 bc | 0.02 ± 0.00 b | 0.02 ± 0.00 b | 0.01 ± 0.00 b | <0.01 ± 0.00 d | 0.01 ± 0.00 bcd | 0.01 ± 0.00 bcd | <0.01 ± 0.00 cd | <0.001 |
Ferulic acid | 1.27 ± 0.08 d | 1.71 ± 0.19 ab | 1.35 ± 0.01 cd | 1.66 ± 0.09 abc | 1.93 ± 0.00 a | 1.61 ± 0.08 abcd | 1.96 ± 0.11 a | 1.56 ± 0.05 bcd | 1.86 ± 0.02 ab | <0.001 |
Vitexin | 0.06 ± 0.02 cd | 0.21 ± 0.02 b | 0.28 ± 0.02 a | 0.19 ± 0.01 b | 0.19 ± 0.02 b | 0.01 ± 0.00 d | 0.03 ± 0.00 d | 0.03 ± 0.00 d | 0.11 ± 0.01 c | <0.001 |
Rutin | 406.35 ± 4.59 a | 370.10 ± 6.47 b | 316.03 ± 0.94 c | 323.92 ± 1.90 c | 401.81 ± 3.70 a | 167.22 ± 0.83 e | 407.74 ± 17.65 a | 394.20 ± 6.75 ab | 278.44 ± 9.40 d | <0.001 |
Quercetin 3-glucoside | 4.26 ± 0.20 b | 3.66 ± 0.07 cd | 2.64 ± 0.08 ef | 3.43 ± 0.10 d | 4.02 ± 0.28 bc | 4.99 ± 0.19 a | 2.79 ± 0.05 e | 3.66 ± 0.04 cd | 2.20 ± 0.01 f | <0.001 |
Sinapic acid | 0.30 ± 0.05 c | 0.46 ± 0.14 bc | 0.28 ± 0.03 c | 0.44 ± 0.03 bc | 0.59 ± 0.00 bc | 0.28 ± 0.04 c | 0.91 ± 0.11 a | 0.63 ± 0.09 ab | 0.41 ± 0.10 bc | <0.001 |
Ellagic acid | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
Phloridzin | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
Myricetin | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
Resveratrol | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
Pelargonidin | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
Delphinidin | 0.02 ± 0.01 c | 0.12 ± 0.05 bc | 0.11 ± 0.01 bc | 0.01 ± 0.00 c | 0.05 ± 0.01 c | 2.39 ± 0.01 a | 0.21 ± 0.03 b | 0.22 ± 0.08 b | 0.04 ± 0.02 c | <0.001 |
Quercetin | 0.07 ± 0.02 cd | 0.12 ± 0.00 cd | 0.15 ± 0.02 cd | 0.01 ± 0.00 d | 0.02 ± 0.01 d | 2.42 ± 0.17 a | 0.27 ± 0.00 bc | 0.41 ± 0.00 b | 0.02 ± 0.00 d | <0.001 |
Luteolin | 3.22 ± 0.02 c | 3.34 ± 0.24 c | 3.01 ± 0.03 c | 3.51 ± 0.02 c | 2.99 ± 0.06 c | 14.00 ± 0.26 a | 4.79 ± 0.23 b | 5.07 ± 0.08 b | 2.23 ± 0.10 d | <0.001 |
Cyanidin | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
Kaempferol | 0.63 ± 0.09 bc | 0.50 ± 0.01 bc | 0.75 ± 0.01 b | 0.38 ± 0.04 bc | 0.37 ± 0.07 bc | 2.26 ± 0.30 a | 0.54 ± 0.02 bc | 0.48 ± 0.06 bc | 0.27 ± 0.09 c | <0.001 |
Naringenin | 0.16 ± 0.00 e | 0.19 ± 0.00 de | 0.17 ± 0.01 e | 0.18 ± 0.00 de | 0.22 ± 0.00 cd | 0.39 ± 0.02 a | 0.29 ± 0.02 b | 0.25 ± 0.00 c | 0.25 ± 0.01 c | <0.001 |
Apigenin | 0.54 ± 0.02 d | 0.65 ± 0.02 cd | 0.61 ± 0.01 d | 0.63 ± 0.01 d | 0.60 ± 0.01 d | 3.07 ± 0.11 a | 0.79 ± 0.02 c | 1.00 ± 0.03 b | 0.60 ± 0.01 d | <0.001 |
Sum of identified compounds | 425.2 ± 4.8 a | 389.1 ± 6.5 b | 331.5 ± 1.1 c | 341.2 ± 1.8 c | 421.3 ± 2.8 a | 213.5 ± 1.7 e | 431.7 ± 17.4 a | 418.0 ± 6.9 ab | 294.6 ± 10.0 d | <0.001 |
Compound | AVTAB#1 | AVTAB#3 | AVTAB#4 | AVTAB#5 | AVTAB#6 | AVTAB#7 | AVTAB#8 | AVTAB#9 | AVTAB#10 | ANOVA |
---|---|---|---|---|---|---|---|---|---|---|
Gallic acid | 0.05 ± 0.00 d | 0.06 ± 0.01 cd | 0.05 ± 0.00 d | 0.08 ± 0.01 bcd | 0.10 ± 0.00 b | 0.10 ± 0.02 bc | 0.07 ± 0.01 bcd | 0.15 ± 0.01 a | 0.10 ± 0.00 b | <0.001 |
Protocatechuic acid | 0.15 ± 0.00 cd | 0.11 ± 0.01 d | 0.12 ± 0.01 cd | 0.13 ± 0.00 cd | 0.19 ± 0.02 bc | 0.68 ± 0.01 a | 0.12 ± 0.01 cd | 0.23 ± 0.04 b | 0.14 ± 0.02 cd | <0.001 |
Gentisic acid | 0.07 ± 0.02 d | 0.12 ± 0.02 cd | 0.18 ± 0.03 bc | 0.17 ± 0.01 bc | 0.23 ± 0.01 b | 1.34 ± 0.03 a | 0.13 ± 0.03 cd | 0.14 ± 0.01 cd | 0.21 ± 0.00 b | <0.001 |
4-hydroxybenzoic acid | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
Neochlorogenic acid | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
(+)-Catechin | ND | ND | ND | ND | 0.26 ± 0.03 | ND | ND | ND | ND | - |
Caffeic acid | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
Chlorogenic acid | ND | ND | ND | ND | 0.06 ± 0.01 | 0.02 ± 0.00 | ND | ND | ND | - |
Cyanidin 3-glucoside | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
Salicylic acid | 4.91 ± 0.01 d | 7.61 ± 0.28 b | 3.63 ± 0.02 e | 3.33 ± 0.10 e | 4.80 ± 0.12 d | 13.25 ± 0.42 a | 8.30 ± 0.01 b | 3.98 ± 0.13 e | 6.35 ± 0.09 c | <0.001 |
Vanillic acid | 0.09 ± 0.01 ab | 0.07 ± 0.01 bc | 0.10 ± 0.01 ab | 0.13 ± 0.02 a | 0.09 ± 0.00 ab | 0.04 ± 0.02 cd | 0.02 ± 0.00 d | 0.03 ± 0.01 cd | 0.03 ± 0.01 cd | <0.001 |
Syringic acid | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
p-Coumaric acid | 0.45 ± 0.02 b | 0.51 ± 0.01 b | 0.42 ± 0.04 bc | 0.21 ± 0.08 d | 0.30 ± 0.00 cd | 0.67 ± 0.05 a | 0.40 ± 0.04 bc | 0.22 ± 0.01 d | 0.29 ± 0.01 cd | <0.001 |
Malvidin 3-glucoside | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
Ferulic acid | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
Vitexin | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
Rutin | 10.16 ± 0.18 d | 16.71 ± 0.10 c | 33.50 ± 1.71 b | 22.12 ± 0.94 c | 18.80 ± 0.84 c | 91.74 ± 3.63 a | 3.38 ± 0.10 e | 3.24 ± 0.66 e | 9.44 ± 0.06 d | <0.001 |
Quercetin 3-glucoside | 0.17 ± 0.02 cd | 0.25 ± 0.02 c | 0.48 ± 0.03 b | 0.41 ± 0.05 b | 0.39 ± 0.01 b | 2.33 ± 0.04 a | 0.04 ± 0.01 e | 0.06 ± 0.02 e | 0.11 ± 0.00 de | <0.001 |
Sinapic acid | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
Ellagic acid | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
Phloridzin | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
Myricetin | 0.02 ± 0.00 bcd | 0.01 ± 0.00 d | 0.03 ± 0.01 bcd | 0.04 ± 0.00 bc | 0.04 ± 0.01 b | 0.09 ± 0.00 a | <0.01 ± 0.00 d | 0.01 ± 0.00 d | 0.02 ± 0.01 cd | <0.001 |
Resveratrol | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
Pelargonidin | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
Delphinidin | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
Quercetin | 0.04 ± 0.01 cd | 0.04 ± 0.00 cde | 0.07 ± 0.00 b | 0.03 ± 0.01 de | 0.05 ± 0.00 bcd | 1.35 ± 0.01 a | 0.01 ± 0.01 e | 0.01 ± 0.01 e | 0.06 ± 0.00 bc | <0.001 |
Luteolin | 2.42 ± 0.18 ef | 2.52 ± 0.06 ef | 5.70 ± 0.36 a | 4.91 ± 0.00 ab | 4.69 ± 0.19 bc | 3.92 ± 0.20 cd | 3.22 ± 0.23 de | 2.14 ± 0.36 f | 1.07 ± 0.01 g | <0.001 |
Cyanidin | ND | ND | ND | ND | ND | ND | ND | ND | ND | - |
Kaempferol | 0.21 ± 0.02 abc | 0.08 ± 0.02 cde | 0.23 ± 0.06 a | 0.10 ± 0.06 bcde | 0.15 ± 0.00 abcd | 0.22 ± 0.01 ab | 0.06 ± 0.04 de | 0.01 ± 0.01 e | 0.03 ± 0.00 e | <0.001 |
Naringenin | 0.27 ± 0.01 c | 0.33 ± 0.01 b | 0.34 ± 0.01 b | 0.40 ± 0.00 b | 0.19 ± 0.01 a | 0.19 ± 0.00 d | 0.16 ± 0.00 de | 0.14 ± 0.00 e | 0.33 ± 0.01 b | <0.001 |
Apigenin | 0.45 ± 0.02 cde | 0.48 ± 0.01 cd | 0.68 ± 0.03 a | 0.50 ± 0.02 bc | 0.56 ± 0.03 b | 0.46 ± 0.01 cde | 0.41 ± 0.01 e | 0.24 ± 0.00 f | 0.42 ± 0.01 de | <0.001 |
Sum of identified compounds | 19.5 ± 0.4 d | 28.9 ± 0.3 c | 45.5 ± 2.1 b | 32.5 ± 1.0 c | 31.1 ± 0.9 c | 116.4 ± 4.2 a | 16.3 ± 0.4 de | 10.6 ± 1.3 e | 18.6 ± 0.1 d | <0.001 |
Analyte | Lucerne | AVTAB#5 | AVTAB#6 | AVTAB#7 | AVTAB#8 | AVTAB#9 | ANOVA |
---|---|---|---|---|---|---|---|
Apparent dry matter digestibility (%) | 62.18 ± 0.46 | 58.33 ± 2.55 | 58.95 ± 0.34 | 58.05 ± 1.59 | 63.13 ± 1.70 | 65.26 ± 3.92 | 0.066 |
Amylase neutral detergent fibre (%) | 39.82 ± 1.40 | 40.93 ± 3.13 | 38.32 ± 3.45 | 41.66 ± 2.89 | 38.00 ± 3.13 | 39.78 ± 0.03 | 0.710 |
Ammonia (mg N NH3/L) 1 | 59.44 ± 15.83 | 51.73 ± 2.81 | 58.94 ± 11.61 | 45.26 ± 2.11 | 50.23 ± 2.81 | 77.09 ± 14.07 | 0.149 |
Total gas production (mL/g DM) | 85.58 ± 5.77 | 73.84 ± 9.09 | 69.31 ± 10.06 | 72.99 ± 6.96 | 82.66 ± 10.05 | 73.26 ± 8.39 | 0.444 |
Methane production (mL/g DM) | 9.49 ± 1.88 | 6.32 ± 1.6 | 6.69 ± 2.69 | 7.68 ± 1.11 | 6.33 ± 0.62 | 8.19 ± 1.04 | 0.418 |
Volatile fatty acid—Acetic (mM) | 11.57 ± 1.10 a | 10.41 ± 0.51 ab | 9.40 ± 1.04 b | 10.32 ± 1.28 ab | 10.75 ± 0.47 ab | 10.10 ± 1.20 ab | 0.048 |
Volatile fatty acid—Propionic (mM) | 4.04 ± 0.49 a | 3.10 ± 0.03 b | 2.74 ± 0.82 b | 3.31 ± 0.52 ab | 3.32 ± 0.03 ab | 3.54 ± 0.49 ab | 0.007 |
Volatile fatty acid—Butyric (mM) | 4.49 ± 2.03 | 3.77 ± 0.44 | 4.09 ± 1.57 | 3.60 ± 1.84 | 4.45 ± 0.75 | 4.52 ± 1.32 | 0.805 |
Volatile fatty acid—Valeric (mM) | 6.22 ± 1.32 | 4.77 ± 0.44 | 5.37 ± 0.92 | 4.80 ± 1.56 | 5.40 ± 0.32 | 5.76 ± 0.82 | 0.157 |
Analyte | Lucerne | AVTAB#5 | AVTAB#6 | AVTAB#7 | AVTAB#9 | ANOVA |
---|---|---|---|---|---|---|
Apparent dry matter digestibility (%) | 62.18 ± 0.46 a | 56.52 ± 0.01 a | 57.06 ± 3.05 a | 58.66 ± 0.56 a | 47.59 ± 1.51 b | 0.002 |
Amylase neutral detergent fibre (%) | 39.82 ± 1.40 c | 52.31 ± 0.41 b | 52.16 ± 0.53 b | 53.40 ± 1.86 b | 64.69 ± 0.57 a | <0.001 |
Ammonia (mg N NH3/L) 1 | 59.44 ± 15.83 a | 20.64 ± 1.06 ab | −1.99 ± 21.10 b | 26.86 ± 2.81 ab | 29.84 ± 3.52 ab | 0.03 |
Total gas production (mL/g DM) | 85.58 ± 5.77 | 74.73 ± 5.87 | 60.42 ± 13.87 | 72.70 ± 4.32 | 58.54 ± 1.97 | 0.69 |
Methane production (mL/g DM) | 9.49 ± 1.88 | 6.76 ± 1.75 | 5.65 ± 1.33 | 7.43 ± 0.53 | 4.71 ± 1.01 | 0.104 |
Volatile fatty acid—Acetic (mM) | 11.57 ± 1.10 a | 9.06 ± 0.60 b | 9.17 ± 0.09 b | 9.33 ± 1.04 b | 7.39 ± 0.15 c | <0.001 |
Volatile fatty acid—Propionic (mM) | 4.04 ± 0.49 a | 3.72 ± 0.39 ab | 3.30 ± 0.10 b | 3.89 ± 0.54 ab | 3.92 ± 0.07 ab | 0.039 |
Volatile fatty acid—Butyric (mM) | 4.49 ± 2.03 | 2.48 ± 1.22 | 2.67 ± 1.25 | 2.76 ± 0.97 | 2.36 ± 0.78 | 0.08 |
Volatile fatty acid—Valeric (mM) | 6.22 ± 1.32 a | 2.10 ± 0.72 b | 2.21 ± 0.72 b | 2.42 ± 0.76 b | 2.07 ± 0.40 b | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, J.B.; Batley, R.J.; Neupane, P.; Bhattarai, S.P.; Trotter, T.; Costa, D.F.A.; Naiker, M. Assessment of the Nutritional Value of Stems and Leaves of Australian Adzuki Bean. Metabolites 2023, 13, 1062. https://doi.org/10.3390/metabo13101062
Johnson JB, Batley RJ, Neupane P, Bhattarai SP, Trotter T, Costa DFA, Naiker M. Assessment of the Nutritional Value of Stems and Leaves of Australian Adzuki Bean. Metabolites. 2023; 13(10):1062. https://doi.org/10.3390/metabo13101062
Chicago/Turabian StyleJohnson, Joel B., Ryan J. Batley, Pasmita Neupane, Surya P. Bhattarai, Tieneke Trotter, Diogo Fleury Azevedo Costa, and Mani Naiker. 2023. "Assessment of the Nutritional Value of Stems and Leaves of Australian Adzuki Bean" Metabolites 13, no. 10: 1062. https://doi.org/10.3390/metabo13101062
APA StyleJohnson, J. B., Batley, R. J., Neupane, P., Bhattarai, S. P., Trotter, T., Costa, D. F. A., & Naiker, M. (2023). Assessment of the Nutritional Value of Stems and Leaves of Australian Adzuki Bean. Metabolites, 13(10), 1062. https://doi.org/10.3390/metabo13101062