Ataxia in Neurometabolic Disorders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection and Appraisal
2.3. Development of the Review
3. How to Recognize Ataxia
3.1. Clinical Investigation
3.2. Neurological Examination
- hyper- or hypometric saccades (observed in many types of ataxia);
- vertical or horizontal nystagmus (observed in many types of ataxia);
- saccadic intrusion in fixed gaze (i.e., square-wave jerks);
- breakdown of smooth pursuit;
- slow saccades;
- ophthalmoplegia/ophthalmoparesis, (observed in sensory ataxic neuropathy, dysarthria and ophthalmoparesis (SANDO));
- ptosis (observed in SANDO and ataxia associated with mitochondrial genome mutations).
- The finger–nose test (the patient repeatedly uses the index finger to touch the tip of their nose with their eyes open and then closed);
- The finger–nose test (the patient points with their index finger from the nose to the physician’s finger);
- The finger-chase test (the patient’s index finger follows the physician’s moving index finger as closely as possible);
- Rapid alternating movements (the patient performs cycles of repeated alternating pronation and supination of the hand on the thigh).
4. Diagnosis of the Neurometabolic Causes of Ataxia and Their Specific Treatment
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pavone, P.; Praticò, A.D.; Pavone, V.; Lubrano, R.; Falsaperla, R.; Rizzo, R.; Ruggieri, M. Ataxia in children: Early recognition and clinical evaluation. Ital. J. Pediatr. 2017, 43, 6. [Google Scholar] [CrossRef]
- Akbar, U.; Ashizawa, T. Ataxia. Neurol. Clin. 2015, 33, 225–248. [Google Scholar] [CrossRef] [Green Version]
- Pandolfo, M.; Manto, M. Cerebellar and afferent ataxias. Contin. Lifelong Learn. Neurol. 2013, 19, 1312–1343. [Google Scholar] [CrossRef]
- Sanger, T.D.; Chen, D.; Delgado, M.R.; Gaebler-Spira, D.; Hallett, M.; Mink, J.W. Definition and classification of negative motor signs in childhood. Pediatrics 2006, 118, 2159–2167. [Google Scholar] [CrossRef] [Green Version]
- Vedolin, L.; Gonzalez, G.; Souza, C.F.; Lourenço, C.; Barkovich, A.J. Inherited cerebellar ataxia in childhood: A pattern-recognition approach using brain MRI. Am. J. Neuroradiol 2013, 34 (Suppl. S1–S2), 925–934. [Google Scholar] [CrossRef] [Green Version]
- Teive, H.A.; Ashizawa, T. Primary and secondary ataxias. Curr. Opin. Neurol. 2015, 28, 413–422. [Google Scholar] [CrossRef]
- Jen, J.C.; Graves, T.D.; Hess, E.J.; Hanna, M.G.; Griggs, R.C.; Baloh, R.W. CINCH investigators Primary episodic ataxias: Diagnosis, pathogenesis and treatment. Brain 2007, 130 Pt 10, 2484–2493. [Google Scholar] [CrossRef] [Green Version]
- Silver, G.; Mercimek-Andrews, S. Inherited Metabolic Disorders Presenting with Ataxia. Int. J. Mol. Sci. 2020, 21, 5519. [Google Scholar] [CrossRef]
- Ashizawa, T.; Xia, G. Ataxia. Contin. Lifelong Learn. Neurol. 2016, 22, 1208–1226. [Google Scholar] [CrossRef] [Green Version]
- Ortigoza-Escobar, J.D. A Proposed Diagnostic Algorithm for Inborn Errors of Metabolism Presenting with Movements Disorders. Front. Neurol. 2020, 11, 582160. [Google Scholar] [CrossRef] [PubMed]
- Kuo, S.H. Ataxia. Contin. Lifelong Learn. Neurol. 2019, 25, 1036–1054. [Google Scholar] [CrossRef] [PubMed]
- Saini, A.G.; Sharma, S. Movement Disorders in Inherited Metabolic Diseases in Children. Ann. Indian Acad. Neurol. 2020, 23, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Ismail, F.Y.; Mitoma, H.; Fatemi, A. Metabolic ataxias. Handb. Clin. Neurol. 2018, 155, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Poretti, A.; Boltshauser, E.; Huisman, T.A. Prenatal Cerebellar Disruptions: Neuroimaging Spectrum of Findings in Correlation with Likely Mechanisms and Etiologies of Injury. Neuroimaging Clin. N. Am. 2016, 26, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.F.; Courjaret, R.; Jakoby, P.; Loaiza, A.; Lohr, C.; Deitmer, J.W. Preferential transport and metabolism of glucose in Bergmann glia over Purkinje cells: A multiphoton study of cerebellar slices. Glia 2009, 57, 962–970. [Google Scholar] [CrossRef]
- Ferreira, C.R.; Hoffmann, G.F.; Blau, N. Clinical and biochemical footprints of inherited metabolic diseases. I. Movement disorders. Mol. Genet. Metab. 2019, 127, 28–30. [Google Scholar] [CrossRef]
- Sedel, F.; Saudubray, J.M.; Roze, E.; Agid, Y.; Vidailhet, M. Movement disorders and inborn errors of metabolism in adults: A diagnostic approach. J. Inherit. Metab. Dis. 2008, 31, 308–318. [Google Scholar] [CrossRef]
- Fernández-Álvarez, E.; Roubertie, A. Movement disorders in childhood metabolic diseases. In Movement Disorders in Neurologic and Systemic Disease; Cambridge University Press: Cambridge, UK, 2014; pp. 115–130. [Google Scholar] [CrossRef]
- Luo, L.; Wang, J.; Lo, R.Y.; Figueroa, K.P.; Pulst, S.M.; Kuo, P.H.; Perlman, S.; Wilmot, G.; Gomez, C.M.; Schmahmann, J.; et al. The Initial Symptom and Motor Progression in Spinocerebellar Ataxias. Cerebellum 2017, 16, 615–622. [Google Scholar] [CrossRef]
- van Gaalen, J.; Kerstens, F.G.; Maas, R.P.; Härmark, L.; van de Warrenburg, B.P. Drug-induced cerebellar ataxia: A systematic review. CNS Drugs 2014, 28, 1139–1153. [Google Scholar] [CrossRef]
- Manto, M. Toxic agents causing cerebellar ataxias. Handb. Clin. Neurol. 2012, 103, 201–213. [Google Scholar] [CrossRef]
- Mukhopadhyay, D.; Das, M.K.; Dhar, S.; Mukhopadhyay, M. Multiple carboxylase deficiency (late onset) due to deficiency of biotinidase. Indian J. Dermatol. 2014, 59, 502–504. [Google Scholar] [CrossRef] [PubMed]
- Saleem, H.; Simpson, B. Biotinidase Deficiency. In StatPearls; Treasure Island (FL), StatPearls Publishing: Tampa, FL, USA, 2022. [Google Scholar]
- Shao, J. Expert consensus on screening, diagnosis and treatment of multiple carboxylase deficiency. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2022, 51, 129–135. [Google Scholar] [CrossRef]
- Gales, A.; Masingue, M.; Millecamps, S.; Giraudier, S.; Grosliere, L.; Adam, C.; Salim, C.; Navarro, V.; Nadjar, Y. Adolescence/adult onset MTHFR deficiency may manifest as isolated and treatable distinct neuro-psychiatric syndromes. Orphanet J. Rare Dis. 2018, 13, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perna, A.; Masciullo, M.; Modoni, A.; Cellini, E.; Parrini, E.; Ricci, E.; Donati, A.M.; Silvestri, G. Severe 5,10-methylenetetrahydrofolate reductase deficiency: A rare, treatable cause of complicated hereditary spastic paraplegia. Eur. J. Neurol. 2018, 25, 602–605. [Google Scholar] [CrossRef]
- El Euch-Fayache, G.; Bouhlal, Y.; Amouri, R.; Feki, M.; Hentati, F. Molecular, clinical and peripheral neuropathy study of Tunisian patients with ataxia with vitamin E deficiency. Brain 2014, 137 Pt 2, 402–410. [Google Scholar] [CrossRef]
- Huemer, M.; Scholl-Bürgi, S.; Hadaya, K.; Kern, I.; Beer, R.; Seppi, K.; Fowler, B.; Baumgartner, M.R.; Karall, D. Three new cases of late-onset cblC defect and review of the literature illustrating when to consider inborn errors of metabolism beyond infancy. Orphanet J. Rare Dis. 2014, 9, 161. [Google Scholar] [CrossRef] [Green Version]
- Cali, E.; Dominik, N.; Manole, A.; Houlden, H. Riboflavin Transporter Deficiency. In GeneReviews®; University of Washington: Seattle, WA, USA, 2015. [Google Scholar]
- Axler, O.; Holmquist, P. Intermittent maple syrup urine disease: Two case reports. Pediatrics 2014, 133, e458–e460. [Google Scholar] [CrossRef] [Green Version]
- Nasrallah, F.; Hadj-Taieb, S.; Chehida, A.B.; Jelassi, A.; Ben Massoued, S.; Charfi, M.; Zidi, W.; Amri, F.; Helel, K.B.; Mejaoual, H.; et al. Nonketotic Hyperglycinemia in Tunisia. Report upon a Series of 69 Patients. Neuropediatrics 2020, 51, 349–353. [Google Scholar] [CrossRef]
- Hashmi, M.S.; Gupta, V. Hartnup Disease. In StatPearls; Treasure Island (FL), StatPearls Publishing: Tampa, FL, USA, 2022. [Google Scholar]
- Van Kuilenburg, A.B.P.; Tarailo-Graovac, M.; Richmond, P.A.; Drögemöller, B.I.; Pouladi, M.A.; Leen, R.; Brand-Arzamendi, K.; Dobritzsch, D.; Dolzhenko, E.; Eberle, M.A.; et al. Glutaminase Deficiency Caused by Short Tandem Repeat Expansion in GLS. N. Engl. J. Med. 2019, 380, 1433–1441. [Google Scholar] [CrossRef]
- Holder, J.L., Jr.; Agadi, S.; Reese, W.; Rehder, C.; Quach, M.M. Infantile spasms and hyperekplexia associated with isolated sulfite oxidase deficiency. JAMA Neurol. 2014, 71, 782–784. [Google Scholar] [CrossRef] [Green Version]
- Martinelli, D.; Diodato, D.; Ponzi, E.; Monné, M.; Boenzi, S.; Bertini, E.; Fiermonte, G.; Dionisi-Vici, C. The hyperornithinemia-hyperammonemia-homocitrullinuria syndrome. Orphanet J. Rare Dis. 2015, 10, 29. [Google Scholar] [CrossRef] [Green Version]
- Schlune, A.; Riederer, A.; Mayatepek, E.; Ensenauer, R. Aspects of Newborn Screening in Isovaleric Acidemia. Int. J. Neonatal Screen. 2018, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Forny, P.; Hörster, F.; Ballhausen, D.; Chakrapani, A.; Chapman, K.A.; Dionisi-Vici, C.; Dixon, M.; Grünert, S.C.; Grunewald, S.; Haliloglu, G.; et al. Guidelines for the diagnosis and management of methylmalonic acidaemia and propionic acidaemia: First revision. J. Inherit. Metab. Dis. 2021, 44, 566–592. [Google Scholar] [CrossRef]
- Cornelius, L.P.; Raju, V.; Julin, A. Pediatric Glutaric Aciduria Type 1: 14 Cases, Diagnosis and Management. Ann. Indian Acad. Neurol. 2021, 24, 22–26. [Google Scholar] [CrossRef]
- Coelho, A.I.; Rubio-Gozalbo, M.E.; Vicente, J.B.; Rivera, I. Sweet and sour: An update on classic galactosemia. J. Inherit. Metab. Dis. 2017, 40, 325–342. [Google Scholar] [CrossRef] [Green Version]
- Leen, W.G.; Mewasingh, L.; Verbeek, M.M.; Kamsteeg, E.J.; van de Warrenburg, B.P.; Willemsen, M.A. Movement disorders in GLUT1 deficiency syndrome respond to the modified Atkins diet. Mov. Disord. 2013, 28, 1439–1442. [Google Scholar] [CrossRef]
- Kaminiów, K.; Kozak, S.; Paprocka, J. Recent Insight into the Genetic Basis, Clinical Features, and Diagnostic Methods for Neuronal Ceroid Lipofuscinosis. Int. J. Mol. Sci. 2022, 23, 5729. [Google Scholar] [CrossRef]
- Chan, B.; Adam, D.N. A Review of Fabry Disease. Ski. Ther. Lett. 2018, 23, 4–6. [Google Scholar]
- Kohler, L.; Puertollano, R.; Raben, N. Pompe Disease: From Basic Science to Therapy. Neurotherapeutics 2018, 15, 928–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Debs, R.; Froissart, R.; Aubourg, P.; Papeix, C.; Douillard, C.; Degos, B.; Fontaine, B.; Audoin, B.; Lacour, A.; Said, G.; et al. Krabbe disease in adults: Phenotypic and genotypic update from a series of 11 cases and a review. J. Inherit. Metab. Dis. 2013, 36, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.H.; Choquet, K.; La Piana, R.; Tétreault, M.; Dicaire, M.J.; Boycott, K.M.; Majewski, J.; Brais, B. Mutations in GALC cause late-onset Krabbe disease with predominant cerebellar ataxia. Neurogenetics 2016, 17, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Solovyeva, V.V.; Shaimardanova, A.A.; Chulpanova, D.S.; Kitaeva, K.V.; Chakrabarti, L.; Rizvanov, A.A. New Approaches to Tay-Sachs Disease Therapy. Front. Physiol. 2018, 9, 1663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramani, P.K. Tay-Sachs Disease. In StatPearls; Treasure Island (FL), StatPearls Publishing: Tampa, FL, USA, 2022. [Google Scholar]
- Geberhiwot, T.; Moro, A.; Dardis, A.; Ramaswami, U.; Sirrs, S.; Marfa, M.P.; Vanier, M.T.; Walterfang, M.; Bolton, S.; Dawson, C.; et al. Consensus clinical management guidelines for Niemann-Pick disease type C. Orphanet J. Rare Dis. 2018, 13, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anheim, M.; Lagha-Boukbiza, O.; Fleury-Lesaunier, M.C.; Valenti-Hirsch, M.P.; Hirsch, E.; Gervais-Bernard, H.; Broussolle, E.; Thobois, S.; Vanier, M.T.; Latour, P.; et al. Heterogeneity and frequency of movement disorders in juvenile and adult-onset Niemann-Pick C disease. J. Neurol. 2014, 261, 174–179. [Google Scholar] [CrossRef]
- Fumagalli, F.; Zambon, A.A.; Rancoita, P.M.V.; Baldoli, C.; Canale, S.; Spiga, I.; Medaglini, S.; Penati, R.; Facchini, M.; Ciotti, F.; et al. Metachromatic leukodystrophy: A single-center longitudinal study of 45 patients. J. Inherit. Metab. Dis. 2021, 44, 1151–1164. [Google Scholar] [CrossRef]
- van Rappard, D.F.; Boelens, J.J.; Wolf, N.I. Metachromatic leukodystrophy: Disease spectrum and approaches for treatment. Best Pr. Res. Clin. Endocrinol. Metab. 2015, 29, 261–273. [Google Scholar] [CrossRef]
- Barmherzig, R.; Bullivant, G.; Cordeiro, D.; Sinasac, D.S.; Blaser, S.; Mercimek-Mahmutoglu, S. A New Patient with Intermediate Severe Salla Disease with Hypomyelination: A Literature Review for Salla Disease. Pediatr. Neurol. 2017, 74, 87–91. [Google Scholar] [CrossRef]
- Canafoglia, L.; Robbiano, A.; Pareyson, D.; Panzica, F.; Nanetti, L.; Giovagnoli, A.R.; Venerando, A.; Gellera, C.; Franceschetti, S.; Zara, F. Expanding sialidosis spectrum by genome-wide screening: NEU1 mutations in adult-onset myoclonus. Neurology 2014, 82, 2003–2006. [Google Scholar] [CrossRef]
- Gregory, A.; Venkateswaran, S.; Hayflick, S.J. Fatty Acid Hydroxylase-Associated Neurodegeneration. In GeneReviews®; University of Washington: Seattle, WA, USA, 2011. [Google Scholar]
- Liu, M.; Huang, D.; Wang, H.; Zhao, L.; Wang, Q.; Chen, X. Clinical and Molecular Characteristics of Two Chinese Children with Infantile Sandhoff Disease and Review of the Literature. J. Mol. Neurosci. 2020, 70, 481–487. [Google Scholar] [CrossRef]
- Xiao, C.; Tifft, C.; Toro, C. Sandhoff Disease. In GeneReviews®; University of Washington: Seattle, WA, USA, 2022. [Google Scholar]
- Takahashi, M.; Okazaki, H.; Ohashi, K.; Ogura, M.; Ishibashi, S.; Okazaki, S.; Hirayama, S.; Hori, M.; Matsuki, K.; Yokoyama, S.; et al. Current Diagnosis and Management of Abetalipoproteinemia. J. Atheroscler. Thromb. 2021, 28, 1009–1019. [Google Scholar] [CrossRef]
- Stelten, B.M.L.; van de Warrenburg, B.P.C.; Wevers, R.A.; Verrips, A. Movement disorders in cerebrotendinous xanthomatosis. Park. Relat. Disord. 2019, 58, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Jeyaratnam, J.; Frenkel, J. Management of Mevalonate Kinase Deficiency: A Pediatric Perspective. Front. Immunol. 2020, 11, 1150. [Google Scholar] [CrossRef] [PubMed]
- Marchi, G.; Busti, F.; Lira Zidanes, A.; Castagna, A.; Girelli, D. Aceruloplasminemia: A Severe Neurodegenerative Disorder Deserving an Early Diagnosis. Front. Neurosci. 2019, 13, 325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vairo, F.P.E.; Chwal, B.C.; Perini, S.; Ferreira, M.A.P.; de Freitas Lopes, A.C.; Saute, J.A.M. A systematic review and evidence-based guideline for diagnosis and treatment of Menkes disease. Mol. Genet. Metab. 2019, 126, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Engelen, M.; Kemp, S.; de Visser, M.; van Geel, B.M.; Wanders, R.J.; Aubourg, P.; Poll-The, B.T. X-linked adrenoleukodystrophy (X-ALD): Clinical presentation and guidelines for diagnosis, follow-up and management. Orphanet J. Rare Dis. 2012, 7, 51. [Google Scholar] [CrossRef]
- Hjartarson, H.T.; Ehrstedt, C.; Tedroff, K. Intrathecal baclofen treatment an option in X-linked adrenoleukodystrophy. Eur. J. Paediatr. Neurol. 2018, 22, 178–181. [Google Scholar] [CrossRef]
- van Karnebeek, C.; Horvath, G.; Murphy, T.; Purtzki, J.; Bowden, K.; Sirrs, S.; Honey, C.R.; Stockler, S. Deep brain stimulation and dantrolene for secondary dystonia in x-linked adrenoleukodystrophy. JIMD Rep. 2015, 15, 113–116. [Google Scholar] [CrossRef] [Green Version]
- Mignarri, A.; Vinciguerra, C.; Giorgio, A.; Ferdinandusse, S.; Waterham, H.; Wanders, R.; Bertini, E.; Dotti, M.T.; Federico, A. Zellweger Spectrum Disorder with Mild Phenotype Caused by PEX2 Gene Mutations. JIMD Rep. 2012, 6, 43–46. [Google Scholar] [CrossRef] [Green Version]
- Sevin, C.; Ferdinandusse, S.; Waterham, H.R.; Wanders, R.J.; Aubourg, P. Autosomal recessive cerebellar ataxia caused by mutations in the PEX2 gene. Orphanet J. Rare Dis. 2011, 6, 8. [Google Scholar] [CrossRef]
- Zeiger, W.A.; Sun, L.R.; Bosemani, T.; Pearl, P.L.; Stafstrom, C.E. Acute Infantile Encephalopathy as Presentation of Succinic Semialdehyde Dehydrogenase Deficiency. Pediatr. Neurol. 2016, 58, 113–115. [Google Scholar] [CrossRef]
- Wang, K.Y.; Barker, P.B.; Lin, D.D. A case of acute onset succinic semialdehyde dehydrogenase deficiency: Neuroimaging findings and literature review. Child’s Nerv. Syst. 2016, 32, 1305–1309. [Google Scholar] [CrossRef] [PubMed]
- Salviati, L.; Trevisson, E.; Doimo, M.; Navas, P. Primary Coenzyme Q10 Deficiency. In GeneReviews®; University of Washington: Seattle, WA, USA, 2017. [Google Scholar]
- Liu, Y.T.; Hersheson, J.; Plagnol, V.; Fawcett, K.; Duberley, K.E.; Preza, E.; Hargreaves, I.P.; Chalasani, A.; Laurá, M.; Wood, N.W.; et al. Autosomal-recessive cerebellar ataxia caused by a novel ADCK3 mutation that elongates the protein: Clinical, genetic and biochemical characterisation. J. Neurol. Neurosurg. Psychiatry 2014, 85, 493–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coci, E.G.; Gapsys, V.; Shur, N.; Shin-Podskarbi, Y.; de Groot, B.L.; Miller, K.; Vockley, J.; Sondheimer, N.; Ganetzky, R.; Freisinger, P. Pyruvate carboxylase deficiency type A and type C: Characterization of five novel pathogenic variants in PC and analysis of the genotype-phenotype correlation. Hum. Mutat. 2019, 40, 816–827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, K.P.; O’Brien, T.W.; Subramony, S.H.; Shuster, J.; Stacpoole, P.W. The spectrum of pyruvate dehydrogenase complex deficiency: Clinical, biochemical and genetic features in 371 patients. Mol. Genet. Metab. 2012, 105, 34–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganetzky, R.; McCormick, E.M.; Falk, M.J. Primary Pyruvate Dehydrogenase Complex Deficiency Overview. In GeneReviews®; University of Washington: Seattle, WA, USA, 2021. [Google Scholar]
- Quinonez, S.C.; Leber, S.M.; Martin, D.M.; Thoene, J.G.; Bedoyan, J.K. Leigh syndrome in a girl with a novel DLD mutation causing E3 deficiency. Pediatr. Neurol. 2013, 48, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Stockler-Ipsiroglu, S.; van Karnebeek, C.; Longo, N.; Korenke, G.C.; Mercimek-Mahmutoglu, S.; Marquart, I.; Barshop, B.; Grolik, C.; Schlune, A.; Angle, B.; et al. Guanidinoacetate methyltransferase (GAMT) deficiency: Outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Mol. Genet. Metab. 2014, 111, 16–25. [Google Scholar] [CrossRef]
- Yoganathan, S.; Arunachal, G.; Kratz, L.; Varman, M.; Sudhakar, S.V.; Oommen, S.P.; Jain, S.; Thomas, M.; Babuji, M. Guanidinoacetate Methyltransferase (GAMT) Deficiency, A Cerebral Creatine Deficiency Syndrome: A Rare Treatable Metabolic Disorder. Ann. Indian Acad. Neurol. 2020, 23, 419–421. [Google Scholar] [CrossRef]
- van de Kamp, J.M.; Betsalel, O.T.; Mercimek-Mahmutoglu, S.; Abulhoul, L.; Grünewald, S.; Anselm, I.; Azzouz, H.; Bratkovic, D.; de Brouwer, A.; Hamel, B.; et al. Phenotype and genotype in 101 males with X-linked creatine transporter deficiency. J. Med. Genet. 2013, 50, 463–472. [Google Scholar] [CrossRef] [Green Version]
- Chilosi, A.; Casarano, M.; Comparini, A.; Battaglia, F.M.; Mancardi, M.M.; Schiaffino, C.; Tosetti, M.; Leuzzi, V.; Battini, R.; Cioni, G. Neuropsychological profile and clinical effects of arginine treatment in children with creatine transport deficiency. Orphanet J. Rare Dis. 2012, 7, 43. [Google Scholar] [CrossRef] [Green Version]
- Singmaneesakulchai, S.; Limotai, N.; Jagota, P.; Bhidayasiri, R. Expanding spectrum of abnormal movements in MELAS syndrome (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes). Mov. Disord. 2012, 27, 1495–1497. [Google Scholar] [CrossRef]
- Shemesh, A.; Margolin, E. Kearns Sayre Syndrome. In StatPearls; Treasure Island (FL), StatPearls Publishing: Tampa, FL, USA, 2022. [Google Scholar]
- Serrano, M.; de Diego, V.; Muchart, J.; Cuadras, D.; Felipe, A.; Macaya, A.; Velázquez, R.; Poo, M.P.; Fons, C.; O’Callaghan, M.M.; et al. Phosphomannomutase deficiency (PMM2-CDG): Ataxia and cerebellar assessment. Orphanet J. Rare Dis. 2015, 10, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, I.J.; He, M.; Lam, C.T. Congenital disorders of glycosylation. Ann. Transl. Med. 2018, 6, 477. [Google Scholar] [CrossRef] [PubMed]
- Anheim, M.; Tranchant, C.; Koenig, M. The autosomal recessive cerebellar ataxias. N. Engl. J. Med. 2012, 366, 636–646. [Google Scholar] [CrossRef] [PubMed]
- Moscovich, M.; Okun, M.S.; Favilla, C.; Figueroa, K.P.; Pulst, S.M.; Perlman, S.; Wilmot, G.; Gomez, C.; Schmahmann, J.; Paulson, H.; et al. Clinical evaluation of eye movements in spinocerebellar ataxias: A prospective multicenter study. J. Neuro Ophthalmol. 2015, 35, 16–21. [Google Scholar] [CrossRef]
- Kuo, P.H.; Lo, R.Y.; Tanji, K.; Kuo, S.H. Clinical Reasoning: A 58-year-old man with progressive ptosis and walking difficulty. Neurology 2017, 89, e1–e5. [Google Scholar] [CrossRef] [Green Version]
- Kruer, M.C. Pediatric movement disorders. Pediatr. Rev. 2015, 36, 104–129. [Google Scholar] [CrossRef]
- Ebrahimi-Fakhari, D.; van Karnebeek, C.; Münchau, A. Movement disorders in treatable inborn errors of metabolism. Mov. Disord. 2019, 34, 598–613. [Google Scholar] [CrossRef]
- Cordeiro, D.; Bullivant, G.; Siriwardena, K.; Evans, A.; Kobayashi, J.; Cohn, R.D.; Mercimek-Andrews, S. Genetic landscape of pediatric movement disorders and management implications. Neurol. Genet. 2018, 4, e265. [Google Scholar] [CrossRef] [Green Version]
- García-Cazorla, A.; Ortez, C.; Pérez-Dueñas, B.; Serrano, M.; Pineda, M.; Campistol, J.; Fernández-Álvarez, E. Hypokinetic-rigid syndrome in children and inborn errors of metabolism. Eur. J. Paediatr. Neurol. 2011, 15, 295–302. [Google Scholar] [CrossRef]
Name | Gene | Main Age of Onset | Clinical Features | References |
---|---|---|---|---|
Vitamin and Cofactor Responsive Disorders | ||||
Biotinidase deficiency | BTD | Infancy–adolescence | Ataxia, hypotonia, seizures, GDD, skin rash, conjunctivitis, alopecia, vision problems, hearing loss | [22,23] |
Holocarboxylase synthetase deficiency | HLCS | Infancy–adolescence | Ataxia, hypotonia, seizures, GDD, lethargy, vomiting, failure to thrive, skin rash | [24] |
Methylenetetrahydrofolate reductase deficiency | MTHFR | Adolescence–adulthood | Ataxia, hypotonia, seizures, GDD, spasticity, encephalopathy, psychiatric symptoms, cognitive dysfunction, failure to thrive, microcephaly, myelopathy, apnoea | [25,26] |
Ataxia with vitamin E deficiency | TTPA | Childhood–adulthood | Progressive ataxia, dysdiadochokinesia, dysarthria, macular atrophy, retinitis pigmentosa, nystagmus | [27] |
Cobalamin C deficiency | MMACHA | Childhood–adulthood | Ataxia, hypotonia, seizures, GDD, tremor, nystagmus, failure to thrive, nystagmus, pigmentary retinopathy | [28] |
Riboflavin transporter deficiency neuronopathy | SLC52A2 SLC52A3 | Infancy–adulthood | Movement disorders (i.e., ataxia, tongue fasciculations), nystagmus, failure to thrive, respiratory insufficiency, optic atrophy, sensorineural deafness, | [29] |
Disorders of amino acid metabolism and transport | ||||
Maple syrup urine disease | BCKDHA BCKDHB DBT | Infancy–childhood | Ataxia, seizures, GDD, failure to thrive, maple syrup smell | [30] |
Nonketotic hyperglycinemia | GLDC AMT | From the neonatal period | GDD, ataxia, seizures, hypotonia, spasticity | [31] |
Hartnup disease | SLC6A19 | Childhood | Movement disorders (i.e., ataxia, dystonia, tremor), GDD, psychiatric abnormalities, nystagmus, skin rashes | [32] |
Glutaminase deficiency | GLS | Childhood | Movement disorders (ataxia, dysarthria), hypertonia, GDD | [33] |
Sulfite oxidase deficiency | SUOX | Neonatal–childhood | Movement disorders (ataxia, choreoathetosis, dystonia), seizures, GDD, ectopia lentis, microcephaly | [34] |
Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome (HHH syndrome) | SLC25A15 | Neonatal–adulthood | Ataxia, spasticity, GDD, cognitive dysfunction, encephalopathy, chronic liver dysfunction | [35] |
Isovaleric acidemia | IVD | Childhood | Ataxia, seizures, GDD, intellectual disability, poor feeding, emesis, lethargy, dehydration, impaired consciousness | [36] |
Methylmalonic aciduria due to methylmalonyl-CoA mutase deficiency | MMUT | Infancy–childhood | GDD, ataxia, lethargy, hypotonia | [37] |
Glutaric aciduria type 1 | GCDH | Infancy–childhood | Ataxia, tremor, epilepsy, GDD, chronic headaches, macrocephaly | [38] |
Disorders of carbohydrate metabolism | ||||
Galactosemia | GALT | Adolescence–adulthood | Ataxia, speech delay, GDD, bleeding, liver failure, cataracts | [39] |
Glucose transporter 1 deficiency | SLC2A1 | Infancy–adulthood | Movement disorders (ataxia, tremor, dysarthria, chorea, dystonia), seizures, GDD, nystagmus, speech delay, acquired microcephaly | [40] |
Organelle related disorders: lysosomal storage disorders | ||||
Neuronal ceroid lipofuscinosis | CLN1 CLN2 CLN5 CLN6 DNAJC5 MFSD8 | Childhood | Ataxia, seizures, spasticity, GDD, dementia, blindness, early death | [41] |
Fabry disease | GLA | Childhood | Ataxia, angiokeratoma, acroparesthesia, GDD, sweating abnormalities, corneal or lenticular opacity, renal and cerebrovascular involvement, cardiac disease | [42] |
Pompe disease | GAA | Infancy | Ataxia, hypotonia, GDD, hepatomegaly, respiratory insufficiency, cardiomegaly | [43] |
Krabbe disease | GALC | Childhood–adulthood | Ataxia, seizures, hypotonia, spasticity, nystagmus, tremor, GDD, behavioural difficulties, peripheral neuropathy, vision loss | [44,45] |
Tay–Sachs disease | HEXA | Childhood–adulthood | Movement disorders (ataxia, tremor, dystonia), seizures, spasticity, GDD, spasticity, vision loss, increased startle response | [46,47] |
Niemann-pick type C disease | NPC1 NPC2 | Infancy–adulthood | Movement disorders (ataxia, tremor, dystonia, dysarthria), seziures, hypotonia, GDD, psychiatric abnormalities, hepatosplenomegaly, neonatal jaundice, dysphagia | [48,49] |
Metachromatic leukodystrophy | ARSA | Childhood–adulthood | Movement disorders (ataxiadysarthria), seizures, hypotonia, cognitive dysfunction, GDD, psychiatric abnormalities, peripheral neuropathy spasticity, gallbladder involvement | [50,51] |
Salla disease | SLC17A5 | Infancy–childhood | Movement disorders (ataxia, athetosis), seizures, hypotonia, GDD, cognitive dysfunction, hypotonia, spasticity, facial coarsening | [52] |
Sialidosis type I | NEU1 | Childhood–adulthood | Ataxia, seizures, GDD, myoclonus, corneal opacities, vision loss, | [53] |
Fatty acid hydroxylase-associated neurodegeneration | FA2H | Childhood–adolescence | Movement disorders (ataxia, dysarthria, dystonia), seizures, GDD, optic atrophy or oculomotor abnormalities, cognitive dysfunction | [54] |
Sandhoff disease | HEXB | Childhood–adulthood | Ataxia, seizures, spasticity, GDD, cognitive dysfunction, exaggerated startle response, vision loss, splenomegaly | [55,56] |
Disorders of lipid and bile acid metabolism | ||||
Abetalipoproteinemia | MTTP | Childhood–adolescence | Ataxia, dysarthria, failure to thrive, muscle weakness, vision loss | [57] |
Cerebrotendinous xanthomatosis | CYP27A1 | Adolescence–adulthood | Movement disorders (ataxia, parkinsonism, dystonia), seizures, GDD, psychiatric disturbances, cataracts, peripheral neuropathy, dementia | [58] |
Mevalonate kinase deficiency | MVK | Childhood | Ataxia, Failure to thrive, nystagmus, GDD, vision problems, lymphadenopathy, hepatosplenomegaly | [59] |
Disorders of metal transport and metabolism | ||||
Aceruloplasminemia | CP | Adolescence–adulthood | Movement disorders (ataxia, involuntary movement, dystonia, dysarthria, chorea, parkinsonism), GDD, cognitive dysfunction, diabetes mellitus, retinal degeneration, anemia | [60] |
Menkes disease | ATP7A | Childhood | Ataxia, seizures, hypotonia, GDD, kinky hair | [61] |
Organelle related disorders: peroxisomal disorders | ||||
X-linked adrenoleukodystrophy | ABCD1 | Childhood–adulthood | Ataxia, seizures, GDD, vision loss, behaviour problems, hearing loss | [62,63,64] |
Zellweger spectrum disorders | PEX2 PEX10 PEX12 PEX16 | Childhood–adolescence | Ataxia, seizures, nystagmus, hypotonia, GDD, cognitive dysfunction, hearing loss, liver dysfunctions, retinal dystrophy, bone stippling, | [65,66] |
Neurotransmitter disorders | ||||
Succinic semialdehyde dehydrogenase deficiency | ALDH5A1 | Childhood | Ataxia, seizures, hypotonia, GDD, behavioural problems, strabismus | [67,68] |
Disorders of mitochondrial energy metabolism | ||||
Primary coenzyme Q10 deficiency | COQ2 COQ4 COQ5 COQ6 COQ8A PDSS2 ANO10 | Childhood | Movement disorders (ataxia, dystonia, parkinsonism), seizures, spasticity, hypotonia, GDD, encephalopathy, myopathy stroke-like episodes, nephrotic syndrome, hypertrophic cardiomyopathy, retinopathy | [69,70] |
Pyruvate carboxylase deficiency | PC | Neonatal–childhood | Ataxia, seizures, hypotonia, GDD, failure to thrive, nystagmus | [71] |
Pyruvate dehydrogenase complex deficiency | PDHA1 PDHB DLAT PDP1 | Childhood | Ataxia, seizures, nystagmus, hypotonia, spasticity, GDD, microcephaly, encephalopathy, peripheral neuropathy | [72,73] |
Dihydrolipoamide dehydrogenase deficiency | DLD | Childhood | Ataxia, seizures, hypotonia, spasticity, tremor, GDD, microcephaly, vision impairment, hepatomegaly, liver dysfunction | [74] |
GAMT deficiency CRTR deficiency | GAMT SLC6A8 | Childhood Infancy–childhood | Movement disorders (ataxia, dystonia, chorea), seizures, hypotonia, GDD, cognitive dysfunction, behavioural disorder, speech delay, dysmorphic features (in SLC6A8) | [75,76] [77,78] |
MELAS | MT-TL1 MT-ND5 | Childhood–adulthood | Ataxia, seizures, GDD, stroke-like episodes, recurrent headaches, dementia, hearing impairment, peripheral neuropathy, ragged red fibers on muscle biopsy | [79] |
Kearns–Sayre syndrome | mtDNA deletion | Childhood–adolescence | Ataxia, GDD, cognitive dysfunction, cardiac conduction abnormality, progressive external ophthalmoplegia, pigmentary retinopathy, hearing loss | [80] |
Congenital disorders of glycosylation (CDG) | ||||
PMM2-CDG | PMM2 | Infancy–childhood | Ataxia, seizures, hypotonia, nystagmus, GDD, peripheral neuropathy, strabismus, endocrine system dysfunction, skin and skeletal abnormalities | [81,82] |
ALG6-CDG | ALG6 | Neonatal–adulthood | Ataxia, dysarthria, dysmetria, hypotonia, myasthenia, peripheral neuropathy | [82] |
ALG1-CDG | ALG1 | Childhood | Ataxia, seizures, hypotonia, nystagmus, GDD, intellectual disability, strabismus, peripheral neuropathy | [82] |
PIGG-CDG | PIGG | Childhood | Ataxia, seizures, hypotonia, GDD, strabismus, peripheral neuropathy, | [82] |
ST3GAL5-CDG | ST3GAL5 | Childhood | Ataxia, seziures, hypotonia, GDD, intellectual disability | [82] |
Early age of onset (the earlier the onset of symptoms, the greater possibility that a neurometabolic disorder is the cause) |
Diffuse clinical picture with several neurological and non-neurological symptoms or progressive neurodegeneration |
Distinct neuroradiological findings, e.g., basal ganglia abnormalities, white matter involvement, or cerebellar atrophy |
Atypical or progressive ataxia that does not respond to standard treatment |
Combination of ataxia with other movement disorders (e.g., dystonia, parkinsonism, chorea, or myoclonus) |
Acute or subacute onset, especially if the onset is associated with encephalopathy, or if the onset is accelerated by a comorbid illness with fever, starvation, or physical exhaustion, or after ingesting large amounts of protein |
An insidious onset in a patient with multiple previous extra-systemic symptoms |
Paroxysmal episodic events |
Autonomic dysfunction |
Relatedness among individuals with similar symptoms (family history of similar disorders) |
Disease | Biochemical Abnormalities | Neuroimaging Abnormalities | Specific Treatment | Ref. |
---|---|---|---|---|
Biotinidase deficiency | ↓ Serum biotinidase activity ↑ 3-methylcrotonylglycine, 3-hydroxyisovaleric acid, methylcitrate, 3-hydroxypropionate in urine organic acid analysis Metabolic ketolactic acidosis Hyperammonemia | Normal to myelopathy changes, cerebral or cerebellar atrophy | Biotin | [22,23] |
Holocarboxylase synthetase deficiency | ↑ hydroxypentanoylcarnitine ↑ 3-methylcrotonylglycine, 3-hydroxyisovaleric acid, methylcitrate, 3-hydroxypropionate in urine organic acid analysis Metabolic ketolactic acidosis | Normal to myelopathy changes, cerebral atrophy, | Biotin | [24] |
Methylenetetrahydrofolate reductase deficiency | ↑ homocysteine in plasma ↓ to normal methionine in plasma | Normal to stroke and/or WM changes (increased WM signal in T2), possible brain atrophy | Betaine, folic acid, methionine, pyridoxine, carnitine, 5-methyltetrahydrofolate | [25,26] |
Ataxia with vitamin E deficiency | ↓ vitamin E level | Normal to cerebellar atrophy | Vitamin E supplementation (p.o.) | [27] |
Cobalamin C deficiency | ↑ homocysteine in plasma ↓ to normal methionine in plasma ↑ methylmalonic acid in urine | Brain atrophy, WM edema | Hydroxocobalamin, betaine, carnitine, folic acid | [28] |
Riboflavin transporter deficiency neuronopathy | Abnormalities in acylcarnitine profile (↑ short to long chain species) | Normal to cerebellar atrophy | Riboflavin | [29] |
Maple syrup urine disease | ↑ leucine, alloisoleucine, isoleucine, valine in plasma ↑ ketones and metabolic acidosis during acute decompensation | Increased signal and cytotoxic edema myelinated structures, vasogenic edema of unmyelinated tracts | Leucine-restricted diet, BCAA diet restriction | [30] |
Nonketotic hyperglycinemia | ↑ plasma glycine ↑ CSF glycine abnormal CSF-to-plasma glycine ratio | Hypogenesis of the CC, T2 hyperintensities and DWI restriction of myelinated tracts | Benzoate, NMDA receptor antagonist | [31] |
Hartnup disease | ↑ alanine, threonine, serine, leucine, valine, isoleucine, tyrosine, histidine, phenylalanine, glutamine, tryptophan, asparagine, citrulline in urine | Normal to diffuse brain atrophy | Nicotinamide, neomycin, tryptophan ethyl ester, tryptophan rich protein intake | [32] |
Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome (HHH syndrome) | hyperammonemia and hyperornithinemia in plasma urinary excretion of homocitrulline | Normal to mild cerebral and cerebellar atrophy, white matter changes, subdural hematoma, cystic lesions and calcifications, and diffuse brain edema | low-protein diet supplemented with citrulline or arginine Protein restriction may be combined with sodium benzoate or sodium phenylbutyrate | [35] |
Isovaleric acidemia | ↑ Urine 2-methylbutyrylglycine ↑ Plasma leucine and carnitine | Normal to basal ganglia T2 hyperintensity | Glycine, carnitine suplementation | [36] |
Methylmalonic aciduria due to methylmalonyl-CoA mutase deficiency | ↑ methylmalonic acid (MMA) concentration in the blood and urine hyperammonemia, Severe ketoacidosis and lactic acidosis (plasma) ↑ urine organic acids | Normal to basal ganglia involvement | Low protein diet, carnitine, hydroxycobalamin suplementation | [37] |
Glutaric aciduria type 1 | ↑ concentrations of glutaric acid, 3-hydroxyglutaric acid, glutarylcarnitine (C5DC), glutaconic acid | Basal ganglia involvement | Carnitine, lysine-restricted/argininerich diet | [38] |
Galactosemia | ↑ erythrocyte galactose-1-phosphate ↓ erythrocyte GALT activity | Normal to cerebral and cerebellar atrophy | Galactose and lactose restriction, vitamin D, calcium | [39] |
Glucose transporter 1 deficiency | ↓ glucose in CSF with normal glucose in plasma ↓ erythrocyte 3-O-methyl-D-glucose uptake | Normal | Ketogenic diet, triheptanoin | [40] |
Neuronal ceroid lipofuscinosis type 2 CLN2 disease | ↓ tripeptidyl peptidase 1 activity | Cerebral and cerebellar atrophy | Cerliponase alfa intracerebroventricular | [41] |
Fabry disease | ↓ alpha-galactosidase A activity ↑ globotriaosylsphingosine in plasma and urine | Cerebral atrophy, increased signal intensity in WM in T2, stroke-like lesions | Agalsidase beta | [42] |
Krabbe disease | ↓ galactocerebrosidase activity | Cerebral atrophy, demyelination in brain stem and cerebellum, leukodystrophy, chiasmatic enlargement | Hematopoietic stem cell transplant | [44,45] |
Tay-Sachs disease | Absence or extremely low level of hexosaminidase activity (0–5%) ↓ Hexosaminidase levels in the serum | Normal to cerebellar atrophy | - | [46,47] |
Niemann-pick type C disease | ↑ oxysterols in plasma Positive filipin staining in cultured fibroblasts | Cerebral and cerebellar atrophy, increased WM intensity in T2 | Miglustat | [48,49] |
Metachromatic leukodystrophy | ↓ arylsulfatatase A activity ↑ sulfatides in urine | Cerebral atrophy, demyelination in brain stem and cerebellum, leukodystrophy, chiasmatic enlargement | Hematopoietic stem cell transplant | [50,51] |
Salla disease | ↑ Sialic acid, free in urine | Delayed myelination | - | [52] |
Sialidosis type I | Sialyloligosaccharides in urine, deficiency of the lysosomal sialidase activity in cultured skin fibroblasts obtained from a skin biopsy | Normal to cerebellar atrophy | - | [53] |
Fatty acid hydroxylase-associated neurodegeneration | - | Iron deposition in basal ganglia and WM changes | - | [54] |
Abetalipoproteinemia | ↓LDL-cholesterol, ↓ triglyceride ↓ apolipoprotein B | Normal to delayed myelination | Low-fat diet, supplementation of essential fatty acid, vitamin A, D, E, K supplementation | [57] |
Cerebrotendinous xanthomatosis | ↑ cholestanol in plasma ↓ to normal cholesterol in plasma | Diffuse brain atrophy | CDCA | [58] |
Aceruloplasminemia | ↓ ceruloplasmin in serum ↓ serum copper or iron ↑ ferritin in serum ↑ hepatic iron | Decreased signal intensity in BG in T2, Iron deposition in basal ganglia | Desferrioxamine, deferasirox, deferiprone, combined intravenous desferrioxamine and FFP | [60] |
Menkes disease | ↓ serum copper concentration ↓ serum ceruloplasmin concentration | Arterial tortuosity and/or subdural collection | Copper histidine | [61] |
X-linked adrenoleukodystrophy | ↑ VLCFA in plasma | Symmetric enhanced T2 signal in the parieto-occipital region with contrast enhancement at the advancing margin | Hematopoietic stem cell transplant | [62,63,64] |
Succinic semialdehyde dehydrogenase deficiency | ↑ urine organic acids (↑ 4-hydroxybutyric acid concentration) ↑ plasma 4-hydroxybutyric acid concentration | Globus pallidus, dentate, and subthalamic nucleus T2 hyperintensit | - | [67,68] |
Primary coenzyme Q10 deficiency | ↓ coenzyme Q10 in skeletal muscle ↓ complex I + III and II + III activity in muscle | Normal to cerebellar atrophy, and increased T2 signal intensity cerebellum | Coenzyme Q10 | [69,70] |
Pyruvate carboxylase deficiency | Normal lactate to pyruvate ratio ↑ alanine, citrulline, lysine in plasma and urine ↓ aspartic acid, glutamine in plasma and urine ↑ lactate | Hypomyelination, periventricular cysts in cortex, BG, brain stem, and cerebellum | Acute management: IV glucose Chronic management: citrate, aspartate, biotin, liver transplantation | [71] |
Pyruvate dehydrogenase complex deficiency | ↑ lactate in CSF and blood ↑ pyruvate and alanine in CSF and blood ↑ α -ketoglutarate in urine ↑ leucine, valine, isoleucine, alloisoleucine in plasma | Brain atrophy and/or basal ganglia T2 hyperintensity | Ketogenic diet, thiamine | [72,73] |
Dihydrolipoamide dehydrogenase deficiency | ↑ Blood and CSF lactate ↑ Blood and CSF pyruvate and alanine ↑ alpha ketoglutarate in urine organic acid analysis ↑ leucine, valine, isoleucine, alloisoleucine in plasma amino acid analysis | Basal ganglia T2 hyperintensity | Thiamine, ketogenic diet | [74] |
Cerebral creatine deficiency syndromes | ↑ urine, plasma GAA (GAMT deficiency) ↑ urine creatine to creatinine ratio | Normal to increased T2 signal in BG | GAMT deficiency: creatinine, ornithine, arginine restricted diet CRTR deficiency: arginine, glycine, creatine | [75,76,77,78] |
MELAS | - | Stroke-like episodes | - | [79] |
PMM2-CDG | ↑ Serum sialotransferins, Coagulopathy and thrombosis (factor II, V, VII, VIII, IX, X, XI, antithrombin III, protein C, protein S deficiency | Cerebellar atrophy | - | [81,82] |
ALG6-CDG | ↑ Serum sialotransferins, Coagulopathy and thrombosis (factor II, V, VII, VIII, IX, X, XI, antithrombin III, protein C, protein S deficiency | Normal to cerebral and/or cerebellar atrophy | - | [82] |
PIGG-CDG | GPI-anchored protein flow cytometry | Cerebellar atrophy | - | [82] |
ST3GAL5-CDG | No laboratory tests --> DNA | Normal | - | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaminiów, K.; Ryguła, I.; Paprocka, J. Ataxia in Neurometabolic Disorders. Metabolites 2023, 13, 47. https://doi.org/10.3390/metabo13010047
Kaminiów K, Ryguła I, Paprocka J. Ataxia in Neurometabolic Disorders. Metabolites. 2023; 13(1):47. https://doi.org/10.3390/metabo13010047
Chicago/Turabian StyleKaminiów, Konrad, Izabella Ryguła, and Justyna Paprocka. 2023. "Ataxia in Neurometabolic Disorders" Metabolites 13, no. 1: 47. https://doi.org/10.3390/metabo13010047
APA StyleKaminiów, K., Ryguła, I., & Paprocka, J. (2023). Ataxia in Neurometabolic Disorders. Metabolites, 13(1), 47. https://doi.org/10.3390/metabo13010047