A Selective and Sensitive LC-MS/MS Method for Quantitation of Indole in Mouse Serum and Tissues
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Liquid Chromatographic and Mass Spectrometric Conditions (LC-MS/MS)
2.3. Preparation of Charcoal-Stripped Surrogate Matrix for Calibration Curves
2.4. Preparation of Stock, Calibration Standards and Quality Control Samples
2.5. Plasma and Tissues Sample Preparation
2.6. Assay Validation
2.7. Recovery and Matrix Effect
2.8. Stability
3. Application of the Method and Sample Collection
4. Results and Discussion
4.1. Optimization of Mass Spectrometric Conditions
4.2. Optimization of Chromatographic Conditions
4.3. Selection of Extraction Method
4.4. Assay Validation
4.4.1. Specificity and Selectivity
4.4.2. Calibration Curve and Linearity
4.4.3. Carry-Over
4.4.4. Accuracy and Precision
4.4.5. Recovery and Matrix Effect
4.4.6. Stability
4.5. Application of the Method for Indole Quantitative Estimation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Metabolomics Innovation Center—TMIC. Available online: https://hmdb.ca/metabolites/HMDB0000738#links (accessed on 10 March 2022).
- Biocrates–Metabolite of the Month—Indole. Available online: https://biocrates.com/metabolite-of-the-month-indole/ (accessed on 27 March 2022).
- Breiteneder, H.; Peng, Y.; Agache, I.; Diamant, Z.; Eiwegger, T.; Fokkens, W.J.; Traidl-Hoffmann, C.; Nadeau, K.; O’Hehir, R.E.; O’Mahony, L.; et al. Biomarkers for diagnosis and prediction of therapy responses in allergic diseases and asthma. Allergy 2020, 75, 3039–3068. [Google Scholar] [CrossRef] [PubMed]
- Strimbu, K.; Tavel, J.A. What are biomarkers? Curr. Opin. HIV AIDS 2010, 5, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Pinto, J.T.; Cooper, A.J. From cholesterogenesis to steroidogenesis: Role of riboflavin and flavoenzymes in the biosynthesis of vitamin D. Adv. Nutr. 2014, 5, 144–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakare, R.; Chhonker, Y.S.; Gautam, N.; Alamoudi, J.A.; Alnouti, Y. Quantitative analysis of endogenous compounds. J. Pharm. Biomed. Anal. 2016, 128, 426–437. [Google Scholar] [CrossRef]
- Gillette, M.A.; Carr, S.A. Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat. Methods 2013, 10, 28–34. [Google Scholar] [CrossRef]
- Zhang, X.-W.; Li, Q.-H.; Xu, Z.-D.; Dou, J.-J. Mass spectrometry-based metabolomics in health and medical science: A systematic review. RSC Adv. 2020, 10, 3092–3104. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, M.; Battaglino, R.; Ye, L. A comprehensive review on biomarkers associated with painful temporomandibular disorders. Int. J. Oral Sci. 2021, 13, 23. [Google Scholar] [CrossRef]
- Davis, K.D.; Aghaeepour, N.; Ahn, A.H.; Angst, M.S.; Borsook, D.; Brenton, A.; Burczynski, M.E.; Crean, C.; Edwards, R.; Gaudilliere, B.; et al. Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: Challenges and opportunities. Nat. Rev. Neurol. 2020, 16, 381–400. [Google Scholar] [CrossRef]
- Steuer, A.E.; Brockbals, L.; Kraemer, T. Metabolomic Strategies in Biomarker Research-New Approach for Indirect Identification of Drug Consumption and Sample Manipulation in Clinical and Forensic Toxicology? Front. Chem. 2019, 7, 319. [Google Scholar] [CrossRef]
- Mikami, T.; Aoki, M.; Kimura, T. The application of mass spectrometry to proteomics and metabolomics in biomarker discovery and drug development. Curr. Mol. Pharmacol. 2012, 5, 301–316. [Google Scholar] [CrossRef]
- Patel, S.; Ahmed, S. Emerging field of metabolomics: Big promise for cancer biomarker identification and drug discovery. J. Pharm. Biomed. Anal. 2015, 107, 63–74. [Google Scholar] [CrossRef]
- Wishart, D.S. Emerging applications of metabolomics in drug discovery and precision medicine. Nat. Rev. Drug Discov. 2016, 15, 473–484. [Google Scholar] [CrossRef]
- Christians, U.; Klawitter, J.; Klawitter, J. Biomarkers in Transplantation—Proteomics and Metabolomics. Ther. Drug Monit. 2016, 38 (Suppl. 1), S70–S74. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Garmire, L.; Calvisi, D.F.; Chua, M.-S.; Kelley, R.K.; Chen, X. Harnessing big 'omics' data and AI for drug discovery in hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 238–251. [Google Scholar] [CrossRef]
- Cui, L.; Lu, H.; Lee, Y.H. Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases. Mass Spectrom. Rev. 2018, 37, 772–792. [Google Scholar] [CrossRef]
- Kotlowska, A.; Szefer, P. Recent Advances and Challenges in Steroid Metabolomics for Biomarker Discovery. Curr. Med. Chem. 2019, 26, 29–45. [Google Scholar] [CrossRef]
- Kumar, P.; Lee, J.H.; Lee, J. Diverse roles of microbial indole compounds in eukaryotic systems. Biol. Rev. Camb. Philos. Soc. 2021, 96, 2522–2545. [Google Scholar] [CrossRef]
- Kaushik, N.K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.H.; Verma, A.K.; Choi, E.H. Biomedical importance of indoles. Molecules 2013, 18, 6620–6662. [Google Scholar] [CrossRef]
- Dhuguru, J.; Skouta, R. Role of Indole Scaffolds as Pharmacophores in the Development of Anti-Lung Cancer Agents. Molecules 2020, 25, 1615. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Hou, H.; Zhang, W.; Liu, T.; Li, Y.; Wang, S.; Wang, B.; Cao, H. Microbial Metabolites: Critical Regulators in NAFLD. Front. Microbiol. 2020, 11, 567654. [Google Scholar] [CrossRef] [PubMed]
- Beloborodova, N.V.; Chernevskaya, E.A.; Getsina, M.L. Indolic Structure Metabolites as Potential Biomarkers of Non-infectious Diseases. Curr. Pharm. Des. 2021, 27, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Eisenhofer, G. New Way Forward for the Diagnosis and Management of Gastroenteropancreatic Neuroendocrine Tumors with an LC-MS/MS Panel of Indole Biomarkers. Clin. Chem. 2019, 65, 1346–1347. [Google Scholar] [CrossRef] [PubMed]
- Jaglin, M.; Rhimi, M.; Philippe, C.; Pons, N.; Bruneau, A.; Goustard, B.; Daugé, V.; Maguin, E.; Naudon, L.; Rabot, S. Indole, a Signaling Molecule Produced by the Gut Microbiota, Negatively Impacts Emotional Behaviors in Rats. Front. Neurosci. 2018, 12, 216. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Cheng, F.; Liang, J.; Wang, X.; Chen, Y.; Fang, X.; Hu, L.; Hang, Y. Profiles of volatile indole emitted by Escherichia coli based on CDI-MS. Sci. Rep. 2019, 9, 13139. [Google Scholar] [CrossRef]
- Banoglu, E.; Jha, G.G.; King, R.S. Hepatic microsomal metabolism of indole to indoxyl, a precursor of indoxyl sulfate. Eur. J. Drug Metab. Pharmacokinet. 2001, 26, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Barreto, F.C.; Barreto, D.V.; Liabeuf, S.; Meert, N.; Glorieux, G.; Temmar, M.; Choukroun, G.; Vanholder, R.; Massy, Z.A.; European Uremic Toxin Work Group (EUTox). Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients. Clin. J. Am. Soc. Nephrol. 2009, 4, 1551–1558. [Google Scholar] [CrossRef] [Green Version]
- Hendrikx, T.; Schnabl, B. Indoles: Metabolites produced by intestinal bacteria capable of controlling liver disease manifestation. J. Intern. Med. 2019, 286, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Phonchai, A.; Wilairat, P.; Chantiwas, R. Development of a solid-phase extraction method with simple MEKC-UV analysis for simultaneous detection of indole metabolites in human urine after administration of indole dietary supplement. Talanta 2017, 174, 314–319. [Google Scholar] [CrossRef]
- Garcia-Florenciano, E.; Barceló, A.R.; Sabater, F.; Muñoz, R. The spectrophotometric determination of indole-3-methanol in small samples with p-dimethylaminocinnamaldehyde on the basis of the formation of an azafulvenium salt. Anal. Biochem. 1989, 183, 172–176. [Google Scholar] [CrossRef]
- Deng, L.; Zhen, Q.; Gao, J.; Jin, M.; Ding, M.; Xu, B. Simultaneous determination of plasma indole and skatole in pregnant women with hepatitis B virus infection by high performance liquid chromatography. Se Pu—Chin. J. Chromatogr. 2017, 35, 735–740. [Google Scholar] [CrossRef]
- Akhgari, A.; Laakso, I.; Seppänen-Laakso, T.; Yrjönen, T.; Vuorela, H.; Oksman-Caldentey, K.-M.; Rischer, H. Analysis of Indole Alkaloids from Rhazya stricta Hairy Roots by Ultra-Performance Liquid Chromatography-Mass Spectrometry. Molecules 2015, 20, 22621–22634. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Parti, R.; Hu, P. Characterization of N-acetyltryptophan degradation products in concentrated human serum albumin solutions and development of an automated high performance liquid chromatography-mass spectrometry method for their quantitation. J. Chromatogr. A 2011, 1218, 7316–7324. [Google Scholar] [CrossRef]
- Arora, P.K.; Bae, H. Identification of new metabolites of bacterial transformation of indole by gas chromatography-mass spectrometry and high performance liquid chromatography. Int. J. Anal. Chem. 2014, 2014, 239641. [Google Scholar] [CrossRef]
- Yong, J.; Ge, L.; Wong, W.S.; Ma, Z.; Tan, S.N. Analyses of Indole Compounds in Sugar Cane (Saccharum officinarum L.) Juice by High Performance Liquid Chromatography and Liquid Chromatography-Mass Spectrometry after Solid-Phase Extraction. Separations 2017, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Farrow, S.C.; Emery, R.N. Concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid-chromatography tandem electrospray mass spectrometry. Plant Methods 2012, 8, 42. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Chen, H.; Shi, G.; Yang, M.; Zheng, F.; Zheng, Z.; Zhang, S.; Zhong, S. Ultra-performance liquid chromatography-tandem mass spectrometry quantitative profiling of tryptophan metabolites in human plasma and its application to clinical study. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1128, 121745. [Google Scholar] [CrossRef]
- Whiley, L.; Nye, L.C.; Grant, I.; Andreas, N.J.; Chappell, K.E.; Sarafian, M.H.; Misra, R.; Plumb, R.S.; Lewis, M.R.; Nicholson, J.K.; et al. Ultrahigh-Performance Liquid Chromatography Tandem Mass Spectrometry with Electrospray Ionization Quantification of Tryptophan Metabolites and Markers of Gut Health in Serum and Plasma-Application to Clinical and Epidemiology Cohorts. Anal. Chem. 2019, 91, 5207–5216. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Walaszczyk, E.J.; Li, K.; Chung-Davidson, Y.-W.; Li, W. High-performance liquid chromatography with fluorescence detection and ultra-performance liquid chromatography with electrospray tandem mass spectrometry method for the determination of indoleamine neurotransmitters and their metabolites in sea lamprey plasma. Anal. Chim. Acta 2012, 721, 147–153. [Google Scholar]
- Park, M.H.; Lee, S.M.; Ko, S.-K.; Oh, K.Y.; Kim, J.-H.; Kim, H.; Kwon, M.-C.; Ryoo, I.-J.; Ahn, J.S.; Ryu, H.W.; et al. Analysis of Active Metabolites of Sophora flavescens for Indoleamine 2,3-dioxygenase and Monoamine Oxidases using Ultra-Performance Liquid Chromatography-Quadrupole time-of-Flight Mass Spectrometry. Nat. Prod. Commun. 2018, 13, 1934578X1801301220. [Google Scholar] [CrossRef] [Green Version]
- Chhonker, Y.S.; Haney, S.L.; Bala, V.; Holstein, S.A.; Murry, D.J. Simultaneous Quantitation of Isoprenoid Pyrophosphates in Plasma and Cancer Cells Using LC-MS/MS. Molecules 2018, 23, 3275. [Google Scholar] [CrossRef] [Green Version]
- Bioanalytical Method Validation—Guidance for Industry. 2018. Available online: https://www.fda.gov/files/drugs/published/Bioanalytical-Method-Validation-Guidance-for-Industry.pdf (accessed on 10 March 2022).
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Matrix effect in quantitative LC/MS/MS analyses of biological fluids: A method for determination of finasteride in human plasma at picogram per milliliter concentrations. Anal. Chem. 1998, 70, 882–889. [Google Scholar] [CrossRef]
- Bertola, A.; Mathews, S.; Ki, S.H.; Wang, H.; Gao, B. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat. Protoc. 2013, 8, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Samuelson, D.R.; Gu, M.; Shellito, J.E.; Molina, P.E.; Taylor, C.M.; Luo, M.; Welsh, D.A. Pulmonary immune cell trafficking promotes host defense against alcohol-associated Klebsiella pneumonia. Commun. Biol. 2021, 4, 997. [Google Scholar] [CrossRef]
Analytes | MRM Transition m/z (Q1→Q3) | Q1 (V) | Q3 (V) | CE (V) | Retention Time (min) |
---|---|---|---|---|---|
Target: Indole | 118.15 > 91.1 a | −15 | −21 | −24 | 5.8 |
118.15 > 65.05 | −15 | −11 | −34 | ||
IS: Indole d7 | 124.15 > 96.1 a | −10 | −25 | −24 | 5.8 |
124.15 > 97.1 | −11 | −10 | −25 |
Bio-Matrices | % Extraction Recoveries of Indole (Mean ± SD, n = 3) | % Extraction Recoveries of Indole-d7 (Mean ± SD, n = 6) | ||
---|---|---|---|---|
LQC (3 ng/mL) | MQC (100 ng/mL) | HQC (375 ng/mL) | IS (200 ng/mL) | |
Mouse charcoal striped Plasma | 107.2 ± 2.1 | 111.2 ± 1.8 | 102.0 ± 8.1 | 103.5 ± 1.6 |
Mouse Serum | 106.7 ± 5.2 | 110.2 ± 8.2 | 102.5 ± 5.6 | 103.5 ± 1.6 |
Mouse Lungs | 107.2 ± 14.5 | 102.3 ± 2.5 | 106.1 ± 12.5 | 103.6 ± 0.8 |
Nominal Conc. (ng/mL) | Accuracy | Precision | ||
---|---|---|---|---|
% Bias Intra–Assay | % Bias Inter–Assay | % RSD Intra–Assay | % RSD Inter–Assay | |
LLOQ (1 ng/mL) | 5.4 | −2.8 | 5.7 | 11.1 |
LQC (3 ng/mL) | 2.5 | −4.3 | 2.8 | 7.8 |
MQC (100 ng/mL) | 7.9 | 8.5 | 9.7 | 7.8 |
HQC (375 ng/mL) | −4.3 | 3.5 | 7.4 | 9.2 |
Storage Conditions | Nominal Conc. (ng/mL) | % Accuracy |
---|---|---|
Bench-top (20 °C, up to 24 h) | LQC (3 ng/mL) | 93.1 ± 7.8 |
MQC (100 ng/mL) | 105.4 ± 4.4 | |
HQC (375 ng/mL) | 112.5 ± 1.8 | |
Auto-sampler (AS) storage (4 °C, up to 24 h) | LQC (3 ng/mL) | 103.2 ± 1.8 |
MQC (100 ng/mL) | 95.4 ± 5.3 | |
HQC (375 ng/mL) | 102.5 ± 3.2 | |
Long term stability (−80 °C, up to 60 days) | LQC (3 ng/mL) | 103.2 ± 3.5 |
MQC (100 ng/mL) | 95.3 ± 2.5 | |
HQC (375 ng/mL) | 92.1 ± 8.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joshi, V.; Chhonker, Y.S.; Soni, D.; Cunningham, K.C.; Samuelson, D.R.; Murry, D.J. A Selective and Sensitive LC-MS/MS Method for Quantitation of Indole in Mouse Serum and Tissues. Metabolites 2022, 12, 716. https://doi.org/10.3390/metabo12080716
Joshi V, Chhonker YS, Soni D, Cunningham KC, Samuelson DR, Murry DJ. A Selective and Sensitive LC-MS/MS Method for Quantitation of Indole in Mouse Serum and Tissues. Metabolites. 2022; 12(8):716. https://doi.org/10.3390/metabo12080716
Chicago/Turabian StyleJoshi, Vineet, Yashpal S. Chhonker, Dhruvkumar Soni, Kelly C. Cunningham, Derrick R. Samuelson, and Daryl J. Murry. 2022. "A Selective and Sensitive LC-MS/MS Method for Quantitation of Indole in Mouse Serum and Tissues" Metabolites 12, no. 8: 716. https://doi.org/10.3390/metabo12080716
APA StyleJoshi, V., Chhonker, Y. S., Soni, D., Cunningham, K. C., Samuelson, D. R., & Murry, D. J. (2022). A Selective and Sensitive LC-MS/MS Method for Quantitation of Indole in Mouse Serum and Tissues. Metabolites, 12(8), 716. https://doi.org/10.3390/metabo12080716