GC-TOF/MS-Based Metabolomics for Comparison of Volar and Non-Volar Skin Types
Abstract
:1. Introduction
2. Results
2.1. Overview of Metabolite Profiles in Volar and Non-Volar Skin Tissue
2.2. Principal Component Analysis (PCA) of Metabolite Profiles in Volar Skin and Non-Volar Skin Tissue
2.3. Hierarchical Cluster Analysis (HCA) of Metabolites
2.4. Screening of Metabolic Markers
2.5. Metabolic Pathway Analysis
3. Discussion
4. Materials and Methods
4.1. Collection of Skin Tissue Samples
4.2. Preparation of Tissue Extracts for GC-TOF/MS
4.3. GC-TOF/MS Analysis of Derivatized Samples
4.4. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Janson, D.G.; Saintigny, G.; van Adrichem, A.; Mahe, C.; El Ghalbzouri, A. Different gene expression patterns in human papillary and reticular fibroblasts. J. Investig. Dermatol. 2012, 132, 2565–2572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harper, R.A.; Grove, G. Human skin fibroblasts derived from papillary and reticular dermis: Differences in growth potential in vitro. Science 1979, 204, 526–527. [Google Scholar] [CrossRef]
- Matsuzaki, T.; Yoshizato, K. Role of hair papilla cells on induction and regeneration processes of hair follicles. Wound Repair Regen. 1998, 6, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Frech, S.; Forsthuber, A.; Korosec, A.; Lipp, K.; Kozumov, V.; Lichtenberger, B.M. Hedgehog-signalling in papillary fibroblasts is essential for hair follicle regeneration during wound healing. J. Investig. Dermatol. 2021, 142, 1737–1748. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.Y.; Chi, J.-T.; Dudoit, S.; Bondre, C.; van de Rijn, M.; Botstein, D.; Brown, P.O. Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc. Natl. Acad. Sci. USA 2002, 99, 12877–12882. [Google Scholar] [CrossRef] [Green Version]
- Rinn, J.L.; Bondre, C.; Gladstone, H.B.; Brown, P.O.; Chang, H.Y. Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genet. 2006, 2, e119. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, E. Scratching the surface of skin development. Nature 2007, 445, 834–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sengel, P. Pattern formation in skin development. Int. J. Dev. Biol. 2003, 34, 33–50. [Google Scholar]
- Billingham, R.; Silvers, W.K. Studies on the conservation of epidermal specificities of skin and certain mucosas in adult mammals. J. Exp. Med. 1967, 125, 429–446. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Itami, S.; Watabe, H.; Yasumoto, K.; Abdel-Malek, Z.A.; Kubo, T.; Rouzaud, F.; Tanemura, A.; Yoshikawa, K.; Hearing, V.J. Mesenchymal-epithelial interactions in the skin: Increased expression of dickkopf1 by palmoplantar fibroblasts inhibits melanocyte growth and differentiation. J. Cell Biol. 2004, 165, 275–285. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Itami, S.; Tarutani, M.; Hosokawa, K.; Miura, H.; Yoshikawa, K. Regulation of keratin 9 in nonpalmoplantar keratinocytes by palmoplantar fibroblasts through epithelial-mesenchymal interactions. J. Investig. Dermatol. 1999, 112, 483–488. [Google Scholar] [CrossRef] [PubMed]
- Knapp, A.C.; Franke, W.W.; Heid, H.; Hatzfeld, M.; Jorcano, J.L.; Moll, R. Cytokeratin no. 9, an epidermal type i keratin characteristic of a special program of keratinocyte differentiation displaying body site specificity. J. Cell Biol. 1986, 103, 657–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, Y.; Passeron, T.; Hoashi, T.; Watabe, H.; Rouzaud, F.; Yasumoto, K.; Hara, T.; Tohyama, C.; Katayama, I.; Miki, T.; et al. Dickkopf 1 (dkk1) regulates skin pigmentation and thickness by affecting wnt/beta-catenin signaling in keratinocytes. FASEB J. 2008, 22, 1009–1020. [Google Scholar] [CrossRef]
- Pageon, H.; Zucchi, H.; Asselineau, D. Distinct and complementary roles of papillary and reticular fibroblasts in skin morphogenesis and homeostasis. Eur. J. Dermatol. 2012, 22, 324–332. [Google Scholar] [CrossRef]
- El Ghalbzouri, A.; Ponec, M. Diffusible factors released by fibroblasts support epidermal morphogenesis and deposition of basement membrane components. Wound Repair Regen. 2004, 12, 359–367. [Google Scholar] [CrossRef]
- Jevtić, M.; Loewa, A.; Nováčková, A.; Kováčik, A.; Kaessmeyer, S.; Erdmann, G.; Vávrová, K.; Hedtrich, S. Impact of intercellular crosstalk between epidermal keratinocytes and dermal fibroblasts on skin homeostasis. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2020, 1867, 118722. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Sévin, D.C.; Kuehne, A.; Zamboni, N.; Sauer, U. Biological insights through nontargeted metabolomics. Curr. Opin. Biotechnol. 2015, 34, 1–8. [Google Scholar] [CrossRef]
- Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 2007, 26, 51–78. [Google Scholar] [CrossRef]
- Halket, J.M.; Waterman, D.; Przyborowska, A.M.; Patel, R.K.; Fraser, P.D.; Bramley, P.M. Chemical derivatization and mass spectral libraries in metabolic profiling by gc/ms and lc/ms/ms. J. Exp. Bot. 2005, 56, 219–243. [Google Scholar] [CrossRef] [Green Version]
- Pasikanti, K.K.; Ho, P.; Chan, E. Gas chromatography/mass spectrometry in metabolic profiling of biological fluids. J. Chromatogr. B 2008, 871, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S. Advances in metabolite identification. Bioanalysis 2011, 3, 1769–1782. [Google Scholar] [CrossRef] [PubMed]
- Koria, P.; Andreadis, S.T. Epidermal morphogenesis: The transcriptional program of human keratinocytes during stratification. J. Investig. Dermatol. 2006, 126, 1834–1841. [Google Scholar] [CrossRef]
- Solano, F. Metabolism and functions of amino acids in the skin. In Amino Acids in Nutrition and Health; Springer: Berlin/Heidelberg, Germany, 2020; pp. 187–199. [Google Scholar]
- Slominski, A.; Tobin, D.J.; Zmijewski, M.A.; Wortsman, J.; Paus, R. Melatonin in the skin: Synthesis, metabolism and functions. Trends Endocrinol. Metab. 2008, 19, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Schallreuter, K.U.; Wazir, U.; Kothari, S.; Gibbons, N.C.; Moore, J.; Wood, J.M. Human phenylalanine hydroxylase is activated by h2o2: A novel mechanism for increasing the l-tyrosine supply for melanogenesis in melanocytes. Biochem. Biophys. Res. Commun. 2004, 322, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Solano, F. On the metal cofactor in the tyrosinase family. Int. J. Mol. Sci. 2018, 19, 633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solano, F. Melanins: Skin pigments and much more—Types, structural models, biological functions, and formation routes. New J. Sci. 2014, 2014, 498276. [Google Scholar] [CrossRef] [Green Version]
- Stincone, A.; Prigione, A.; Cramer, T.; Wamelink, M.M.; Campbell, K.; Cheung, E.; Olin-Sandoval, V.; Grüning, N.M.; Krüger, A.; Tauqeer Alam, M. The return of metabolism: Biochemistry and physiology of the pentose phosphate pathway. Biol. Rev. 2015, 90, 927–963. [Google Scholar] [CrossRef] [Green Version]
- Jarrett, A. The pentose phosphate pathway in human and animal skin. Br. J. Dermatol. 1971, 84, 545–553. [Google Scholar] [CrossRef]
- De Bersaques, J. Purine and pyrimidine metabolism in human epidermis. J. Investig. Dermatol. 1967, 48, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Marcelo, C.L.; Kim, Y.G.; Kaine, J.L.; Voorhees, J.J. Stratification, specialization, and proliferation of primary keratinocyte cultures. Evidence of a functioning in vitro epidermal cell system. J. Cell Biol. 1978, 79, 356–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaylarde, P.; Sarkany, I. Cell migration and DNA synthesis in organ culture of human skin. Br. J. Dermatol. 1975, 92, 375–380. [Google Scholar] [CrossRef] [PubMed]
- Nizioł, J.; Copié, V.; Tripet, B.P.; Nogueira, L.B.; Nogueira, K.O.; Ossoliński, K.; Arendowski, A.; Ruman, T. Metabolomic and elemental profiling of human tissue in kidney cancer. Metabolomics 2021, 17, 30. [Google Scholar] [CrossRef] [PubMed]
- Kind, T.; Wohlgemuth, G.; Lee, D.Y.; Lu, Y.; Palazoglu, M.; Shahbaz, S.; Fiehn, O. Fiehnlib: Mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal. Chem. 2009, 81, 10038–10048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skogerson, K.; Wohlgemuth, G.; Barupal, D.K.; Fiehn, O. The volatile compound binbase mass spectral database. BMC Bioinform. 2011, 12, 321. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Wishart, D.S. Msea: A web-based tool to identify biologically meaningful patterns in quantitative metabolomic data. Nucleic Acids Res. 2010, 38, W71–W77. [Google Scholar] [CrossRef] [Green Version]
- Saeed, A.I.; Bhagabati, N.K.; Braisted, J.C.; Liang, W.; Sharov, V.; Howe, E.A.; Li, J.; Thiagarajan, M.; White, J.A.; Quackenbush, J. Tm4 microarray software suite. Methods Enzymol. 2006, 411, 134–193. [Google Scholar]
PC1 | PC2 | ||
---|---|---|---|
Metabolite | Loading Score | Metabolite | Loading Score |
trehalose | 0.990 | β-hydroxybutyric acid | 0.937 |
glucose | 0.987 | β-alanine | 0.894 |
galactose | 0.985 | citric acid | 0.794 |
salicylic acid | 0.982 | threose | 0.727 |
pyrophosphate | 0.975 | spermidine | 0.666 |
mannitol | 0.969 | glycolic acid | 0.584 |
uracil | 0.960 | glycerol | 0.572 |
myo-inositol | 0.957 | aspartic acid | 0.561 |
glycerol-1-phosphate | 0.952 | phosphate | 0.540 |
guanosine | 0.948 | valine | 0.534 |
succinic acid | −0.958 | nicotinamide | −0.896 |
ornithine | −0.946 | threonine | −0.874 |
phenylalanine | −0.903 | 1-monopalmitin | −0.807 |
asparagine | −0.884 | phthalic acid | −0.771 |
serine | −0.837 | xanthine | −0.744 |
tyrosine | −0.826 | glucose-6-phosphate | −0.696 |
ethanolamine | −0.821 | methionine | −0.688 |
glutamate | −0.772 | pyrrole-2-carboxylic acid | −0.665 |
phosphate | −0.725 | 2-ketoisocaproic acid | −0.633 |
aspartic acid | −0.665 | lysine | −0.633 |
Metabolites | p-Value | Metabolites | p-Value | Metabolites | p-Value |
---|---|---|---|---|---|
ornithine | <0.001 | threitol | 0.001 | ribulose-5-phosphate | 0.059 |
succinic acid | <0.001 | N-carbamoylaspartate | 0.002 | fumarate | 0.059 |
glucose | <0.001 | galactonic acid | 0.002 | adenosine-5-monophosphate | 0.066 |
galactose | <0.001 | lignoceric acid | 0.002 | α-ketoglutarate | 0.077 |
mannitol | <0.001 | dodecanoate | 0.002 | decanoate | 0.078 |
trehalose | <0.001 | stearic acid | 0.002 | lysine | 0.079 |
fructose | <0.001 | 3-aminoisobutyric acid | 0.003 | cyano-L-alanine | 0.080 |
adenosine | <0.001 | glyceric acid | 0.003 | glucose-6-phosphate | 0.088 |
phenylalanine | <0.001 | myristic acid | 0.004 | N-methylalanine | 0.093 |
asparagine | <0.001 | 1,5-anhydroglucitol | 0.005 | threonine | 0.114 |
salicylic acid | <0.001 | heptadecanoic acid | 0.005 | carnitine | 0.123 |
uracil | <0.001 | palmitate | 0.006 | nicotinamide | 0.154 |
glycerol-1-phosphate | <0.001 | ribulose-5-phosphate | 0.007 | glycerol | 0.176 |
guanosine | <0.001 | alanine | 0.007 | galacturonic acid | 0.176 |
terephthalate | <0.001 | glutamate | 0.007 | spermidine | 0.180 |
tyrosine | <0.001 | maltotriose | 0.007 | L-cysteine | 0.184 |
pyrophosphate | <0.001 | lactulose | 0.008 | 2-ketoisocaproic acid | 0.212 |
fuculose | <0.001 | O-phosphorylethanolamine | 0.008 | β-hydroxybutyric acid | 0.267 |
myo-inositol | <0.001 | mannose | 0.009 | β-alanine | 0.385 |
arachidic acid | <0.001 | cytidine-5-monophosphate | 0.009 | isoleucine | 0.418 |
phosphogluconic acid | <0.001 | pentadecanoic acid | 0.011 | citrulline | 0.430 |
pyruvate | <0.001 | hypoxanthine | 0.014 | citric acid | 0.440 |
ethanolamine | <0.001 | fructose-6-phosphate | 0.015 | xanthine | 0.529 |
thymine | <0.001 | methionine | 0.023 | pyrrole-2-carboxylic acid | 0.546 |
oxoproline | <0.001 | aspartic acid | 0.026 | lactic acid | 0.560 |
inosine | <0.001 | phosphate | 0.026 | phenylacetic acid | 0.678 |
hexonic acid | <0.001 | glycine | 0.028 | phthalic acid | 0.713 |
Serine | <0.001 | lactobionic acid | 0.030 | oxalic acid | 0.747 |
lactose | <0.001 | maltotriose | 0.056 | 1-monopalmitin | 0.806 |
tagatose | <0.001 | 1-monostearin | 0.056 | valine | 0.828 |
glycolic acid | <0.001 | fucose | 0.056 | xylose | 0.893 |
nonanoate | <0.001 | urea | 0.057 | proline | 0.924 |
Metabolites | p-Value | VIP Score | HMDB |
---|---|---|---|
Metabolites with higher intensity in volar than in non-volar skin | |||
ornithine | <0.001 | 1.385 | HMDB0000214 |
succinic acid | <0.001 | 1.381 | HMDB0000254 |
phenylalanine | <0.001 | 1.326 | HMDB0000159 |
asparagine | <0.001 | 1.303 | HMDB0000168 |
tyrosine | <0.001 | 1.293 | HMDB0000158 |
ethanolamine | <0.001 | 1.249 | HMDB0000149 |
serine | <0.001 | 1.224 | HMDB0062263 |
3-aminoisobutyric acid | 0.003 | 1.046 | HMDB0003911 |
alanine | 0.007 | 1.03 | HMDB0000161 |
Metabolites with lower intensity in volar than in non-volar skin | |||
mannose | 0.009 | 1.037 | HMDB0000169 |
O-phosphorylethanolamine | 0.008 | 1.035 | HMDB0000224 |
lactulose | 0.008 | 1.037 | HMDB0000740 |
maltotriose | 0.007 | 1.055 | HMDB0001262 |
ribulose-5-phosphate | 0.007 | 1.046 | HMDB0000618 |
palmitate | 0.006 | 1.014 | HMDB0000220 |
heptadecanoic acid | 0.005 | 1.044 | HMDB0002259 |
1,5-anhydroglucitol | 0.005 | 1.088 | HMDB0002712 |
myristic acid | 0.004 | 1.05 | HMDB0000806 |
glyceric acid | 0.003 | 1.114 | HMDB0000139 |
stearic acid | 0.002 | 1.091 | HMDB0000827 |
dodecanoate | 0.002 | 1.102 | HMDB0000638 |
lignoceric acid | 0.002 | 1.128 | HMDB0002003 |
galactonic acid | 0.002 | 1.167 | HMDB0000565 |
N-carbamoylaspartate | 0.002 | 1.148 | HMDB0000828 |
threitol | 0.001 | 1.142 | HMDB0004136 |
nonanoate | <0.001 | 1.158 | HMDB0000847 |
glycolic acid | <0.001 | 1.179 | HMDB0000115 |
tagatose | <0.001 | 1.15 | HMDB0003418 |
lactose | <0.001 | 1.218 | HMDB0041627 |
hexonic acid | <0.001 | 1.254 | HMDB0000625 |
inosine | <0.001 | 1.215 | HMDB0000195 |
oxoproline | <0.001 | 1.219 | HMDB0000267 |
thymine | <0.001 | 1.207 | HMDB0000262 |
pyruvate | <0.001 | 1.243 | HMDB0000243 |
phosphogluconic acid | <0.001 | 1.255 | HMDB0001316 |
arachidic acid | <0.001 | 1.287 | HMDB0002212 |
myo-inositol | <0.001 | 1.268 | HMDB0000211 |
fuculose | <0.001 | 1.288 | - |
pyrophosphate | <0.001 | 1.276 | HMDB0000250 |
terephthalate | <0.001 | 1.32 | HMDB0002428 |
guanosine | <0.001 | 1.33 | HMDB0000133 |
glycerol-1-phosphate | <0.001 | 1.322 | HMDB0012208 |
uracil | <0.001 | 1.333 | HMDB0000300 |
salicylic acid | <0.001 | 1.324 | HMDB0001895 |
adenosine | <0.001 | 1.342 | HMDB0000050 |
fructose | <0.001 | 1.367 | HMDB0000660 |
trehalose | <0.001 | 1.361 | HMDB0000975 |
mannitol | <0.001 | 1.393 | HMDB0000765 |
galactose | <0.001 | 1.385 | HMDB0000143 |
glucose | <0.001 | 1.385 | HMDB0000122 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bu, T.; Zhang, M.; Lee, S.-H.; Cheong, Y.E.; Park, Y.; Kim, K.H.; Kim, D.; Kim, S. GC-TOF/MS-Based Metabolomics for Comparison of Volar and Non-Volar Skin Types. Metabolites 2022, 12, 717. https://doi.org/10.3390/metabo12080717
Bu T, Zhang M, Lee S-H, Cheong YE, Park Y, Kim KH, Kim D, Kim S. GC-TOF/MS-Based Metabolomics for Comparison of Volar and Non-Volar Skin Types. Metabolites. 2022; 12(8):717. https://doi.org/10.3390/metabo12080717
Chicago/Turabian StyleBu, Ting, Ming Zhang, Sun-Hee Lee, Yu Eun Cheong, Yukyung Park, Kyoung Heon Kim, Dongwon Kim, and Sooah Kim. 2022. "GC-TOF/MS-Based Metabolomics for Comparison of Volar and Non-Volar Skin Types" Metabolites 12, no. 8: 717. https://doi.org/10.3390/metabo12080717
APA StyleBu, T., Zhang, M., Lee, S. -H., Cheong, Y. E., Park, Y., Kim, K. H., Kim, D., & Kim, S. (2022). GC-TOF/MS-Based Metabolomics for Comparison of Volar and Non-Volar Skin Types. Metabolites, 12(8), 717. https://doi.org/10.3390/metabo12080717