Identification of Serum Oxylipins Associated with the Development of Coronary Artery Disease: A Nested Case-Control Study
Abstract
:1. Introduction
2. Results
2.1. Conditional Logistic Regression Analysis
2.2. Multivariate Logistic Regression
2.3. ROC Curve Analysis
2.4. Sensitivity Analysis
3. Discussion
4. Materials and Methods
4.1. Research Design and Participants
4.2. Sample Storage and Preparation
4.3. Oxylipins Measurement by Liquid Chromatography–Electrospray Ionization Tandem Mass Spectrometry (LC-ESI-MS/MS)
4.4. Data Processing
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobarganes, C.; Marquez-Ruiz, G. Possible adverse effects of frying with vegetable oils. Br. J. Nutr. 2015, 113 (Suppl. 2), S49–S57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.S.; Kuo, C.H.; Yang, H.C.; Liang, Y.J.; Huang, C.J.; Sheen, L.Y.; Pan, W.H. Postprandial Metabolomics Response to Various Cooking Oils in Humans. J. Agric. Food Chem. 2018, 66, 4977–4984. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Umeno, A.; Akazawa, Y.; Shichiri, M.; Murotomi, K.; Horie, M. Chemistry of lipid peroxidation products and their use as biomarkers in early detection of diseases. J. Oleo Sci. 2015, 64, 347–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayeem, M.A. Role of oxylipins in cardiovascular diseases. Acta Pharmacol. Sin. 2018, 39, 1142–1154. [Google Scholar] [CrossRef]
- Le, D.E.; Garcia-Jaramillo, M.; Bobe, G.; Alcazar Magana, A.; Vaswani, A.; Minnier, J.; Jump, D.B.; Rinkevich, D.; Alkayed, N.J.; Maier, C.S.; et al. Plasma Oxylipins: A Potential Risk Assessment Tool in Atherosclerotic Coronary Artery Disease. Front. Cardiovasc. Med. 2021, 8, 645786. [Google Scholar] [CrossRef]
- Cahill, L.E.; Pan, A.; Chiuve, S.E.; Sun, Q.; Willett, W.C.; Hu, F.B.; Rimm, E.B. Fried-food consumption and risk of type 2 diabetes and coronary artery disease: A prospective study in 2 cohorts of US women and men. Am. J. Clin. Nutr. 2014, 100, 667–675. [Google Scholar] [CrossRef]
- Guallar-Castillon, P.; Rodriguez-Artalejo, F.; Lopez-Garcia, E.; Leon-Munoz, L.M.; Amiano, P.; Ardanaz, E.; Arriola, L.; Barricarte, A.; Buckland, G.; Chirlaque, M.D.; et al. Consumption of fried foods and risk of coronary heart disease: Spanish cohort of the European Prospective Investigation into Cancer and Nutrition study. BMJ 2012, 344, e363. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Gonzalez, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean Diet and Cardiovascular Health. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef]
- Whelan, J.; Fritsche, K. Linoleic acid. Adv. Nutr. 2013, 4, 311–312. [Google Scholar] [CrossRef] [Green Version]
- Ramsden, C.E.; Ringel, A.; Feldstein, A.E.; Taha, A.Y.; MacIntosh, B.A.; Hibbeln, J.R.; Majchrzak-Hong, S.F.; Faurot, K.R.; Rapoport, S.I.; Cheon, Y.; et al. Lowering dietary linoleic acid reduces bioactive oxidized linoleic acid metabolites in humans. Prostagland. Leukot. Essent. Fatty Acids 2012, 87, 135–141. [Google Scholar] [CrossRef]
- Jira, W.; Spiteller, G.; Carson, W.; Schramm, A. Strong increase in hydroxy fatty acids derived from linoleic acid in human low density lipoproteins of atherosclerotic patients. Chem. Phys. Lipids 1998, 91, 1–11. [Google Scholar] [CrossRef]
- Niikura, T.; Imajo, K.; Ozaki, A.; Kobayashi, T.; Iwaki, M.; Honda, Y.; Kessoku, T.; Ogawa, Y.; Yoneda, M.; Kirikoshi, H.; et al. Coronary Artery Disease is More Severe in Patients with Non-Alcoholic Steatohepatitis than Fatty Liver. Diagnostics 2020, 10, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calabresi, L.; Rossoni, G.; Gomaraschi, M.; Sisto, F.; Berti, F.; Franceschini, G. High-density lipoproteins protect isolated rat hearts from ischemia-reperfusion injury by reducing cardiac tumor necrosis factor-alpha content and enhancing prostaglandin release. Circ. Res. 2003, 92, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Katsumata, Y.; Shinmura, K.; Sugiura, Y.; Tohyama, S.; Matsuhashi, T.; Ito, H.; Yan, X.; Ito, K.; Yuasa, S.; Ieda, M.; et al. Endogenous prostaglandin D2 and its metabolites protect the heart against ischemia-reperfusion injury by activating Nrf2. Hypertension 2014, 63, 80–87. [Google Scholar] [CrossRef]
- Oishi, Y.; Yoshida, K.; Scammell, T.E.; Urade, Y.; Lazarus, M.; Saper, C.B. The roles of prostaglandin E2 and D2 in lipopolysaccharide-mediated changes in sleep. Brain Behav. Immun. 2015, 47, 172–177. [Google Scholar] [CrossRef]
- Weng, L.C.; Lee, N.J.; Yeh, W.T.; Ho, L.T.; Pan, W.H. Lower intake of magnesium and dietary fiber increases the incidence of type 2 diabetes in Taiwanese. J. Formos. Med. Assoc. 2012, 111, 651–659. [Google Scholar] [CrossRef] [Green Version]
- Apaya, M.K.; Lin, C.-Y.; Chiou, C.-Y.; Yang, C.-C.; Ting, C.-Y.; Shyur, L.-F. Simvastatin and a Plant Galactolipid Protect Animals from Septic Shock by Regulating Oxylipin Mediator Dynamics through the MAPK-cPLA(2) Signaling Pathway. Mol. Med. 2016, 21, 988–1001. [Google Scholar] [CrossRef]
- Steuer, R. Review: On the analysis and interpretation of correlations in metabolomic data. Brief. Bioinform. 2006, 7, 151–158. [Google Scholar] [CrossRef] [Green Version]
- Gromski, P.S.; Xu, Y.; Kotze, H.L.; Correa, E.; Ellis, D.I.; Armitage, E.G.; Turner, M.L.; Goodacre, R. Influence of missing values substitutes on multivariate analysis of metabolomics data. Metabolites 2014, 4, 433–452. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.J.; Lin, Y.T.; Chen, C.W.; Lin, C.W.; Chao, K.M.; Pan, W.H.; Yang, H.C. SMART: Statistical Metabolomics Analysis-An R Tool. Anal. Chem. 2016, 88, 6334–6341. [Google Scholar] [CrossRef] [Green Version]
- McNeish, D.M. Using Lasso for Predictor Selection and to Assuage Overfitting: A Method Long Overlooked in Behavioral Sciences. Multivar. Behav. Res. 2015, 50, 471–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Characteristics | All Participants | Case | Control | p-Value |
---|---|---|---|---|
(n = 211) | (n = 77) | (n = 134) | ||
Gender (%) | Matched | |||
Male | 108 (51.2) | 39 (50.6) | 69 (51.5) | |
Female | 103 (48.8) | 38 (49.3) | 65 (48.5) | |
Age(year) | 61.7 ± 5.1 | 61.7 ± 5.1 | 61.6 ± 5.1 | Matched |
Education level | 0.47 | |||
Less than elementary school | 47 (21.8) | 17 (22.1) | 30 (22.4) | |
Elementary school | 108 (51.2) | 36 (45.7) | 72 (53.7) | |
More than elementary school | 56 (27.0) | 23 (31.3) | 32 (23.9) | |
Hypertension | 104 (48.8) | 37 (48.1) | 67 (50.0) | 0.88 |
Stroke | 3 (1.4) | 2 (2.6) | 1 (0.7) | 0.55 |
Diabetes Mellitus | 44 (20.5) | 20 (25.9) | 24 (17.4) | 0.21 |
Kidney Disease | 8 (3.8) | 1 (1.3) | 7 (5.2) | 0.26 |
Stone | 6 (10) | 0 (0) | 6 (4.5) | 0.08 |
Smoking | 0.72 | |||
Non-smoker | 116 (54.9) | 42 (54.5) | 74 (55.2) | |
Current smoker | 43 (20.4) | 15 (19.4) | 28 (20.9) | |
Quit smoking | 17 (8.1) | 8 (10.4) | 9 (6.7) | |
Ever smoked | 10 (4.8) | 2 (2.8) | 8 (6.0) | |
Drinking | 0.76 | |||
Never | 48 (22.7) | 16 (20.7) | 32 (23.8) | |
Below 1/week | 49 (23.2) | 20 (25.9) | 29 (21.6) | |
Above 1/week | 35 (16.6) | 10 (13.1) | 25 (18.6) | |
Quit | 24 (11.4) | 11 (14.3) | 13 (9.7) | |
Ever | 32 (15.2) | 11 (14.3) | 21 (15.7) | |
Waist circumference (cm) | 82.3 ± 9.9 | 83.4 ± 9.4 | 81.6 ± 10.2 | 0.22 |
BMI, (kg/m2) | 24.5 ± 3.8 | 24.8 ± 3.5 | 24.3 ± 3.9 | 0.37 |
LDL-C (mg/dl) | 122.3 ± 42.5 | 123.5 ± 45.6 | 121.7 ± 40.8 | 0.76 |
HDL-C (mg/dl) | 53.7 ± 17.3 | 51.8 ± 16.4 | 54.8 ± 17.9 | 0.23 |
Total cholesterol (mg/dl) | 205.2 ± 47.1 | 210.4 ± 44.8 | 202.3 ± 48.2 | 0.29 |
Total triacylglycerol (mg/dl) | 148.2 ± 125.3 | 175.1 ± 164.4 | 134.2 ± 95.5 | 0.02 * |
Blood sugar (mg/dl) | 99.1 ± 38.9 | 101.2 ± 40.1 | 98.0 ± 38.2 | 0.56 |
Medication | ||||
Anti-hypertensive | 34 (16.3) | 16 (20.8) | 18 (13.4) | 0.17 |
Anti-diabetic | 19 (8.8) | 10 (13.0) | 9 (6.5) | 0.13 |
Lipid-lowering agent | 5 (2.3) | 2 (2.6) | 3 (2.2) | - |
Oxylipins | Borderline | Number of | Model 1 | Model 2 | ||
---|---|---|---|---|---|---|
(ppm) | Cases/Controls | OR (95% CI) | p for Trend | OR (95% CI) | p for Trend | |
13-oxo-ODE | 0.1 | 0.09 | ||||
Low tertile | <0.0055 | 18/52 | Ref. | Ref. | ||
Middle tertile | 0.0055–0.006 | 31/40 | 2.48 (1.12, 5.48) * | 2.75 (1.20, 6.26) * | ||
High tertile | ≥0.006 | 28/42 | 1.81 (0.85, 3.84) | 1.86 (0.86, 4.00) | ||
5-HETE | 0.17 | 0.2 | ||||
Low tertile | <0.0173 | 30/40 | Ref. | Ref. | ||
Middle tertile | 0.0173–0.0180 | 20/51 | 0.43 (0.19, 0.96) * | 0.44 (0.19, 0.98) * | ||
High tertile | ≥0.0180 | 27/43 | 0.61 (0.27, 1.35) | 0.63 (0.28, 1,41) | ||
PGD2/PGE2 | 0.001 ** | 0.001 ** | ||||
Low tertile | <0.001001 | 37/33 | Ref. | Ref. | ||
Middle tertile | 0.001001–0.001005 | 20/51 | 0.33 (0.15, 0.71) * | 0.34 (0.15, 0.72) * | ||
High tertile | ≥0.001005 | 20/50 | 0.27 (0.12, 0.60) * | 0.28 (0.13, 0.61) * | ||
15-deoxy-PGJ2 | 0.01 * | 0.01 * | ||||
Low tertile | <0.001002 | 29/41 | Ref. | Ref. | ||
Middle tertile | 0.001002–0.00101 | 30/41 | 0.92 (0.44, 1.91) | 1.00 (0.48, 2.09) | ||
High tertile | ≥0.00101 | 18/52 | 0.33 (0.14, 0.79) * | 0.32 (0.13, 0.78) * |
Oxylipins | Borderline | Number of | Model 1 | Model 2 | ||
---|---|---|---|---|---|---|
(ppm) | Cases/Controls | OR (95% CI) | p for Trend | OR (95% CI) | p for Trend | |
13-oxo-ODE | 0.003 ** | 0.003 ** | ||||
Low tertile | <0.0055 | 18/52 | Ref. | Ref. | ||
Middle tertile | 0.0055–0.006 | 31/40 | 4.36 (1.53, 12.4) ** | 5.52 (1.75, 17.4) ** | ||
High tertile | ≥0.006 | 28/42 | 5.02 (1.85, 15.6) ** | 5.51 (1.68, 18.0) ** | ||
5-HETE | 0.15 | 0.18 | ||||
Low tertile | <0.0173 | 30/40 | Ref. | Ref. | ||
Middle tertile | 0.0173–0.0180 | 20/51 | 0.27 (0.09, 0.74) ** | 0.28 (0.10, 0.78) ** | ||
High tertile | ≥0.0180 | 27/43 | 0.47 (0.15, 1.43) | 0.52 (0.17, 1.61) | ||
PGD2/PGE2 | 0.0004 ** | 0.001 ** | ||||
Low tertile | <0.001001 | 37/33 | Ref. | Ref. | ||
Middle tertile | 0.001001–0.001005 | 20/51 | 0.26 (0.10, 0.66) ** | 0.25 (0.09, 0.64) ** | ||
High tertile | ≥0.001005 | 20/50 | 0.16 (0.06, 0.42) ** | 0.15 (0.05, 0.40) ** | ||
15-deoxy-PGJ2 | 0.01 * | 0.01 * | ||||
Low tertile | <0.001002 | 29/41 | Ref. | Ref. | ||
Middle tertile | 0.001002–0.00101 | 30/41 | 0.58 (0.23, 1.47) | 0.62 (0.24, 1.59) | ||
High tertile | ≥0.00101 | 18/52 | 0.33 (0.09, 0.76) ** | 0.23 (0.07, 0.69) ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, K.-M.; Chen, J.-F.; Yang, C.-A.; Xiu, L.; Yang, H.-C.; Shyur, L.-F.; Pan, W.-H. Identification of Serum Oxylipins Associated with the Development of Coronary Artery Disease: A Nested Case-Control Study. Metabolites 2022, 12, 495. https://doi.org/10.3390/metabo12060495
Chiang K-M, Chen J-F, Yang C-A, Xiu L, Yang H-C, Shyur L-F, Pan W-H. Identification of Serum Oxylipins Associated with the Development of Coronary Artery Disease: A Nested Case-Control Study. Metabolites. 2022; 12(6):495. https://doi.org/10.3390/metabo12060495
Chicago/Turabian StyleChiang, Kuang-Mao, Jia-Fu Chen, Chin-An Yang, Lili Xiu, Hsin-Chou Yang, Lie-Fen Shyur, and Wen-Harn Pan. 2022. "Identification of Serum Oxylipins Associated with the Development of Coronary Artery Disease: A Nested Case-Control Study" Metabolites 12, no. 6: 495. https://doi.org/10.3390/metabo12060495
APA StyleChiang, K. -M., Chen, J. -F., Yang, C. -A., Xiu, L., Yang, H. -C., Shyur, L. -F., & Pan, W. -H. (2022). Identification of Serum Oxylipins Associated with the Development of Coronary Artery Disease: A Nested Case-Control Study. Metabolites, 12(6), 495. https://doi.org/10.3390/metabo12060495