Crosstalk between Host Genome and Metabolome among People with HIV in South Africa
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Study Participants
2.2. Candidate Gene–Metabolite Associations
2.3. GWAS
3. Discussion
4. Materials and Methods
4.1. Study Participants
4.2. Genotyping and Imputation
4.3. Metabolomic Profiling
4.4. Literature Review
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manolio, T.A. Genomewide association studies and assessment of the risk of disease. N. Engl. J. Med. 2010, 363, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, J.K.; Holmes, E.; Elliott, P. The metabolome-wide association study: A new look at human disease risk factors. J. Proteome Res. 2008, 7, 3637–3638. [Google Scholar] [CrossRef] [PubMed]
- Adamski, J. Genome-wide association studies with metabolomics. Genome Med. 2012, 4, 34. [Google Scholar] [CrossRef]
- Gieger, C.; Geistlinger, L.; Altmaier, E.; de Angelis, M.H.; Kronenberg, F.; Meitinger, T.; Mewes, H.W.; Wichmann, H.E.; Weinberger, K.M.; Adamski, J.; et al. Genetics meets metabolomics: A genome-wide association study of metabolite profiles in human serum. PLoS Genet. 2008, 4, e1000282. [Google Scholar] [CrossRef] [Green Version]
- Draisma, H.H.M.; Pool, R.; Kobl, M.; Jansen, R.; Petersen, A.K.; Vaarhorst, A.A.M.; Yet, I.; Haller, T.; Demirkan, A.; Esko, T.; et al. Genome-wide association study identifies novel genetic variants contributing to variation in blood metabolite levels. Nat. Commun. 2015, 6, 7208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Sekula, P.; Wuttke, M.; Wahrheit, J.; Hausknecht, B.; Schultheiss, U.T.; Gronwald, W.; Schlosser, P.; Tucci, S.; Ekici, A.B.; et al. Genome-Wide Association Studies of Metabolites in Patients with CKD Identify Multiple Loci and Illuminate Tubular Transport Mechanisms. J. Am. Soc. Nephrol. 2018, 29, 1513–1524. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.Y.; Fauman, E.B.; Petersen, A.K.; Krumsiek, J.; Santos, R.; Huang, J.; Arnold, M.; Erte, I.; Forgetta, V.; Yang, T.P.; et al. An atlas of genetic influences on human blood metabolites. Nat. Genet. 2014, 46, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Suhre, K.; Shin, S.Y.; Petersen, A.K.; Mohney, R.P.; Meredith, D.; Wagele, B.; Altmaier, E.; CardioGram; Deloukas, P.; Erdmann, J.; et al. Human metabolic individuality in biomedical and pharmaceutical research. Nature 2011, 477, 54–60. [Google Scholar] [CrossRef]
- Yu, B.; Zheng, Y.; Alexander, D.; Morrison, A.C.; Coresh, J.; Boerwinkle, E. Genetic determinants influencing human serum metabolome among African Americans. PLoS Genet. 2014, 10, e1004212. [Google Scholar] [CrossRef]
- Luo, S.; Feofanova, E.V.; Tin, A.; Tung, S.; Rhee, E.P.; Coresh, J.; Arking, D.E.; Surapaneni, A.; Schlosser, P.; Li, Y.; et al. Genome-wide association study of serum metabolites in the African American Study of Kidney Disease and Hypertension. Kidney Int. 2021, 100, 430–439. [Google Scholar] [CrossRef]
- Rhee, E.P.; Surapaneni, A.; Zheng, Z.; Zhou, L.; Dutta, D.; Arking, D.E.; Zhang, J.; Duong, T.; Chatterjee, N.; Luo, S.; et al. Trans-ethnic genome-wide association study of blood metabolites in the Chronic Renal Insufficiency Cohort (CRIC) study. Kidney Int. 2022, 101, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Genomes Project, C.; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Illig, T.; Gieger, C.; Zhai, G.; Romisch-Margl, W.; Wang-Sattler, R.; Prehn, C.; Altmaier, E.; Kastenmuller, G.; Kato, B.S.; Mewes, H.W.; et al. A genome-wide perspective of genetic variation in human metabolism. Nat. Genet. 2010, 42, 137–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kettunen, J.; Tukiainen, T.; Sarin, A.P.; Ortega-Alonso, A.; Tikkanen, E.; Lyytikainen, L.P.; Kangas, A.J.; Soininen, P.; Wurtz, P.; Silander, K.; et al. Genome-wide association study identifies multiple loci influencing human serum metabolite levels. Nat. Genet. 2012, 44, 269–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inouye, M.; Ripatti, S.; Kettunen, J.; Lyytikainen, L.P.; Oksala, N.; Laurila, P.P.; Kangas, A.J.; Soininen, P.; Savolainen, M.J.; Viikari, J.; et al. Novel Loci for metabolic networks and multi-tissue expression studies reveal genes for atherosclerosis. PLoS Genet. 2012, 8, e1002907. [Google Scholar] [CrossRef]
- Krumsiek, J.; Suhre, K.; Evans, A.M.; Mitchell, M.W.; Mohney, R.P.; Milburn, M.V.; Wagele, B.; Romisch-Margl, W.; Illig, T.; Adamski, J.; et al. Mining the unknown: A systems approach to metabolite identification combining genetic and metabolic information. PLoS Genet. 2012, 8, e1003005. [Google Scholar] [CrossRef] [Green Version]
- Rhee, E.P.; Ho, J.E.; Chen, M.H.; Shen, D.; Cheng, S.; Larson, M.G.; Ghorbani, A.; Shi, X.; Helenius, I.T.; O’Donnell, C.J.; et al. A genome-wide association study of the human metabolome in a community-based cohort. Cell Metab. 2013, 18, 130–143. [Google Scholar] [CrossRef] [Green Version]
- Ried, J.S.; Shin, S.Y.; Krumsiek, J.; Illig, T.; Theis, F.J.; Spector, T.D.; Adamski, J.; Wichmann, H.E.; Strauch, K.; Soranzo, N.; et al. Novel genetic associations with serum level metabolites identified by phenotype set enrichment analyses. Hum. Mol. Genet. 2014, 23, 5847–5857. [Google Scholar] [CrossRef] [Green Version]
- Demirkan, A.; Henneman, P.; Verhoeven, A.; Dharuri, H.; Amin, N.; van Klinken, J.B.; Karssen, L.C.; de Vries, B.; Meissner, A.; Goraler, S.; et al. Insight in genome-wide association of metabolite quantitative traits by exome sequence analyses. PLoS Genet. 2015, 11, e1004835. [Google Scholar] [CrossRef]
- Rhee, E.P.; Yang, Q.; Yu, B.; Liu, X.; Cheng, S.; Deik, A.; Pierce, K.A.; Bullock, K.; Ho, J.E.; Levy, D.; et al. An exome array study of the plasma metabolome. Nat. Commun. 2016, 7, 12360. [Google Scholar] [CrossRef]
- Kettunen, J.; Demirkan, A.; Wurtz, P.; Draisma, H.H.; Haller, T.; Rawal, R.; Vaarhorst, A.; Kangas, A.J.; Lyytikainen, L.P.; Pirinen, M.; et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat. Commun. 2016, 7, 11122. [Google Scholar] [CrossRef]
- Yet, I.; Menni, C.; Shin, S.Y.; Mangino, M.; Soranzo, N.; Adamski, J.; Suhre, K.; Spector, T.D.; Kastenmuller, G.; Bell, J.T. Genetic Influences on Metabolite Levels: A Comparison across Metabolomic Platforms. PLoS ONE 2016, 11, e0153672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, T.; Hicks, M.; Yu, H.C.; Biggs, W.H.; Kirkness, E.F.; Menni, C.; Zierer, J.; Small, K.S.; Mangino, M.; Messier, H.; et al. Whole-genome sequencing identifies common-to-rare variants associated with human blood metabolites. Nat. Genet. 2017, 49, 568–578. [Google Scholar] [CrossRef]
- Yousri, N.A.; Fakhro, K.A.; Robay, A.; Rodriguez-Flores, J.L.; Mohney, R.P.; Zeriri, H.; Odeh, T.; Kader, S.A.; Aldous, E.K.; Thareja, G.; et al. Whole-exome sequencing identifies common and rare variant metabolic QTLs in a Middle Eastern population. Nat. Commun. 2018, 9, 333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teslovich, T.M.; Kim, D.S.; Yin, X.; Stancakova, A.; Jackson, A.U.; Wielscher, M.; Naj, A.; Perry, J.R.B.; Huyghe, J.R.; Stringham, H.M.; et al. Identification of seven novel loci associated with amino acid levels using single-variant and gene-based tests in 8545 Finnish men from the METSIM study. Hum. Mol. Genet. 2018, 27, 1664–1674. [Google Scholar] [CrossRef] [PubMed]
- Tabassum, R.; Ramo, J.T.; Ripatti, P.; Koskela, J.T.; Kurki, M.; Karjalainen, J.; Palta, P.; Hassan, S.; Nunez-Fontarnau, J.; Kiiskinen, T.T.J.; et al. Genetic architecture of human plasma lipidome and its link to cardiovascular disease. Nat. Commun. 2019, 10, 4329. [Google Scholar] [CrossRef] [Green Version]
- Feofanova, E.V.; Chen, H.; Dai, Y.; Jia, P.; Grove, M.L.; Morrison, A.C.; Qi, Q.; Daviglus, M.; Cai, J.; North, K.E.; et al. A Genome-wide Association Study Discovers 46 Loci of the Human Metabolome in the Hispanic Community Health Study/Study of Latinos. Am. J. Hum. Genet. 2020, 107, 849–863. [Google Scholar] [CrossRef]
- Harshfield, E.L.; Fauman, E.B.; Stacey, D.; Paul, D.S.; Ziemek, D.; Ong, R.M.Y.; Danesh, J.; Butterworth, A.S.; Rasheed, A.; Sattar, T.; et al. Genome-wide analysis of blood lipid metabolites in over 5000 South Asians reveals biological insights at cardiometabolic disease loci. BMC Med. 2021, 19, 232. [Google Scholar] [CrossRef]
- Agan, B.K.; Marconi, V.C. Noncommunicable Diseases: Yet Another Challenge for Human Immunodeficiency Virus Treatment and Care in Sub-Saharan Africa. Clin. Infect. Dis. 2020, 71, 1874–1876. [Google Scholar] [CrossRef]
- Shi, X.; Aronson, S.; Khan, A.S.; Bosma, P.J. A novel UGT1A1 gene mutation causing severe unconjugated hyperbilirubinemia: A case report. BMC Pediatr. 2019, 19, 173. [Google Scholar] [CrossRef]
- Chen, G.; Adeyemo, A.; Zhou, J.; Doumatey, A.P.; Bentley, A.R.; Ekoru, K.; Shriner, D.; Rotimi, C.N. A UGT1A1 variant is associated with serum total bilirubin levels, which are causal for hypertension in African-ancestry individuals. NPJ Genom. Med. 2021, 6, 44. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Ramos, E.; Adeyemo, A.; Shriner, D.; Zhou, J.; Doumatey, A.P.; Huang, H.; Erdos, M.R.; Gerry, N.P.; Herbert, A.; et al. UGT1A1 is a major locus influencing bilirubin levels in African Americans. Eur. J. Hum. Genet. 2012, 20, 463–468. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Lin, F.; Chen, Z.K.; Zhang, L.; Xu, J.X.; Wu, Y.H.; Gu, J.Y.; Ma, Y.B.; Li, J.D.; Yang, L.Y. UGT1A1 mutation association with increased bilirubin levels and severity of unconjugated hyperbilirubinemia in ABO incompatible newborns of China. BMC Pediatr. 2021, 21, 259. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.P.; O’Donnell, C.J.; Schwaiger, J.P.; Cupples, L.A.; Lingenhel, A.; Hunt, S.C.; Yang, S.; Kronenberg, F. Association between the UGT1A1*28 allele, bilirubin levels, and coronary heart disease in the Framingham Heart Study. Circulation 2006, 114, 1476–1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marconi, V.C.; Duncan, M.S.; So-Armah, K.; Re, V.L., 3rd; Lim, J.K.; Butt, A.A.; Goetz, M.B.; Rodriguez-Barradas, M.C.; Alcorn, C.W.; Lennox, J.; et al. Bilirubin Is Inversely Associated With Cardiovascular Disease Among HIV-Positive and HIV-Negative Individuals in VACS (Veterans Aging Cohort Study). J. Am. Heart Assoc. 2018, 7, e007792. [Google Scholar] [CrossRef]
- Wyss, M.; Kaddurah-Daouk, R. Creatine and creatinine metabolism. Physiol. Rev. 2000, 80, 1107–1213. [Google Scholar] [CrossRef]
- Kottgen, A.; Pattaro, C.; Boger, C.A.; Fuchsberger, C.; Olden, M.; Glazer, N.L.; Parsa, A.; Gao, X.; Yang, Q.; Smith, A.V.; et al. New loci associated with kidney function and chronic kidney disease. Nat. Genet. 2010, 42, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Longo, N.; Frigeni, M.; Pasquali, M. Carnitine transport and fatty acid oxidation. Biochim. Biophys. Acta 2016, 1863, 2422–2435. [Google Scholar] [CrossRef]
- Sawicka, A.K.; Renzi, G.; Olek, R.A. The bright and the dark sides of L-carnitine supplementation: A systematic review. J. Int. Soc. Sports Nutr. 2020, 17, 49. [Google Scholar] [CrossRef]
- Brijkumar, J.; Johnson, B.A.; Zhao, Y.; Edwards, J.; Moodley, P.; Pathan, K.; Pillay, S.; Castro, K.G.; Sunpath, H.; Kuritzkes, D.R.; et al. A packaged intervention to improve viral load monitoring within a deeply rural health district of South Africa. BMC Infect. Dis. 2020, 20, 836. [Google Scholar] [CrossRef]
- Das, S.; Forer, L.; Schonherr, S.; Sidore, C.; Locke, A.E.; Kwong, A.; Vrieze, S.I.; Chew, E.Y.; Levy, S.; McGue, M.; et al. Next-generation genotype imputation service and methods. Nat. Genet. 2016, 48, 1284–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.M.; Yu, T.; Strobel, F.H.; Jones, D.P. A practical approach to detect unique metabolic patterns for personalized medicine. Analyst 2010, 135, 2864–2870. [Google Scholar] [CrossRef] [Green Version]
- Go, Y.M.; Walker, D.I.; Liang, Y.; Uppal, K.; Soltow, Q.A.; Tran, V.; Strobel, F.; Quyyumi, A.A.; Ziegler, T.R.; Pennell, K.D.; et al. Reference Standardization for Mass Spectrometry and High-resolution Metabolomics Applications to Exposome Research. Toxicol. Sci. 2015, 148, 531–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soltow, Q.A.; Strobel, F.H.; Mansfield, K.G.; Wachtman, L.; Park, Y.; Jones, D.P. High-performance metabolic profiling with dual chromatography-Fourier-transform mass spectrometry (DC-FTMS) for study of the exposome. Metabolomics 2013, 9, S132–S143. [Google Scholar] [CrossRef] [PubMed]
- Frediani, J.K.; Jones, D.P.; Tukvadze, N.; Uppal, K.; Sanikidze, E.; Kipiani, M.; Tran, V.T.; Hebbar, G.; Walker, D.I.; Kempker, R.R.; et al. Plasma metabolomics in human pulmonary tuberculosis disease: A pilot study. PLoS ONE 2014, 9, e108854. [Google Scholar] [CrossRef] [Green Version]
- Simon-Manso, Y.; Lowenthal, M.S.; Kilpatrick, L.E.; Sampson, M.L.; Telu, K.H.; Rudnick, P.A.; Mallard, W.G.; Bearden, D.W.; Schock, T.B.; Tchekhovskoi, D.V.; et al. Metabolite profiling of a NIST Standard Reference Material for human plasma (SRM 1950): GC-MS, LC-MS, NMR, and clinical laboratory analyses, libraries, and web-based resources. Anal. Chem. 2013, 85, 11725–11731. [Google Scholar] [CrossRef]
- Yu, T.; Park, Y.; Johnson, J.M.; Jones, D.P. apLCMS--adaptive processing of high-resolution LC/MS data. Bioinformatics 2009, 25, 1930–1936. [Google Scholar] [CrossRef] [Green Version]
- Uppal, K.; Soltow, Q.A.; Strobel, F.H.; Pittard, W.S.; Gernert, K.M.; Yu, T.; Jones, D.P. xMSanalyzer: Automated pipeline for improved feature detection and downstream analysis of large-scale, non-targeted metabolomics data. BMC Bioinform. 2013, 14, 15. [Google Scholar] [CrossRef] [Green Version]
- Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8, 118–127. [Google Scholar] [CrossRef]
- Liu, K.H.; Nellis, M.; Uppal, K.; Ma, C.; Tran, V.; Liang, Y.; Walker, D.I.; Jones, D.P. Reference Standardization for Quantification and Harmonization of Large-Scale Metabolomics. Anal. Chem. 2020, 92, 8836–8844. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristic | Overall n = 490 | RK Khan Hospital n = 305 | Bethesda Hospital n = 185 | |
---|---|---|---|---|
Ethnicity | Zulu (%) | 370 (75.5) | 189 (62.0) | 181 (97.8) |
Xhosa (%) | 78 (15.9) | 78 (25.6) | 0 (0.0) | |
Other (%) | 42 (8.6) | 38 (12.5) | 4 (2.2) | |
Female (%) | 312 (63.7) | 192 (63.0) | 120 (64.9) | |
Age in years (SD) | 34.4 (10.0) | 34.1 (9.5) | 34.7 (10.8) | |
Education in years (SD) | 9.3 (3.4) | 9.7 (2.9) | 8.8 (4.0) | |
CD4 count/μL (SD) | 405.034 (237.176) | 427.027 (242.791) | 366.286 (223.576) |
Year | First Author | Sample | Number of Metabolites | Sample Size, Country/Region | Genetic Ancestry |
---|---|---|---|---|---|
2008 | Christian Gieger [4] | serum | 363 | 284, Germany | European |
2010 | Thomas Illig [13] | serum | 163 | Discovery: 1809, Germany Validation: 422, UK | European |
2011 | Karsten Suhre [8] | serum | 276 | Cohort 1: 1768, Germany Cohort 2: 1052, UK | European |
2012 | Johannes Kettunen [14] | serum | 117 | 8330, Finland | European |
2012 | Michael Inouye [15] | serum | 130 | Cohort 1: 1905, Finland Cohort 2: 4703, Finland | European |
2012 | Jan Krumsiek [16] | serum | 517 | 1768, Germany | European |
2013 | Eugene P Rhee [17] | plasma | 217 | 2076, US | European |
2014 | So-Youn Shin [7] | plasma and serum | 486 | Cohort 1: 6056, UK Cohort 2: 1768, Germany | European |
2014 | Bing Yu [9] | serum | 308 | 1260, US | African (African Americans) |
2014 | Janina S Ried [18] | serum | 344 | Discovery: 1809, Germany Validation: 843, UK | European |
2015 | Ayşe Demirkan [19] | serum | 42 | 2118, Netherlands | European |
2015 | Harmen H M Draisma [5] | serum | 129 | Discovery: 7478, Netherlands, Germany, Australia, Estonia, UK Validation: 1182, Germany | European |
2016 | Eugene P Rhee [20] | plasma | 217 | Discovery: 2076, US Validation: 1528, US | European |
2016 | Johannes Kettunen [21] | plasma and serum | 123 | 24925, Europe | European |
2016 | Idil Yet [22] | serum | 648 | 1001, UK | European |
2017 | Tao Long [23] | serum | 644 | 1960, UK | European |
2018 | Yong Li [6] | serum and urine | serum: 139 urine: 41 | 1168, Germany | European |
2018 | Noha A. Yousri [24] | plasma | 826 | Discovery: 614, Qatar Validation: 382, Qatar | Middle Eastern |
2018 | Tanya M Teslovich [25] | serum | 9 | Discovery: 8545, Finland Validation: 2591, Finland | European |
2019 | Rubina Tabassum [26] | plasma | 141 | 2181, Finland, UK | European |
2020 | Elena V Feofanova [27] | serum | 640 | Discovery: 3926, US Validation: 1509, US; 1960, UK | Discovery: Hispanic Validation: European |
2021 | Shengyuan Luo [10] | serum | 652 | Discovery: 619, US Validation: 818, US | African (African Americans) |
2021 | Eric L Harshfield [28] | serum | Cohort 1: 340 Cohort 2: 399 | Cohort 1: 5662, Pakistan Cohort 2: 13,814, UK | Cohort 1: South Asian Cohort 2: European |
2022 | Eugene P Rhee [11] | plasma | 537 | 822 White, 687 Black, US | European, African (African Americans) |
Metabolite | Previous Literature | ADReSS | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
First Author | rsID | Chr. | Pos. (GRCh38) | Nearest Gene | Effect/ Non-Effect Allele | Effect Allele Freq. * | Beta (SE) ** | p | Effect Allele Freq. | Beta | SE | p | |
Bilirubin | Eugene P Rhee [11] | rs7567229 | 2 | 233703893 | UGT1A6-10 | A/C | 0.31 | 0.31 (0.04) | 2.7 × 10−15 | 0.60 | 0.02 | 0.06 | 0.7778 |
Eugene P Rhee [11] | rs887829 | 2 | 233759924 | UGT1A3-10 | T/C | 0.46 | 0.38 (0.05) | 1.4 × 10−13 | 0.40 | 0.31 | 0.07 | 3.38 × 10−6 | |
Bing Yu [9] | 0.44 | NA | 1 × 10−17 | ||||||||||
Shengyuan Luo [10] | rs4148325 | 2 | 233764663 | UGT1A1, UGT1A3-10 | T/C | 0.45 | 0.36 | 3.82 × 10−12 | 0.40 | 0.30 | 0.07 | 5.72 × 10−6 | |
Biliverdin | Shengyuan Luo [10] | rs1976391 | 2 | 233757337 | UGT1A3-10 | G/A | 0.45 | 0.42 | 3.69 × 10−17 | 0.40 | 0.39 | 0.07 | 1.04 × 10−8 |
So-Youn Shin [7] | rs887829 | 2 | 233759924 | UGT1A3-10 | T/C | 0.34 | 0.113 (0.004) | 2.50 × 10−168 | 0.40 | 0.39 | 0.07 | 1.04 × 10−8 | |
Bing Yu [9] | 0.44 | NA | 8× 10−23 | ||||||||||
Eugene P Rhee [11] | rs4148325 | 2 | 233764663 | UGT1A1, UGT1A3-10 | T/C | 0.33 | 0.27 (0.03) | 5.7 × 10−19 | 0.40 | 0.38 | 0.07 | 2.36 × 10−8 | |
Carnitine | So-Youn Shin [7] | rs1466788 | 1 | 110076108 | ALX3 | A/G | 0.41 | −0.007 (0.001) | 3.05 × 10−16 | 0.26 | 0.01 | 0.07 | 0.8629 |
So-Youn Shin [7] | rs9842133 | 3 | 179946314 | PEX5L | T/C | 0.66 | 0.006 (0.001) | 4.20 × 10−12 | 0.54 | 0.06 | 0.06 | 0.2984 | |
Karsten Suhre [8] | rs7094971 | 10 | 59689806 | SLC16A9 | G/A | 0.15 | −0.049 | 3.4 × 10−14 | 0.11 | −0.07 | 0.10 | 0.4627 | |
Eugene P Rhee [17] | rs1171617 | 10 | 59707424 | G/T | 0.23 | −0.42 (0.04) | 5.9 × 10−26 | 0.24 | −0.23 | 0.07 | 0.0014 | ||
Idil Yet [22] | NA | NA | 2.3 × 10−13 | ||||||||||
Citrulline | So-Youn Shin [7] | rs56322409 | 10 | 95636205 | ALDH18A1 | T/C | 0.63 | −0.011 (0.002) | 7.81 × 10−11 | 0.92 | 0.04 | 0.12 | 0.7471 |
0.02 | 0.12 | 0.8796 | |||||||||||
Creatine | Eugene P Rhee [17] | rs7422339 | 2 | 210675783 | CPS1 | A/C | 0.31 | 0.24 (0.04) | 2.5 × 10−11 | 0.43 | 0.19 | 0.07 | 0.0045 |
Bing Yu [9] | rs2433610 | 15 | 45393893 | 15kb from GATM | T/C | 0.49 | NA | 9× 10−12 | 0.51 | 0.01 | 0.06 | 0.8755 | |
Glutamine | Karsten Suhre [8] | rs2657879 | 12 | 56471554 | GLS2 | G/A | 0.19 | −0.035 | 3.1 × 10−17 | 0.06 | −0.16 | 0.13 | 0.2482 |
−0.07 | 0.14 | 0.5944 | |||||||||||
Histidine | Johannes Kettunen [21] | rs7954638 | 12 | 95921017 | HAL | A/C | 0.48 | −0.08 (0.01) | 7.3 × 10−15 | 0.67 | −0.09 | 0.07 | 0.1863 |
−0.06 | 0.07 | 0.3814 | |||||||||||
Inosine | Karsten Suhre [8] | rs494562 | 6 | 85407411 | NT5E | G/A | 0.11 | 0.302 | 7.4 × 10−13 | 0.39 | 0.10 | 0.06 | 0.0939 |
Phenylalanine | Michael Inouye [15] | rs1912826 | 4 | 186228386 | KLKB1 | G/A | MAF 0.43 | NA | 3.72 × 10−12 | 0.32 | −0.01 | 0.07 | 0.8876 |
Proline | Eugene P Rhee [17] | rs2078743 | 22 | 18979346 | PRODH | A/G | 0.09 | 0.49 (0.06) | 2.2 × 10−14 | 0.14 | 0.12 | 0.09 | 0.1968 |
Karsten Suhre [8] | rs2023634 | 22 | 18984937 | G/A | 0.09 | 0.113 | 2.0 × 10−22 | 0.11 | −0.03 | 0.10 | 0.7947 | ||
Ayşe Demirkan [19] | rs3213491 | 22 | 19177322 | SLC25A1 | A/C | 0.95 | 0.38 (0.11) | 7.48 × 10−4 | 0.70 | 0.10 | 0.07 | 0.1402 | |
Serine | So-Youn Shin [7] | rs1163251 | 1 | 119667132 | PHGDH | T/C | 0.60 | 0.019 (0.002) | 7.05 × 10−27 | 0.89 | 0.06 | 0.10 | 0.5274 |
−0.10 | 0.10 | 0.3229 | |||||||||||
Karsten Suhre [8] | rs477992 | 1 | 119714953 | A/G | 0.31 | −0.051 | 2.6 × 10−14 | 0.38 | −0.02 | 0.07 | 0.7487 | ||
−0.12 | 0.07 | 0.0632 | |||||||||||
So-Youn Shin [7] | rs4947534 | 7 | 56011401 | PSPH | T/C | 0.25 | −0.018 (0.002) | 1.96 × 10−14 | 0.37 | −0.04 | 0.07 | 0.5866 | |
−0.10 | 0.07 | 0.1450 | |||||||||||
Tryptophan | So-Youn Shin [7] | rs13122250 | 4 | 155887136 | TDO2 | T/C | 0.55 | 0.006 (0.001) | 8.95 × 10−12 | 0.13 | −0.07 | 0.10 | 0.4590 |
Tyrosine | Tanya M Teslovich [25] | rs28601761 | 8 | 125487789 | 49 kb downstream of TRIB1 | G/C | 0.42 | −0.09 (0.02) | 8.8 × 10−9 | 0.42 | 0.04 | 0.07 | 0.5151 |
Urate | Karsten Suhre [8] | rs4481233 | 4 | 9954455 | SLC2A9 | T/C | 0.19 | −0.074 | 5.5 × 10−34 | 0.08 | −0.13 | 0.11 | 0.2622 |
−0.16 | 0.12 | 0.1922 |
Metabolite | rsID | Chr. | Pos. (GRCh38) | Gene | Effect/ Non-Effect Allele | Effect Allele Freq. | Beta | SE | p |
---|---|---|---|---|---|---|---|---|---|
1-aminocyclopropane-1-carboxylate | rs112118947 | 9 | 114067084 | AMBP | T/G | 0.13 | −0.49 | 0.09 | 2.83 × 10−8 |
1-methylnicotinamide | rs7844962 | 8 | 110190121 | Intergenic | G/A | 0.09 | −0.62 | 0.11 | 4.87 × 10−8 |
3-methyl-2-oxindole | rs6874865 | 5 | 152559517 | Intergenic | G/A | 0.17 | −0.48 | 0.08 | 8.66 × 10−9 |
Bilirubin | rs9884125 | 4 | 183605287 | Intergenic | G/A | 0.33 | 0.35 | 0.06 | 3.59 × 10−8 |
Biliverdin | rs1976391 * | 2 | 233757337 | UGT1A3-10 | G/A | 0.40 | 0.39 | 0.07 | 1.04 × 10−8 |
Caprylic acid | rs10840643 | 12 | 122040948 | BCL7A | T/C | 0.48 | 0.36 | 0.07 | 4.28 × 10−8 |
Creatine | rs115281368 | 5 | 133290340 | FSTL4 | T/C | 0.05 | 0.80 | 0.14 | 2.62 × 10−8 |
Creatinine | rs1810668 | 13 | 113344465 | GRTP1 | A/G | 0.31 | 0.38 | 0.07 | 1.83 × 10−8 |
D-gulonic acid gama-lactone | rs2328985 ** | 13 | 76682571 | LOC105370266, LOC112268120 | A/C | 0.20 | −0.40 | 0.07 | 2.58 × 10−8 |
Glycerate | rs17136208 *** | 16 | 3095047 | ZSCAN10 | C/T | 0.05 | 0.76 | 0.14 | 3.70 × 10−8 |
Hypotaurine | rs115656245 | 11 | 124577645 | Intergenic | C/T | 0.06 | 0.72 | 0.13 | 3.98 × 10−8 |
Hypoxanthine | rs1401798 **** | 2 | 150817357 | Intergenic | G/T | 0.53 | 0.37 | 0.06 | 8.80 × 10−10 |
L-arabitol | rs12603355 ***** | 17 | 7829719 | DNAH2 | T/C | 0.29 | −0.38 | 0.07 | 2.71 × 10−8 |
Melanin | N/A | 1 | 200189144 | NR5A2 | G/A | 0.20 | −0.44 | 0.08 | 3.50 × 10−8 |
N-acetyl-d-tryptophan | rs75313733 ****** | 6 | 66785398 | Intergenic | C/CT | 0.41 | −0.38 | 0.06 | 4.70 × 10−9 |
Palmitoleic acid | rs146744192 | 19 | 6299380 | Intergenic | T/C | 0.19 | 0.43 | 0.08 | 3.60 × 10−8 |
Pyridoxamine | rs10170273 | 2 | 151664582 | NEB | C/T | 0.34 | −0.36 | 0.06 | 3.86 × 10−8 |
Pyruvate | rs480446 | 18 | 60159460 | Intergenic | A/G | 0.09 | 0.61 | 0.11 | 3.12 × 10−8 |
Rac-glycerol 1-myristate | rs11598219 | 10 | 68140483 | MYPN | A/G | 0.33 | 0.38 | 0.07 | 1.56 × 10−8 |
Sorbate | rs6785673 | 3 | 68413982 | TAFA1 | A/C | 0.25 | −0.40 | 0.07 | 4.57 × 10−8 |
Trans-cinnamaldehyde | rs10876317 | 12 | 52655137 | Intergenic | C/T | 0.27 | 0.38 | 0.07 | 4.05 × 10−8 |
Xanthine | rs4082670 | 10 | 11285890 | CELF2 | T/C | 0.41 | 0.34 | 0.06 | 3.80 × 10−8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Wang, Z.; Hui, Q.; Chiang, Y.; Chen, J.; Brijkumar, J.; Edwards, J.A.; Ordonez, C.E.; Dudgeon, M.R.; Sunpath, H.; et al. Crosstalk between Host Genome and Metabolome among People with HIV in South Africa. Metabolites 2022, 12, 624. https://doi.org/10.3390/metabo12070624
Liu C, Wang Z, Hui Q, Chiang Y, Chen J, Brijkumar J, Edwards JA, Ordonez CE, Dudgeon MR, Sunpath H, et al. Crosstalk between Host Genome and Metabolome among People with HIV in South Africa. Metabolites. 2022; 12(7):624. https://doi.org/10.3390/metabo12070624
Chicago/Turabian StyleLiu, Chang, Zicheng Wang, Qin Hui, Yiyun Chiang, Junyu Chen, Jaysingh Brijkumar, Johnathan A. Edwards, Claudia E. Ordonez, Mathew R. Dudgeon, Henry Sunpath, and et al. 2022. "Crosstalk between Host Genome and Metabolome among People with HIV in South Africa" Metabolites 12, no. 7: 624. https://doi.org/10.3390/metabo12070624
APA StyleLiu, C., Wang, Z., Hui, Q., Chiang, Y., Chen, J., Brijkumar, J., Edwards, J. A., Ordonez, C. E., Dudgeon, M. R., Sunpath, H., Pillay, S., Moodley, P., Kuritzkes, D. R., Moosa, M. Y. S., Jones, D. P., Marconi, V. C., & Sun, Y. V. (2022). Crosstalk between Host Genome and Metabolome among People with HIV in South Africa. Metabolites, 12(7), 624. https://doi.org/10.3390/metabo12070624