High Correlation among Brain-Derived Major Protein Levels in Cerebrospinal Fluid: Implication for Amyloid-Beta and Tau Protein Changes in Alzheimer’s Disease
Abstract
:1. Introduction
2. Results
2.1. Major Proteins in Serum and Cerebrospinal Fluid
2.2. Concentration of Major Proteins in the CSF
2.3. Correlations between Major Proteins in the CSF
2.4. Correlations between Major CSF Proteins in CSF of CN, MCI, and AD
2.5. Correlations between Major CSF Proteins and AD Biomarkers
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. SDS-PAGE and Blotting Analyses
4.3. ELISA for CSF Proteins
4.4. Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Sperling, R.A.; Aisen, P.S.; Beckett, L.A.; Bennett, D.A.; Craft, S.; Fagan, A.M.; Iwatsubo, T.; Jack, C.R.; Kaye, J.; Montine, T.J.; et al. Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011, 7, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef]
- Klunk, W.E.; Engler, H.; Nordberg, A.; Wang, Y.; Blomqvist, G.; Holt, D.P.; Bergstrom, M.; Savitcheva, I.; Huang, G.F.; Estrada, S.; et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann. Neurol. 2004, 55, 306–319. [Google Scholar] [CrossRef] [PubMed]
- Fagan, A.M.; Shaw, L.M.; Xiong, C.; Vanderstichele, H.; Mintun, M.A.; Trojanowski, J.Q.; Coart, E.; Morris, J.C.; Holtzman, D.M. Comparison of analytical platforms for cerebrospinal fluid measures of Abeta1-42, total tau and p-tau181 for identifying Alzheimer’s disease amyloid plaque pathology. Arch. Neurol. 2011, 68, 1137–1144. [Google Scholar] [CrossRef]
- Sutphen, C.L.; Jasielec, M.S.; Shah, A.R.; Macy, E.M.; Xiong, C.; Vlassenko, A.G.; Benzinger, T.L.S.; Stoops, E.E.J.; Vanderstichele, H.M.J.; Brix, B.; et al. Longitudinal cerebrospinal fluid boimarker changes in preclinical Alzheimer disease during middle age. JAMA Neurol. 2015, 72, 1029–1042. [Google Scholar] [CrossRef]
- Blennow, K.; Zetterberg, H. The past and the future of Alzheimer’s disease fluid biomarkers. J. Alzheimer’s Dis. 2018, 62, 1125–1140. [Google Scholar] [CrossRef]
- Murakami, Y.; Saito, K.; Ito, H.; Hashimoto, Y. Transferrin isoforms in cerebrospinal fluid and their relation to neurological diseases. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2019, 95, 198–210. [Google Scholar] [CrossRef]
- Murakami, Y.; Takahashi, K.; Hoshi, K.; Ito, H.; Kanno, M.; Saito, K.; Nollet, K.; Yamaguchi, Y.; Miyajima, M.; Arai, H.; et al. Spontaneous intracranial hypotension is diagnosed by a combination of lipocalin-type prostaglandin D synthase and brain-type transferrin in cerebrospinal fluid. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 1835–1842. [Google Scholar] [CrossRef]
- Arora, R.; Itolikar, M.; Patil, M.; Shah, J.; Pawar, P.; Nadkar, M. Spontaneous intracranial hypotension. J. Assoc. Physicians India 2014, 62, 281–283. [Google Scholar]
- Wang, Z.; Zhang, Y.; Hu, F.; Ding, J.; Wang, X. Pathogenesis and pathophysiology of idiopathic normal pressure hydrocephalus. CNS Neurosci. Ther. 2020, 26, 1230–1240. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, A.; Nimtz, M.; Getzlaff, R.; Conradt, H.S. ‘Brain-type’ N-glycosylation of asialo-transferrin from human cerebrospinal fluid. FEBS Lett. 1995, 359, 164–168. [Google Scholar] [CrossRef]
- Futakawa, S.; Nara, K.; Miyajima, M.; Kuno, A.; Ito, H.; Kaji, H.; Shirotani, K.; Honda, T.; Tohyama, Y.; Hoshi, K.; et al. A unique N-glycan on human transferrin in CSF: A possible biomarker for iNPH. Neurobiol. Aging 2012, 33, 1807–1815. [Google Scholar] [CrossRef] [PubMed]
- Murakami, Y.; Matsumoto, Y.; Hoshi, K.; Ito, H.; Fuwa, T.J.; Yamaguchi, Y.; Nakajima, M.; Miyajima, M.; Arai, H.; Nollet, K.; et al. Rapid increase of ‘brain-type’ transferrin in cerebrospinal fluid after shunt surgery for idiopathic normal pressure hydrocephalus: A prognosis marker for cognitive recovery. J. Biochem. 2018, 164, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Hoshi, K.; Ito, H.; Abe, E.; Fuwa, T.J.; Kanno, M.; Murakami, Y.; Abe, M.; Murakami, T.; Yoshihara, A.; Ugawa, Y.; et al. Transferrin biosynthesized in the brain is a novel biomarker for Alzheimer’s disease. Metabolites 2021, 11, 616–633. [Google Scholar] [CrossRef]
- Raditsis, A.V.; Milojevic, J.; Melacini, G. Abeta association inhibition by transferrin. Biophys. J. 2013, 105, 473–480. [Google Scholar] [CrossRef]
- Kannaian, B.; Sharma, B.; Phillips, M.; Chowdhury, A.; Manimekalai, M.S.S.; Adav, S.S.; Ng, J.T.Y.; Kumar, A.; Lim, S.; Mu, Y.; et al. Abundant neuroprotectivechaperone Lipocalin-type prostaglandin D synthase (L-PGDS) disassembles the Amyloid-β fibrils. Sci. Rep. 2019, 29, 12579. [Google Scholar] [CrossRef]
- Kanekiyo, T.; Ban, T.; Aritake, K.; Huang, Z.-L.; Qu, W.-M.; Okazaki, I.; Mohri, I.; Murayama, S.; Ozono, K.; Taniike, M.; et al. Lipocalin-type prostaglandin D synthase/beta-trace is a major amyloid beta-chaperone in human cerebrospinal fluid. Proc. Natl. Acad. Sci. USA 2007, 104, 6412–6417. [Google Scholar] [CrossRef]
- Tatebe, H.; Kasai, T.; Ohmichi, T.; Kishi, Y.; Kakeya, T.; Waragai, M.; Kondo, M.; Allsop, D.; Tokuda, T. Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzhemer pathology: Pilot case-control studies including patients with Alzheimer’s disease and down syndrome. Mol. Neurodegener. 2017, 12, 63. [Google Scholar] [CrossRef]
- Barthelemy, N.R.; Horie, K.; Sato, C.; Bateman, R.J. Blood plasma phosporylated-tau isoforms track CNS change in Alzheimer’s disease. J. Exp. Med. 2020, 217, e2020816. [Google Scholar] [CrossRef]
- Moscoso, A.; Grothe, M.J.; Ashron, N.J.; Karikari, T.K.; Rodriguez, J.L.; Snellman, A.; Suarez-Calvet, M.; Blennow, K.; Zetterberg, H.; Scholl, M. Longitudinal associations of blood phosphorylated Tau181 and neurofilament light chain with neurodegeneration in Alzheimer disease. JAMA Neurol. 2021, 78, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Tsutsumi, S.; Ogino, I.; Miyajima, M.; Ito, M.; Arai, H.; Yasumoto, Y. Cerebrospibal fluid drainage through the diploic and spinal epidural veins. J. Anat. 2015, 227, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef] [PubMed]
- Litvan, I.; Agid, J.; Jankovic, J.; Goetz, C.; Brandel, J.P.; Lai, E.C.; Wenning, G.; D’Olhaberriague, L.; Verny, M.; Chaudhuri, K.R.; et al. Accuracy of clinical criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome). Neurology 1996, 46, 922–930. [Google Scholar] [CrossRef]
- Neary, D.; Snowden, J.S.; Gustafson, L.; Pa1ssant, U.; Stuss, D.; Black, S.; Freedman, M.; Kertesz, A.; Robert, P.H.; Albert, M.; et al. Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria. Neurology 1998, 51, 1546–1554. [Google Scholar] [CrossRef]
- McKeith, I.G.; Boeve, B.F.; Dickson, D.W.; Halliday, G.; Taylor, J.P.; Weintraub, D.; Aarsland, D.; Galvin, J.; Attems, J.; Ballard, C.G.; et al. Diagnosis and management of dementia with Lewy bodies. Neurology 2017, 89, 88–100. [Google Scholar] [CrossRef]
- Shirotani, K.; Futakawa, S.; Nara, K.; Hoshi, K.; Saito, T.; Tohyama, Y.; Kitazume, S.; Yuasa, T.; Miyajima, M.; Arai, H.; et al. High Throughput ELISAs to Measure a Unique Glycan on Transferrin in Cerebrospinal Fluid: A Possible Extension toward Alzheimer’s Disease Biomarker Development. Int. J. Alzheimers Dis. 2011, 2011, 352787. [Google Scholar] [CrossRef]
CN | Man-Tf | GlcNAc-Tf | L-PGDS | TTR | Sia-Tf | |
---|---|---|---|---|---|---|
Man-Tf | rs | 1.00 | 0.86 *** | 0.47 * | −0.02 | −0.02 |
GlcNAc-Tf | rs | 0.86 *** | 1.00 | 0.57 ** | 0.05 | 0.18 |
L-PGDS | rs | 0.47 * | 0.57 ** | 1.00 | 0.12 | 0.63 ** |
TTR | rs | −0.02 | 0.05 | 0.12 | 1.00 | 0.51 * |
Sia-Tf | rs | −0.02 | 0.18 | 0.63 ** | 0.51 * | 1.00 |
MCI | Man-Tf | GlcNAc-Tf | L-PGDS | TTR | Sia-Tf | |
Man-Tf | rs | 1.00 | 0.73 *** | 0.66 *** | −0.36 * | 0.05 |
GlcNAc-Tf | rs | 0.73 *** | 1.00 | 0.69 *** | −0.29 | 0.20 |
L-PGDS | rs | 0.66 *** | 0.69 *** | 1.00 | −0.11 | 0.34 * |
TTR | rs | −0.36 * | −0.29 | −0.11 | 1.00 | 0.19 |
Sia-Tf | rs | 0.05 | 0.20 | 0.34 * | 0.19 | 1.00 |
AD | Man-Tf | GlcNAc-Tf | L-PGDS | TTR | Sia-Tf | |
Man-Tf | rs | 1.00 | 0.79 *** | 0.62 *** | −0.02 | −0.02 |
GlcNAc-Tf | rs | 0.79 *** | 1.00 | 0.61 *** | 0.06 | 0.03 |
L-PGDS | rs | 0.62 *** | 0.61 *** | 1.00 | −0.15 | 0.38 ** |
TTR | rs | −0.02 | 0.06 | −0.15 | 1.00 | 0.40 ** |
Sia-Tf | rs | −0.02 | 0.03 | 0.38 ** | 0.40 ** | 1.00 |
CN | p-tau | tau | Aβ40 | Aβ42 | Aβ42/Aβ40 | |
---|---|---|---|---|---|---|
Man-Tf | rs | 0.56 * | 0.56 * | 0.73 ** | 0.52 * | −0.15 |
GlcNAc-Tf | rs | 0.76 *** | 0.79 ** | 0.76 *** | 0.49 * | −0.34 |
L-PGDS | rs | 0.84 *** | 0.79 *** | 0.79 *** | 0.52 * | −0.44 |
TTR | rs | 0.09 | 0.14 | 0.01 | 0.08 | 0.02 |
Sia-Tf | rs | 0.36 | 0.33 | 0.27 | 0.10 | −0.32 |
MCI | p-tau | tau | Aβ40 | Aβ42 | Aβ42/Aβ40 | |
Man-Tf | rs | 0.71 *** | 0.53 ** | 0.45 ** | 0.41 | −0.24 |
GlcNAc-Tf | rs | 0.65 *** | 0.54 ** | 0.43 * | 0.40 | −0.45 |
L-PGDS | rs | 0.49 ** | 0.41 * | 0.29 | 0.40 | −0.23 |
TTR | rs | −0.19 | −0.24 | −0.27 | −0.40 | 0.12 |
Sia-Tf | rs | 0.24 | 0.03 | 0.31 | 0.46 | −0.15 |
AD | p-tau | tau | Aβ40 | Aβ42 | Aβ42/Aβ40 | |
Man-Tf | rs | 0.55 ** | 0.18 | −0.02 | 0.00 | 0.00 |
GlcNAc-Tf | rs | 0.51 ** | 0.25 | −0.08 | 0.32 | 0.21 |
L-PGDS | rs | 0.53 ** | 0.15 | 0.05 | 0.39 | 0.32 |
TTR | rs | −0.42 * | −0.72 *** | −0.09 | −0.07 | −0.32 |
Sia-Tf | rs | −0.17 | −0.41 * | 0.25 | 0.54 | 0.25 |
Disease | Age * (years) | Patient Number | Gender (M/F) | MMSE * |
---|---|---|---|---|
AD: Alzheimer’s disease | 73.5 ± 8.7 | 61 | 27/34 | 20.4 ± 4.2 |
MCI: mild cognitive impairment | 76.0 ± 6.9 | 42 | 19/23 | 26.9 ± 1.7 |
CN: cognitively normal | 72.3 ± 9.0 | 23 | 10/13 | 29.0 ± 1.6 |
PSP: progressive supranuclear palsy | 69.6 ± 5.7 | 7 | 4/3 | n.d. |
FTD: frontotemporal degeneration | 60.7 ± 4.1 | 10 | 5/5 | n.d. |
DLB: dementia with Lewy bodies | 66.8 ± 2.6 | 9 | 6/3 | n.d. |
PD: Parkinson’s disease | 68.2 ± 8.5 | 34 | 13/21 | n.d. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoshi, K.; Kanno, M.; Abe, M.; Murakami, T.; Ugawa, Y.; Goto, A.; Honda, T.; Saito, T.; Saido, T.C.; Yamaguchi, Y.; et al. High Correlation among Brain-Derived Major Protein Levels in Cerebrospinal Fluid: Implication for Amyloid-Beta and Tau Protein Changes in Alzheimer’s Disease. Metabolites 2022, 12, 355. https://doi.org/10.3390/metabo12040355
Hoshi K, Kanno M, Abe M, Murakami T, Ugawa Y, Goto A, Honda T, Saito T, Saido TC, Yamaguchi Y, et al. High Correlation among Brain-Derived Major Protein Levels in Cerebrospinal Fluid: Implication for Amyloid-Beta and Tau Protein Changes in Alzheimer’s Disease. Metabolites. 2022; 12(4):355. https://doi.org/10.3390/metabo12040355
Chicago/Turabian StyleHoshi, Kyoka, Mayumi Kanno, Mitsunari Abe, Takenobu Murakami, Yoshikazu Ugawa, Aya Goto, Takashi Honda, Takashi Saito, Takaomi C. Saido, Yoshiki Yamaguchi, and et al. 2022. "High Correlation among Brain-Derived Major Protein Levels in Cerebrospinal Fluid: Implication for Amyloid-Beta and Tau Protein Changes in Alzheimer’s Disease" Metabolites 12, no. 4: 355. https://doi.org/10.3390/metabo12040355
APA StyleHoshi, K., Kanno, M., Abe, M., Murakami, T., Ugawa, Y., Goto, A., Honda, T., Saito, T., Saido, T. C., Yamaguchi, Y., Miyajima, M., Furukawa, K., Arai, H., & Hashimoto, Y. (2022). High Correlation among Brain-Derived Major Protein Levels in Cerebrospinal Fluid: Implication for Amyloid-Beta and Tau Protein Changes in Alzheimer’s Disease. Metabolites, 12(4), 355. https://doi.org/10.3390/metabo12040355