Association of Gut Microbial Genera with Heart Rate Variability in the General Japanese Population: The Iwaki Cross-Sectional Research Study
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Participants and Analysis
4.2. Clinical Features
4.3. Measurement of HRV
4.4. Measurements of the Gut Microbiota
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fülling, C.; Dinan, T.G.; Cryan, J.F. Gut Microbe to Brain Signaling: What Happens in Vagus. Neuron 2019, 101, 998–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.-X.; Wang, Y.-P. Gut Microbiota-brain Axis. Chin. Med. J. 2016, 129, 2373–2380. [Google Scholar] [CrossRef]
- Bonaz, B.; Sinniger, V.; Pellissier, S. Vagal tone: Effects on sensitivity, motility, and inflammation. Neurogastroenterol. Motil. 2016, 28, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Waxenbaum, J.A.; Reddy, V.; Varacallo, M. Anatomy, autonomic nervous system. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2019. Available online: https://www.ncbi.nlm.nih.gov/books/NBK539845/ (accessed on 29 July 2021).
- Coote, J.H.; Spyer, K.M. Central control of autonomic function. Brain Neurosci. Adv. 2018, 2, 2398212818812012. [Google Scholar] [CrossRef] [Green Version]
- Sztajzel, J. Heart rate variability: A noninvasive electrocardiographic method to measure the autonomic nervous system. Swiss Med. Wkly. 2004, 134, 514–522. [Google Scholar]
- Vanderlei, L.C.; Pastre, C.M.; Hoshi, R.A.; Carvalho, T.; De Godoy, M.F. Basic notions of heart rate variability and its clinical applicability. Rev. Bras. Cir. Cardiovasc. 2009, 24, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Hillebrand, S.; Gast, K.B.; de Mutsert, R.; Swenne, C.A.; Jukema, J.W.; Middeldorp, S.; Rosendaal, F.R.; Dekkers, O.M. Heart rate variability and first cardiovascular event in populations without known cardiovascular disease: Meta-analysis and dose–response meta-regression. Europace 2013, 15, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.W.; Kitai, T.; Hazen, S.L. Gut Microbiota in Cardiovascular Health and Disease. Circ. Res. 2017, 120, 1183–1196. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zhao, Y. Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell 2018, 9, 416–431. [Google Scholar] [CrossRef] [Green Version]
- Witkowski, M.; Weeks, T.L.; Hazen, S.L. Gut Microbiota and Cardiovascular Disease. Circ. Res. 2020, 127, 553–570. [Google Scholar] [CrossRef]
- Xu, H.; Wang, X.; Feng, W.; Liu, Q.; Zhou, S.; Liu, Q.; Cai, L. The gut microbiota and its interactions with cardiovascular disease. Microb. Biotechnol. 2020, 13, 637–656. [Google Scholar] [CrossRef] [Green Version]
- Naito, Y.; Takagi, T.; Inoue, R.; Kashiwagi, S.; Mizushima, K.; Tsuchiya, S.; Itoh, Y.; Okuda, K.; Tsujimoto, Y.; Adachi, A.; et al. Gut microbiota differences in elderly subjects between rural city Kyotango and urban city Kyoto: An age-gender-matched study. J. Clin. Biochem. Nutr. 2019, 65, 125–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dicksved, J.; Halfvarson, J.; Rosenquist, M.; Järnerot, G.; Tysk, C.; Apajalahti, J.; Engstrand, L.; Jansson, J.K. Molecular analysis of the gut microbiota of identical twins with Crohn’s disease. ISME J. 2008, 2, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Carroll, I.M.; Ringel-Kulka, T.; Keku, T.O.; Chang, Y.-H.; Packey, C.D.; Sartor, R.B.; Ringel, Y. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 301, G799–G807. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Bäckhed, F.; Fulton, L.; Gordon, J.I. Diet-Induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome. Cell Host Microbe 2008, 3, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Yatsunenko, T.; Rey, F.E.; Manary, M.J.; Trehan, I.; Dominguez-Bello, M.G.; Contreras, M.; Magris, M.; Hidalgo, G.; Baldassano, R.N.; Anokhin, A.P.; et al. Human gut microbiome viewed across age and geography. Nature 2012, 486, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 2012, 489, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Vacca, M.; Celano, G.; Calabrese, F.M.; Portincasa, P.; Gobbetti, M.; De Angelis, M. The Controversial Role of Human Gut Lachnospiraceae. Microorganisms 2020, 8, 573. [Google Scholar] [CrossRef]
- Atarashi, K.; Tanoue, T.; Oshima, K.; Suda, W.; Nagano, Y.; Nishikawa, H.; Fukuda, S.; Saito, T.; Narushima, S.; Hase, K.; et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013, 500, 232–236. [Google Scholar] [CrossRef]
- Atarashi, K.; Tanoue, T.; Shima, T.; Imaoka, A.; Kuwahara, T.; Momose, Y.; Cheng, G.; Yamasaki, S.; Saito, T.; Ohba, Y.; et al. Induction of colonic regulatory T cells by indigenous clostridium species. Science 2011, 331, 337–341. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-N.; Yao, Y.; Ju, S.-Y. Heart rate variability and inflammatory bowel disease in humans: A systematic review and meta-analysis. Medicine 2020, 99, e23430:1–e23430:10. [Google Scholar] [CrossRef] [PubMed]
- Seyedian, S.S.; Nokhostin, F.; Malamir, M.D. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. J. Med. Life 2019, 12, 113–122. [Google Scholar] [CrossRef]
- Kimura, I.; Inoue, D.; Maeda, T.; Hara, T.; Ichimura, A.; Miyauchi, S.; Kobayashi, M.; Hirasawa, A.; Tsujimoto, G. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl. Acad. Sci. USA 2011, 108, 8030–8035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, I.; Ozawa, K.; Inoue, D.; Imamura, T.; Kimura, K.; Maeda, T.; Terasawa, K.; Kashihara, D.; Hirano, K.; Tani, T.; et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 2013, 4, 1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, Y.-H.; Cypess, A.M.; Kahn, C.R. Cellular bioenergetics as a target for obesity therapy. Nat. Rev. Drug Discov. 2010, 9, 465–482. [Google Scholar] [CrossRef] [Green Version]
- Almeida-Santos, M.A.; Barreto-Filho, J.A.; Oliveira, J.L.; Reis, F.P.; da Cunha Oliveira, C.C.; Sousa, A.C.S. Aging, heart rate variability and patterns of autonomic regulation of the heart. Arch. Gerontol. Geriatr. 2016, 63, 1–8. [Google Scholar] [CrossRef]
- Oliveira, C.; Silveira, E.A.; Rosa, L.; Santos, A.; Rodrigues, A.P.; Mendonça, C.; Silva, L.; Gentil, P.; Rebelo, A.C. Risk Factors Associated with Cardiac Autonomic Modulation in Obese Individuals. J. Obes. 2020, 2020, 7185249. [Google Scholar] [CrossRef]
- Lambert, G.W.; Schlaich, M.P.; Eikelis, N.; Lambert, E.A. Sympathetic activity in obesity: A brief review of methods and supportive data. Ann. N. Y. Acad. Sci. 2019, 1454, 56–67. [Google Scholar] [CrossRef]
- Tunapong, W.; Apaijai, N.; Yasom, S.; Tanajak, P.; Wanchai, K.; Chunchai, T.; Kerdphoo, S.; Eaimworawuthikul, S.; Thiennimitr, P.; Pongchaidecha, A.; et al. Chronic treatment with prebiotics, probiotics and synbiotics attenuated cardiac dysfunction by improving cardiac mitochondrial dysfunction in male obese insulin-resistant rats. Eur. J. Nutr. 2018, 57, 2091–2104. [Google Scholar] [CrossRef]
- Łykowska-Szuber, L.; Rychter, A.M.; Dudek, M.; Ratajczak, A.E.; Szymczak-Tomczak, A.; Zawada, A.; Eder, P.; Lesiak, M.; Dobrowolska, A.; Krela-Kaźmierczak, I. What Links an Increased Cardiovascular Risk and Inflammatory Bowel Disease? A Narrative Review. Nutrients 2021, 13, 2661. [Google Scholar] [CrossRef]
- Casado-Bedmar, M.; Keita, Å.V. Potential neuro-immune therapeutic targets in irritable bowel syndrome. Ther. Adv. Gastroenterol. 2020, 13, 1756284820910630. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Lagos, J.J.; Echeverría-Arjonilla, J.C.; Peña-Castillo, M.Á.; Montiel-Castro, A.J.; Pacheco-López, G. Physiological, immunological and evolutionary perspectives of labor as an inflammatory process. Adv. Neuroimmune Biol. 2014, 5, 75–89. [Google Scholar] [CrossRef] [Green Version]
- Tsubokawa, M.; Nishimura, M.; Tamada, Y.; Nakaji, S. Factors Associated with Reduced Heart Rate Variability in the General Japanese Population: The Iwaki Cross-Sectional Research Study. Healthcare 2022, 10, 793. [Google Scholar] [CrossRef] [PubMed]
- Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef] [Green Version]
- De Godoy, M.F. Nonlinear analysis of heart rate variability: A comprehensive review. J. Cardiol. Ther. 2016, 3, 528–533. [Google Scholar] [CrossRef]
- Nakaji, S.; Ihara, K.; Sawada, K.; Parodi, S.; Umeda, T.; Takahashi, I.; Murashita, K.; Kurauchi, S.; Tokuda, I. Social innovation for life expectancy extension utilizing a platform-centered system used in the Iwaki health promotion project: A protocol paper. SAGE Open Med. 2021, 9, 20503121211002606. [Google Scholar] [CrossRef]
- Kume, S.; Nishimura, Y.; Mizuno, K.; Sakimoto, N.; Hori, H.; Tamura, Y.; Yamato, M.; Mitsuhashi, R.; Akiba, K.; Koizumi, J.-I.; et al. Music Improves Subjective Feelings Leading to Cardiac Autonomic Nervous Modulation: A Pilot Study. Front. Neurosci. 2017, 11, 108. [Google Scholar] [CrossRef] [Green Version]
- Mizuno, K.; Sasaki, A.T.; Ebisu, K.; Tajima, K.; Kajimoto, O.; Nojima, J.; Kuratsune, H.; Hori, H.; Watanabe, Y. Hydrogen-rich water for improvements of mood, anxiety, and autonomic nerve function in daily life. Med. Gas. Res. 2017, 7, 247–255. [Google Scholar] [CrossRef] [Green Version]
- Pop-Busui, R. Cardiac Autonomic Neuropathy in Diabetes: A clinical perspective. Diabetes Care 2010, 33, 434–441. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.E.V.; Salgado, H.C.; Fazan, R., Jr. Mean Heart Rate Level Does Not Affect All Heart Rate Variability Indices. Hypertension 2017, 69, e21–e22. [Google Scholar] [CrossRef]
- Aeschbacher, S.; Bossard, M.; Ruperti Repilado, F.J.; Good, N.; Schoen, T.; Zimny, M.; Probst-Hensch, N.M.; Schmidt-Trucksäss, A.; Risch, M.; Risch, L.; et al. Healthy lifestyle and heart rate variability in young adults. Eur. J. Prev. Cardiol. 2016, 23, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, S.; Tomita, J.; Nishioka, K.; Hisada, T.; Nishijima, M. Development of a Prokaryotic Universal Primer for Simultaneous Analysis of Bacteria and Archaea Using Next-Generation Sequencing. PLoS ONE 2014, 9, e105592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nomura, A.; Matsubara, A.; Goto, S.; Takahata, J.; Sawada, K.; Ihara, K.; Nakaji, S. Relationship between gut microbiota composition and sensitization to inhaled allergens. Allergol. Int. 2020, 69, 437–442. [Google Scholar] [CrossRef] [PubMed]
- Ozato, N.; Saito, S.; Yamaguchi, T.; Katashima, M.; Tokuda, I.; Sawada, K.; Katsuragi, Y.; Kakuta, M.; Imoto, S.; Ihara, K.; et al. Blautia genus associated with visceral fat accumulation in adults 20–76 years of age. NPJ Biofilms Microbiomes 2019, 5, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Kim, B.R.; Shin, J.; Guevarra, R.B.; Lee, J.H.; Kim, D.W.; Seol, K.H.; Lee, J.H.; Kim, H.B.; Isaacson, R.E. Deciphering Diversity Indices for a Better Understanding of Microbial Communities. J. Microbiol. Biotechnol. 2017, 27, 2089–2093. [Google Scholar] [CrossRef] [Green Version]
Continuous Variables | Total (N = 950) | Men (N = 391) | Women (N = 559) | ||||
---|---|---|---|---|---|---|---|
(Unit) | Mean | (SD) | Mean | (SD) | Mean | (SD) | |
Age | (years) | 52.6 | (14.77) | 52.4 | (14.58) | 52.7 | (14.90) |
BMI | (kg/m2) | 23.1 | (3.63) | 24.1 | (3.51) | 22.4 | (3.54) |
HbA1c | (%) | 5.7 | (0.62) | 5.7 | (0.71) | 5.7 | (0.54) |
Glycoalbumin | (%) | 14.6 | (1.98) | 14.4 | (2.41) | 14.7 | (1.61) |
Blood glucose | (mg/dL) | 96.3 | (16.52) | 99.8 | (18.29) | 93.9 | (14.70) |
Triglyceride | (mg/dL) | 98.2 | (84.33) | 125.2 | (114.54) | 79.4 | (45.43) |
Total cholesterol | (mg/dL) | 205.4 | (34.27) | 203.0 | (34.17) | 207.0 | (34.27) |
HDL cholesterol | (mg/dL) | 65.0 | (16.66) | 58.2 | (15.00) | 69.8 | (16.08) |
LDL cholesterol | (mg/dL) | 116.8 | (29.79) | 117.4 | (29.34) | 116.4 | (30.11) |
ALT | (U/L) | 20.9 | (13.75) | 26.5 | (16.52) | 17.0 | (9.69) |
AST | (U/L) | 21.8 | (7.86) | 23.8 | (8.37) | 20.5 | (7.18) |
γ-GTP | (U/L) | 33.2 | (40.94) | 49.1 | (56.98) | 22.1 | (16.75) |
Creatinine | (mg/dL) | 0.7 | (0.55) | 0.9 | (0.74) | 0.6 | (0.33) |
Urea nitrogen | (mg/dL) | 14.5 | (4.50) | 15.4 | (4.52) | 14.0 | (4.40) |
SBP | (mmHg) | 120.8 | (16.88) | 123.5 | (16.65) | 118.9 | (16.79) |
DBP | (mmHg) | 77.1 | (11.20) | 79.5 | (11.48) | 75.3 | (10.67) |
RR interval | (ms) | 866.9 | (121.76) | 885.9 | (127.19) | 853.7 | (116.09) |
CVRR | (%) | 3.4 | (1.67) | 3.4 | (1.70) | 3.4 | (1.56) |
SDNN | (ms) | 29.3 | (14.56) | 29.8 | (15.7) | 29.0 | (13.76) |
LF | (ms2) | 343.5 | (522.26) | 421.4 | (625.19) | 289.0 | (428.32) |
HF | (ms2) | 252.2 | (340.90) | 246.9 | (364.04) | 256.0 | (324.03) |
LF/HF | (Ratio) | 2.7 | (3.99) | 3.3 | (4.73) | 2.2 | (3.32) |
HR | (bpm) | 70.1 | (10.15) | 68.7 | (10.23) | 71.1 | (9.98) |
Categorical variables | N | (%) | N | (%) | N | (%) | |
Diabetes mellitus | No | 890 | (93.9%) | 361 | (92.3%) | 529 | (95.0%) |
Yes | 58 | (6.1%) | 30 | (7.7%) | 28 | (5.0%) | |
Hyperlipidemia | No | 778 | (82.2%) | 315 | (81.0%) | 463 | (83.1%) |
Yes | 168 | (17.8%) | 74 | (19.0%) | 94 | (16.9%) | |
High blood pressure | No | 711 | (74.9%) | 275 | (70.3%) | 436 | (78.1%) |
Yes | 238 | (25.1%) | 116 | (29.7%) | 122 | (21.9%) | |
Heart disease | No | 906 | (95.5%) | 366 | (93.6%) | 540 | (96.8%) |
Yes | 43 | (4.5%) | 25 | (6.4%) | 18 | (3.2%) | |
Gastric/Duodenal ulcer | No | 853 | (89.9%) | 342 | (87.5%) | 511 | (91.6%) |
Yes | 96 | (10.1%) | 49 | (12.5%) | 47 | (8.4%) | |
Antidiabetic medication use | No | 903 | (95.1%) | 367 | (93.9%) | 536 | (95.9%) |
Yes | 47 | (4.9%) | 24 | (6.1%) | 23 | (4.1%) | |
Antihyperlipidemic medication use | No | 846 | (89.1%) | 346 | (88.5%) | 500 | (89.4%) |
Yes | 104 | (10.9%) | 45 | (11.5%) | 59 | (10.6%) | |
Antihypertensive medication use | No | 728 | (76.6%) | 285 | (72.9%) | 443 | (79.2%) |
Yes | 222 | (23.4%) | 106 | (27.1%) | 116 | (20.8%) | |
Exercising (non-winter) | No | 732 | (77.4%) | 302 | (77.6%) | 430 | (77.2%) |
Yes | 214 | (22.6%) | 87 | (22.4%) | 127 | (22.8%) | |
Exercising (winter) | No | 731 | (77.7%) | 304 | (78.6%) | 427 | (77.1%) |
Yes | 210 | (22.3%) | 83 | (21.4%) | 127 | (22.9%) | |
Smoking | No | 596 | (63.3%) | 161 | (41.6%) | 435 | (78.4%) |
Current | 161 | (17.1%) | 114 | (29.5%) | 47 | (8.5%) | |
Previous | 185 | (19.6%) | 112 | (28.9%) | 73 | (13.2%) | |
Alcohol consumption | No | 444 | (47.3%) | 111 | (28.6%) | 333 | (60.5%) |
Current | 456 | (48.6%) | 266 | (68.6%) | 190 | (34.5%) | |
Previous | 38 | (4.1%) | 11 | (2.8%) | 27 | (4.9%) |
Continuous Variables | Total (N = 950) | Men (N = 391) | Women (N = 559) | ||||
---|---|---|---|---|---|---|---|
(Unit) | Mean | (SD) | Mean | (SD) | Mean | (SD) | |
Actinobacteria | (%) | 11.9 | (9.02) | 11.8 | (9.31) | 12.0 | (8.82) |
Bacteroidetes | (%) | 24.8 | (11.22) | 26.7 | (12.47) | 23.5 | (10.05) |
Proteobacteria | (%) | 2.9 | (2.56) | 3.2 | (2.76) | 2.6 | (2.38) |
Firmicutes | (%) | 58.9 | (12.27) | 56.2 | (13.04) | 60.8 | (11.33) |
Characteristics | Univariate | Model 1 | Model 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
β | 95% CI | p-Value | β | 95% CI | p-Value | β | 95% CI | p-Value | |
SDNN (ms) | 0.113 | −0.093 to 0.320 | 0.282 | 0.174 | −0.020 to 0.369 | 0.078 | 0.213 | 0.012 to 0.413 | 0.038 |
CVRR (%) | 0.011 | −0.012 to 0.034 | 0.368 | 0.017 | −0.004 to 0.038 | 0.116 | 0.020 | −0.002 to 0.042 | 0.070 |
LF (ms2) | 0.743 | −6.673 to 8.159 | 0.844 | 3.963 | −3.174 to 11.100 | 0.276 | 4.598 | −2.823 to 12.018 | 0.224 |
HF (ms2) | 0.564 | −4.277 to 5.405 | 0.819 | 1.024 | −3.738 to 5.786 | 0.673 | 2.305 | −2.589 to 7.199 | 0.356 |
LF/HF | 0.013 | −0.043 to 0.070 | 0.641 | 0.034 | −0.022 to 0.090 | 0.236 | 0.034 | −0.024 to 0.092 | 0.254 |
HR (bpm) | −0.022 | −0.166 to 0.122 | 0.762 | −0.033 | −0.175 to 0.109 | 0.648 | −0.051 | −0.195 to 0.093 | 0.484 |
Characteristics | Univariate | Model 1 | Model 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
β | 95% CI | p-Value | β | 95% CI | p-Value | β | 95% CI | p-Value | |
SDNN (ms) | 0.681 | −2.931 to 4.293 | 0.711 | 3.542 | 0.142 to 6.942 | 0.041 | 3.934 | 0.444 to 7.424 | 0.027 |
CVRR (%) | −0.056 | −0.458 to 0.346 | 0.786 | 0.302 | −0.064 to 0.667 | 0.106 | 0.346 | −0.030 to 0.721 | 0.071 |
LF (ms2) | −38.512 | −168.009 to 90.984 | 0.560 | 57.731 | −67.340 to 182.803 | 0.365 | 63.993 | −65.218 to 193.205 | 0.331 |
HF (ms2) | 3.120 | −81.242 to 87.663 | 0.942 | 38.975 | −44.438 to 122.388 | 0.359 | 50.440 | −34.732 to 135.612 | 0.245 |
LF/HF | −0.014 | −1.003 to 0.975 | 0.978 | 0.342 | −0.647 to 1.331 | 0.498 | 0.346 | −0.671 to 1.363 | 0.504 |
HR (bpm) | −2.232 | −4.745 to 0.280 | 0.082 | −1.608 | −4.088 to 0.872 | 0.204 | 0.676 | −4.132 to 0.876 | 0.202 |
Characteristics | Univariate | Model 1 | Model 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
β | 95% CI | p-Value | β | 95% CI | p-Value | β | 95% CI | p-Value | |
SDNN (ms) | 1.024 | 0.169 to 1.878 | 0.019 | 1.390 | 0.589 to 2.191 | 0.001 | 1.449 | 0.616 to 2.282 | 0.001 |
CVRR (%) | 0.087 | −0.008 to 0.183 | 0.072 | 0.127 | 0.040 to 0.213 | 0.004 | 0.135 | 0.045 to 0.225 | 0.003 |
LF (ms2) | 41.007 | 10.402 to 71.611 | 0.009 | 57.949 | 28.590 to 87.309 | <0.001 | 59.687 | 28.954 to 90.420 | <0.001 |
HF (ms2) | 7.118 | −12.926 to 27.163 | 0.486 | 10.824 | −8.899 to 30.548 | 0.282 | 11.525 | −8.885 to 31.935 | 0.268 |
LF/HF | 0.271 | 0.037 to 0.505 | 0.023 | 0.357 | 0.124 to 0.590 | 0.003 | 0.367 | 0.124 to 0.609 | 0.003 |
HR (bpm) | −0.586 | −1.182 to 0.010 | 0.054 | −0.626 | −1.212 to −0.040 | 0.036 | −0.576 | −1.175 to 0.023 | 0.060 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsubokawa, M.; Nishimura, M.; Mikami, T.; Ishida, M.; Hisada, T.; Tamada, Y. Association of Gut Microbial Genera with Heart Rate Variability in the General Japanese Population: The Iwaki Cross-Sectional Research Study. Metabolites 2022, 12, 730. https://doi.org/10.3390/metabo12080730
Tsubokawa M, Nishimura M, Mikami T, Ishida M, Hisada T, Tamada Y. Association of Gut Microbial Genera with Heart Rate Variability in the General Japanese Population: The Iwaki Cross-Sectional Research Study. Metabolites. 2022; 12(8):730. https://doi.org/10.3390/metabo12080730
Chicago/Turabian StyleTsubokawa, Masaya, Miyuki Nishimura, Tatsuya Mikami, Mizuri Ishida, Takayoshi Hisada, and Yoshinori Tamada. 2022. "Association of Gut Microbial Genera with Heart Rate Variability in the General Japanese Population: The Iwaki Cross-Sectional Research Study" Metabolites 12, no. 8: 730. https://doi.org/10.3390/metabo12080730
APA StyleTsubokawa, M., Nishimura, M., Mikami, T., Ishida, M., Hisada, T., & Tamada, Y. (2022). Association of Gut Microbial Genera with Heart Rate Variability in the General Japanese Population: The Iwaki Cross-Sectional Research Study. Metabolites, 12(8), 730. https://doi.org/10.3390/metabo12080730