Metabolism of Enantiomers of Rhododendrol in Human Skin Homogenate
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Homepage of Kanebo Cosmetics, Inc. The Number of Checks of the White Spots’ Condition, and Recovery, a Reconciliation Situation/the Number of Object Recall. Available online: https://www.kanebo-cosmetics.jp/information/correspondence/ (accessed on 29 November 2021).
- Archangelsky, K. Ueber Rhododendrol, Rhododendrin und Andromedotoxin. Archiv Fur Exp. Pathol. Pharmakol. 1901, 46, 313–320. [Google Scholar] [CrossRef]
- Tallent, W.H. d-Betuligenol from Rhododendron maximum L. J. Org. Chem. 1964, 29, 988–989. [Google Scholar] [CrossRef]
- Bonamonte, D.; Vestita, M.; Romita, P.; Filoni, A.; Foti, C.; Angelini, G. Chemical leukoderma. Dermatitis 2016, 27, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Oliver, E.A.; Schwartz, L.; Warren, L.H. Occupational leukoderma: Preliminary report. J. Am. Med. Assoc. 1939, 113, 927–928. [Google Scholar] [CrossRef]
- Fukuda, Y.; Nagano, M.; Futatsuka, M. Occupational leukoderma in workers engaged in 4-(p-hydroxyphenyl)-2-butanone manufacturing. J. Occup. Health 1998, 40, 118–122. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, Y.; Nagano, M.; Tsukamoto, K.; Futatsuka, M. In vitro studies on the depigmenting activity of 4-(p-hydroxyphenyl)-2-butanone. J. Occup. Health 1998, 40, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Ito, S.; Hinoshita, M.; Suzuki, E.; Ojika, M.; Wakamatsu, K. Tyrosinase-catalyzed oxidation of the leukoderma-inducing agent raspberry ketone produces (E)-4-(3-oxo-1-butenyl)-1,2-benzoquinone: Implications for melanocyte toxicity. Chem. Res. Toxicol. 2017, 30, 859–868. [Google Scholar] [CrossRef]
- Kim, M.; Baek, H.S.; Lee, M.; Park, H.; Shin, S.S.; Choi, D.W.; Lim, K.-M. Rhododenol and raspberry ketone impair the normal proliferation of melanocytes through reactive oxygen species-dependent activation of GADD45. Toxicol. In Vitro 2016, 32, 339–346. [Google Scholar] [CrossRef]
- Kammeyer, A.; Willemsen, K.J.; Ouwerkerk, W.; Bakker, W.J.; Ratsma, D.; Pronk, S.D.; Smit, N.P.M.; Luiten, R.M. Mechanism of action of 4-substituted phenols to induce chemical leukoderma and antimelanoma immunity. Pigment Cell Melanoma Res. 2019, 32, 540–552. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Zeng, H.; Takahashi, T.; Maeda, K. In vitro methods for predicting chemical leukoderma caused by quasi-drug cosmetics. Cosmetics 2017, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Gu, L.; Fujisawa, A.; Maeda, K. Detection of raspberry ketone after percutaneous absorption of rhododendrol-containing cosmetics and its mechanism of formation. Cosmetics 2021, 8, 97. [Google Scholar] [CrossRef]
- Galter, D.; Carmine, A.; Buervenich, S.; Duester, G.; Olson, L. Distribution of class I, III and IV alcohol dehydrogenase mRNAs in the adult rat, mouse and human brain. Eur. J. Biochem. 2003, 270, 1316–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheung, C.; Davies, N.G.; Hoog, J.-O.; Hotchkiss, S.A.M.; Smith Pease, C.K. Species variations in cutaneous alcohol dehydrogenases and aldehyde dehydrogenases may impact on toxicological assessments of alcohols and aldehydes. Toxicology 2003, 184, 97–112. [Google Scholar] [CrossRef]
- Yin, S.-J.; Chou, C.-F.; Lai, C.-L.; Lee, S.-L.; Han, C.-L. Human class IV alcohol dehydrogenase: Kinetic mechanism, functional roles and medical relevance. Chem.-Biol. Interact. 2003, 143–144, 219–227. [Google Scholar] [CrossRef]
- Pyo, S.M.; Maibach, H.I. Skin metabolism: Relevance of skin enzymes for rational drug design. SPP 2019, 4, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Cheung, C.; Smith, C.K.; Hoog, J.-O.; Hotchkiss, S.A.M. Expression and localization of human alcohol and aldehyde dehydrogenase enzymes in skin. Biochem. Biophys. Res. Commun. 1999, 261, 100–107. [Google Scholar] [CrossRef]
- Blaschke, G.; Kraft, H.P.; Fickentscher, K.; Köhler, F. Chromatographic separation of racemic thalidomide and teratogenic activity of its enantiomers. Arzneimittelforschung 1979, 29, 1640–1642. [Google Scholar]
- Ito, S.; Gerwat, W.; Kolbe, L.; Yamashita, T.; Ojika, M.; Wakamatsu, K. Human tyrosinase is able to oxidize both enantiomers of rhododendrol. Pigment Cell Melanoma Res. 2014, 27, 1149–1153. [Google Scholar] [CrossRef]
- Massudi, H.; Grant, R.; Braidy, N.; Guest, J.; Farnsworth, B.; Guillemin, G.J. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue. PLoS ONE 2012, 7, e42357. [Google Scholar] [CrossRef]
- McReynolds, M.R.; Chellappa, K.; Baur, J.A. Age-related NAD+ decline. Exp. Gerontol. 2020, 134, 110888. [Google Scholar] [CrossRef]
- Seitz, H.K.; Egerer, G.; Simanowski, U.A.; Waldherr, R.; Eckey, R.; Agarwal, D.P.; Goedde, H.W.; von Wartburg, J.P. Human gastric alcohol dehydrogenase activity: Effect of age, sex, and alcoholism. Gut 1993, 34, 1433–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manufacturing Method, Kanebo Whitening Essence S, Kanebo Cosmetics, Examination Report and Summary of Application Materials; Pharmaceuticals and Medical Devices Agency: Tokyo, Japan, 2007; Summary 9.
- Akiko, I.; Yumi, A.; Kayoko, S. The third report of epidemiology based on a nationwide survey of rhododenol-induced leukoderma in Japan. Jpn. J. Dermatol. 2015, 125, 2401–2414. [Google Scholar] [CrossRef]
RD Concentration (μg/mL) | (S)-RD (%) | (R)-RD (%) | RK (%) | Consumption of (S)-RD (%) | Consumption of (R)-RD (%) | Consumption Ratio of (S)-RD to (R)-RD | |
---|---|---|---|---|---|---|---|
12 h | 100 | 50.24 ± 0.80 | 49.76 ± 0.80 | - | - | - | - |
200 | 49.63 ± 0.85 | 50.33 ± 0.89 | 0.04 ± 0.07 | - | - | - | |
300 | 49.10 ± 0.60 | 50.83 ± 0.57 | 0.07 ± 0.08 | - | - | - | |
12 h | 100 | 43.51 ± 0.61 | 44.86 ± 0.78 | 11.63 ± 0.74 | 6.49 | 5.14 | 1.26 |
+NAD+ | 200 | 41.71 ± 2.31 | 42.55 ± 1.72 | 16.56 ± 3.77 | 8.29 | 7.45 | 1.11 |
300 | 42.21 ± 2.44 | 44.13 ± 1.95 | 13.66 ± 4.31 | 7.78 | 5.87 | 1.32 | |
24 h | 100 | 44.11 ± 2.71 | 45.85 ± 3.77 | 10.04 ± 1.28 | 5.89 | 4.15 | 1.42 |
200 | 43.15 ± 1.20 | 45.81 ± 1.40 | 11.04 ± 0.32 | 6.85 | 4.19 | 1.63 | |
300 | 43.78 ± 1.66 | 46.38 ± 0.84 | 9.85 ± 2.13 | 6.22 | 3.62 | 1.72 | |
24 h | 100 | 35.34 ± 1.76 | 36.64 ± 1.23 | 28.01 ± 1.04 | 14.66 | 13.36 | 1.10 |
+NAD+ | 200 | 30.31 ± 8.96 | 39.53 ± 3.65 | 30.16 ± 5.48 | 19.69 | 10.47 | 1.88 |
300 | 35.41 ± 5.32 | 37.72 ± 5.84 | 26.87 ± 3.71 | 13.40 | 10.92 | 1.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, L.; Maeda, K. Metabolism of Enantiomers of Rhododendrol in Human Skin Homogenate. Metabolites 2022, 12, 412. https://doi.org/10.3390/metabo12050412
Gu L, Maeda K. Metabolism of Enantiomers of Rhododendrol in Human Skin Homogenate. Metabolites. 2022; 12(5):412. https://doi.org/10.3390/metabo12050412
Chicago/Turabian StyleGu, Lihao, and Kazuhisa Maeda. 2022. "Metabolism of Enantiomers of Rhododendrol in Human Skin Homogenate" Metabolites 12, no. 5: 412. https://doi.org/10.3390/metabo12050412
APA StyleGu, L., & Maeda, K. (2022). Metabolism of Enantiomers of Rhododendrol in Human Skin Homogenate. Metabolites, 12(5), 412. https://doi.org/10.3390/metabo12050412