Fast and Sensitive Quantification of AccQ-Tag Derivatized Amino Acids and Biogenic Amines by UHPLC-UV Analysis from Complex Biological Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. UHPLC–MS Method Development
2.2. UHPLC–MS Method Validation
2.3. Amino Acid and Biogenic Amine Content of Serum and Tears
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparation of Standard Solutions and QC Samples
3.3. UHPLC–MS and Data Analysis
3.4. Method Validation
3.5. Analysis of Tears and Serum Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Wood, P.L. Mass Spectrometry Strategies for Clinical Metabolomics and Lipidomics in Psychiatry, Neurology, and Neuro-Oncology. Neuropsychopharmacology 2013, 39, 24–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bujak, R.; Struck-Lewicka, W.; Markuszewski, M.J.; Kaliszan, R. Metabolomics for laboratory diagnostics. J. Pharm. Biomed. Anal. 2015, 113, 108–120. [Google Scholar] [CrossRef] [PubMed]
- Maddalena, A.; Papassotiropoulos, A.; Müller-Tillmanns, B.; Jung, H.H.; Hegi, T.; Nitsch, R.M.; Hock, C. Biochemical diagnosis of Alzheimer disease by measuring the cerebrospinal fluid ratio of phosphorylated tau protein to beta-amyloid peptide42. Arch. Neurol. 2003, 60, 1202–1206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandimalla, R.J.; Anand, R.; Veeramanikandan, R.; Wani, W.Y.; Prabhakar, S.; Grover, V.K.; Bharadwaj, N.; Jain, K.; Gill, K.D. CSF ubiquitin as a specific biomarker in Alzheimer’s disease. Curr. Alzheimer Res. 2014, 11, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Csősz, É.; Kalló, G.; Márkus, B.; Deák, E.; Csutak, A.; Tőzsér, J. Quantitative body fluid proteomics in medicine—A focus on minimal invasiveness. J. Proteom. 2017, 153, 30–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, S.; Fujii, T.; Koga, N.; Hori, H.; Teraishi, T.; Hattori, K.; Noda, T.; Higuchi, T.; Motohashi, N.; Kunugi, H. Plasma L-tryptophan concentration in major depressive disorder: New data and meta-analysis. J. Clin. Psychiatry 2014, 75, e906–e915. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Xu, C.; Kuroki, H.; Liao, Y.; Tsunoda, M. Recent trends in analytical methods for the determination of amino acids in biological samples. J. Pharm. Biomed. Anal. 2018, 147, 35–49. [Google Scholar] [CrossRef]
- Zhang, J.; Pavlova, N.; Thompson, C. Cancer cell metabolism: The essential role of the nonessential amino acid, glutamine. EMBO J. 2017, 36, 1302–1315. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Xiao, H.; Liu, Q.; Zhang, L.; Yang, Q.; Zhao, N.; Huang, Y.; Zhang, D. Determination of Plasma Amino Acid Biomarkers by High Performance Liquid Chromatography for Diagnosis of Type 2 Diabetes Mellitus. Anal. Lett. 2013, 46, 2813–2827. [Google Scholar] [CrossRef] [Green Version]
- Medina, M.Á.; Urdiales, J.L.; Rodríguez-Caso, C.; Ramírez, F.J.; Sánchez-Jiménez, F. Biogenic amines and polyamines: Similar biochemistry for different physiological missions and biomedical applications. Crit. Rev. Biochem. Mol. Biol. 2003, 38, 23–59. [Google Scholar] [CrossRef]
- Jutel, M.; Akdis, M.; Akdis, C.A. Histamine, histamine receptors and their role in immune pathology. Clin. Exp. Allergy 2009, 39, 1786–1800. [Google Scholar] [CrossRef]
- Gainetdinov, R.R.; Hoener, M.C.; Berry, M.D. Trace Amines and Their Receptors. Pharmacol. Rev. 2018, 70, 549–620. [Google Scholar] [CrossRef] [Green Version]
- Pegg, A.E. Functions of Polyamines in Mammals. J. Biol. Chem. 2016, 291, 14904. [Google Scholar] [CrossRef] [Green Version]
- Van den Eynde, V. The trace amine theory of spontaneous hypertension as induced by classic monoamine oxidase inhibitors. J. Neural Transm. 2021, 128, 1741–1756. [Google Scholar] [CrossRef]
- Fiori, L.M.; Turecki, G. Implication of the polyamine system in mental disorders. J. Psychiatry Neurosci. 2008, 33, 102. [Google Scholar]
- Li, J.; Meng, Y.; Wu, X.; Sun, Y. Polyamines and related signaling pathways in cancer. Cancer Cell Int. 2020, 20, 539. [Google Scholar] [CrossRef]
- Ninomiya, T.; Kanzaki, N.; Hirakawa, Y.; Yoshinari, M.; Higashioka, M.; Honda, T.; Shibata, M.; Sakata, S.; Yoshida, D.; Teramoto, T.; et al. Serum Ethylamine Levels as an Indicator of l-Theanine Consumption and the Risk of Type 2 Diabetes in a General Japanese Population: The Hisayama Study. Diabetes Care 2019, 42, 1234–1240. [Google Scholar] [CrossRef]
- Mitchell, S.C.; Zhang, A.Q. Methylamine in human urine. Clin. Chim. Acta 2001, 312, 107–114. [Google Scholar] [CrossRef]
- Zorn, B.F.L. On the incidence of volatile biogenic amines in the blood of pregnant women, parturients and puerperae in normal and pathological pregnancies. Arch. Gynakol. 1960, 194, 178–182. [Google Scholar] [CrossRef]
- Patel, D.; Witt, S.N. Ethanolamine and Phosphatidylethanolamine: Partners in Health and Disease. Oxid. Med. Cell. Longev. 2017, 2017, 4829180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saldanha, D.; Kumar, N.; Ryali, V.S.S.R.; Srivastava, K.; Pawar, A.A. Serum Serotonin Abnormality in Depression. Med. J. Armed Forces India 2009, 65, 108. [Google Scholar] [CrossRef] [Green Version]
- Oh, C.M.; Park, S.; Kim, H. Serotonin as a New Therapeutic Target for Diabetes Mellitus and Obesity. Diabetes Metab. J. 2016, 40, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armenta, J.M.; Cortes, D.F.; Pisciotta, J.M.; Shuman, J.L.; Blakeslee, K.; Rasoloson, D.; Ogunbiyi, O.; Sullivan, D.J., Jr.; Shulaev, V. A sensitive and rapid method for amino acid quantitation in malaria biological samples using AccQ•Tag UPLC-ESI-MS/MS with multiple reaction monitoring. Anal. Chem. 2010, 82, 548–558. [Google Scholar] [CrossRef] [Green Version]
- Cohen, S. Amino acid analysis using precolumn derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. Methods Mol. Biol. 2000, 159, 039–047. [Google Scholar] [CrossRef]
- Galba, J.; Piešťanský, J.; Kováč, A.; Olešová, D.; Cehlár, O.; Kertys, M.; Kozlík, P.; Chaľová, P.; Tirčová, B.; Slíž, K.; et al. Fast and Sensitive Screening of Oxandrolone and Its Major Metabolite 17-Epi-Oxandrolone in Human Urine by UHPLC-MS/MS with On-Line SPE Sample Pretreatment. Molecules 2021, 26, 480. [Google Scholar] [CrossRef]
- Gray, N.; Zia, R.; King, A.; Patel, V.C.; Wendon, J.; McPhail, M.J.W.; Coen, M.; Plumb, R.S.; Wilson, I.D.; Nicholson, J.K. High-Speed Quantitative UPLC-MS Analysis of Multiple Amines in Human Plasma and Serum via Precolumn Derivatization with 6-Aminoquinolyl-N-hydroxysuccinimidyl Carbamate: Application to Acetaminophen-Induced Liver Failure. Anal. Chem. 2017, 89, 2478–2487. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Olavarría, A.; Mosquera-Pérez, R.; Díaz-Sánchez, R.M.; Serrera-Figallo, M.A.; Gutiérrez-Pérez, J.L.; Torres-Lagares, D. The role of serum biomarkers in the diagnosis and prognosis of oral cancer: A systematic review. J. Clin. Exp. Dent. 2016, 8, e184. [Google Scholar] [CrossRef]
- Mehta, S.; Bhimani, N.; Gill, A.J.; Samra, J.S.; Sahni, S.; Mittal, A. Serum Biomarker Panel for Diagnosis and Prognosis of Pancreatic Ductal Adenocarcinomas. Front. Oncol. 2021, 11, 2448. [Google Scholar] [CrossRef]
- Waagepetersen, H.S.; Sonnewald, U.; Larsson, O.M.; Schousboe, A. A possible role of alanine for ammonia transfer between astrocytes and glutamatergic neurons. J. Neurochem. 2000, 75, 471–479. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, F.A.; Reimer, R.J.; Edwards, R.H. The glutamine commute: Take the N line and transfer to the A. J. Cell Biol. 2002, 157, 349–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levitt, D.G.; Levitt, M.D. A model of blood-ammonia homeostasis based on a quantitative analysis of nitrogen metabolism in the multiple organs involved in the production, catabolism, and excretion of ammonia in humans. Clin. Exp. Gastroenterol. 2018, 11, 193–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lustgarten, M.S.; Lyn Price, L.; Phillips, E.M.; Fielding, R.A. Serum Glycine Is Associated with Regional Body Fat and Insulin Resistance in Functionally-Limited Older Adults. PLoS ONE 2013, 8, e84034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Sun, L.; Zhang, W.; Li, H.; Wang, S.; Mu, H.; Zhou, Q.; Zhang, Y.; Tang, Y.; Wang, Y.; et al. Association of serum glycine levels with metabolic syndrome in an elderly Chinese population. Nutr. Metab. 2018, 15, 89. [Google Scholar] [CrossRef]
- Aliu, E.; Kanungo, S.; Arnold, G.L. Amino acid disorders. Ann. Transl. Med. 2018, 6, 471. [Google Scholar] [CrossRef]
- Novarino, G.; El-Fishawy, P.; Kayserili, H.; Meguid, N.A.; Scott, E.M.; Schroth, J.; Silhavy, J.L.; Kara, M.; Khalil, R.O.; Ben-Omran, T.; et al. Mutations in BCKD-kinase lead to a potentially treatable form of autism with epilepsy. Science 2012, 338, 394–397. [Google Scholar] [CrossRef] [Green Version]
- Goodenowe, D.B.; Cook, L.L.; Liu, J.; Lu, Y.; Jayasinghe, D.A.; Ahiahonu, P.W.K.; Heath, D.; Yamazaki, Y.; Flax, J.; Krenitsky, K.F.; et al. Peripheral ethanolamine plasmalogen deficiency: A logical causative factor in Alzheimer’s disease and dementia. J. Lipid Res. 2007, 48, 2485–2498. [Google Scholar] [CrossRef] [Green Version]
- Maeba, R.; Araki, A.; Fujiwara, Y. Serum Ethanolamine Plasmalogen and Urine Myo-Inositol as Cognitive Decline Markers. Adv. Clin. Chem. 2018, 87, 69–111. [Google Scholar] [CrossRef]
- Igarashi, K.; Ueda, S.; Yoshida, K.; Kashiwagi, K. Polyamines in renal failure. Amino Acids 2006, 31, 477–483. [Google Scholar] [CrossRef]
- Song, J.; Shan, Z.; Mao, J.; Teng, W. Serum polyamine metabolic profile in autoimmune thyroid disease patients. Clin. Endocrinol. 2019, 90, 727–736. [Google Scholar] [CrossRef]
- Kovács, T.; Mikó, E.; Vida, A.; Sebő, É.; Toth, J.; Csonka, T.; Boratkó, A.; Ujlaki, G.; Lente, G.; Kovács, P.; et al. Cadaverine, a metabolite of the microbiome, reduces breast cancer aggressiveness through trace amino acid receptors. Sci. Rep. 2019, 9, 1300. [Google Scholar] [CrossRef] [Green Version]
- Kalló, G.; Emri, M.; Varga, Z.; Ujhelyi, B.; Tőzsér, J.; Csutak, A.; Csősz, É. Changes in the Chemical Barrier Composition of Tears in Alzheimer’s Disease Reveal Potential Tear Diagnostic Biomarkers. PLoS ONE 2016, 11, e0158000. [Google Scholar] [CrossRef] [Green Version]
- Csősz, É.; Boross, P.; Csutak, A.; Berta, A.; Tóth, F.; Póliska, S.; Török, Z.; Tőzsér, J. Quantitative analysis of proteins in the tear fluid of patients with diabetic retinopathy. J. Proteom. 2012, 75, 2196–2204. [Google Scholar] [CrossRef]
- Li, B.; Sheng, M.; Li, J.; Yan, G.; Lin, A.; Li, M.; Wang, W.; Chen, Y. Tear proteomic analysis of Sjögren syndrome patients with dry eye syndrome by two-dimensional-nano-liquid chromatography coupled with tandem mass spectrometry. Sci. Rep. 2014, 4, 5772. [Google Scholar] [CrossRef] [Green Version]
- Wong, T.T.; Zhou, L.; Li, J.; Tong, L.; Zhao, S.Z.; Li, X.R.; Yu, S.J.; Koh, S.K.; Beuerman, R.W. Proteomic profiling of inflammatory signaling molecules in the tears of patients on chronic glaucoma medication. Investig. Ophthalmol. Vis. Sci. 2011, 52, 7385–7391. [Google Scholar] [CrossRef]
- Li, B.; Sheng, M.; Xie, L.; Liu, F.; Yan, G.; Wang, W.; Lin, A.; Zhao, F.; Chen, Y. Tear proteomic analysis of patients with type 2 diabetes and dry eye syndrome by two-dimensional nano-liquid chromatography coupled with tandem mass spectrometry. Investig. Ophthalmol. Vis. Sci. 2014, 55, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Aluru, S.V.; Agarwal, S.; Srinivasan, B.; Iyer, G.K.; Rajappa, S.M.; Tatu, U.; Padmanabhan, P.; Subramanian, N.; Narayanasamy, A. Lacrimal proline rich 4 (LPRR4) protein in the tear fluid is a potential biomarker of dry eye syndrome. PLoS ONE 2012, 7, e51979. [Google Scholar] [CrossRef] [Green Version]
- Hagan, S.; Martin, E.; Enríquez-de-Salamanca, A.; Aass, C.; Norheim, I.; Eriksen, E.; Thorsby, P.; Pepaj, M.; Stern, M.; Beuerman, R.; et al. Tear fluid biomarkers in ocular and systemic disease: Potential use for predictive, preventive and personalised medicine. EPMA J. 2016, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- von Thun und Hohenstein-Blaul, N.; Funke, S.; Grus, F.H. Tears as a source of biomarkers for ocular and systemic diseases. Exp. Eye Res. 2013, 117, 126–137. [Google Scholar] [CrossRef]
- Karamichos, D.; Zieske, J.D.; Sejersen, H.; Sarker-Nag, A.; Asara, J.M.; Hjortdal, J. Tear metabolite changes in keratoconus. Exp. Eye Res. 2015, 132, 1. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, G.S.; Vijay, A.K.; Stapleton, F.; White, A.J.; Pickford, R.; Carnt, N.A. Tear metabolite expression in bacterial keratitis: Outcomes of an untargeted approach. Investig. Ophthalmol. Vis. Sci. 2021, 62, 1948. [Google Scholar]
- Jiang, Y.; Yang, C.; Zheng, Y.; Liu, Y.; Chen, Y. A Set of Global Metabolomic Biomarker Candidates to Predict the Risk of Dry Eye Disease. Front. Cell Dev. Biol. 2020, 8, 344. [Google Scholar] [CrossRef]
- ChenZhuo, L.; Murube, J.; Latorre, A.; Del Río, R.M. Different concentrations of amino acids in tears of normal and human dry eyes. Adv. Exp. Med. Biol. 2002, 506, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Nakatsukasa, M.; Sotozono, C.; Shimbo, K.; Ono, N.; Miyano, H.; Okano, A.; Hamuro, J.; Kinoshita, S. Amino Acid profiles in human tear fluids analyzed by high-performance liquid chromatography and electrospray ionization tandem mass spectrometry. Am. J. Ophthalmol. 2011, 151, 799–808.e1. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Garcia, J.C.; Delpino-Rius, A.; Samarra, I.; Castellano-Castillo, D.; Muñoz-Garach, A.; Bernal-Lopez, M.R.; Queipo-Ortuño, M.I.; Cardona, F.; Ramos-Molina, B.; Tinahones, F.J. Type 2 Diabetes Is Associated with a Different Pattern of Serum Polyamines: A Case-Control Study from the PREDIMED-Plus Trial. J. Clin. Med. 2019, 8, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pini, A.; Obara, I.; Battell, E.; Chazot, P.L.; Rosa, A.C. Histamine in diabetes: Is it time to reconsider? Pharmacol. Res. 2016, 111, 316–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacLean, B.; Tomazela, D.M.; Shulman, N.; Chambers, M.; Finney, G.L.; Frewen, B.; Kern, R.; Tabb, D.L.; Liebler, D.C.; MacCoss, M.J. Skyline: An open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010, 26, 966–968. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Health and Human Services Food and Drug Administration. Analytical Procedures and Methods Validation for Drugs and Biologics, Guidance for Industry. Available online: https://www.fda.gov/files/drugs/published/Analytical-Procedures-and-Methods-Validation-for-Drugs-and-Biologics.pdf (accessed on 23 November 2021).
- Berta, A. Collection of tear samples with or without stimulation. Am. J. Ophthalmol. 1983, 96, 115–116. [Google Scholar] [CrossRef]
- Csősz, É.; Tóth, N.; Deák, E.; Csutak, A.; Tőzsér, J. Wound-healing markers revealed by proximity extension assay in tears of patients following glaucoma surgery. Int. J. Mol. Sci. 2018, 19, 4096. [Google Scholar] [CrossRef] [Green Version]
Compound | Abbreviation | tR (min) | LOD (µmol/L) | LOQ (µmol/L) | Linear Range (µmol/L) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MQ | Serum | Tears | MQ | Serum | Tears | MQ | Serum | Tears | MQ | Serum | Tears | ||
Histidine | His | 1.445 | 1.445 | 1.447 | 1.81 | 2.30 | 0.73 | 6.04 | 7.68 | 2.42 | 1.00–25.00 | 2.50–30.00 | 1.00–25.00 |
Asparagine | Asn | 1.678 | 1.677 | 1.679 | 0.38 | 0.34 | 0.59 | 1.27 | 1.12 | 1.98 | 0.50–25.00 | 0.50–30.00 | 0.50–20.00 |
Taurine | Tau | 1.916 | 1.917 | 1.915 | 0.20 | 0.20 | 0.22 | 0.68 | 0.66 | 0.73 | 0.25–25.00 | 2.50–30.00 | 0.50–25.00 |
Serine | Ser | 2.370 | 2.367 | 2.372 | 0.21 | 0.22 | 0.18 | 0.69 | 0.74 | 0.59 | 0.25–25.00 | 2.50–25.00 | 0.50–25.00 |
Glutamine | Gln | 2.547 | 2.546 | 2.550 | 2.02 | 1.91 | 1.67 | 6.74 | 6.37 | 5.58 | 0.50–25.00 | 0.50–30.00 | 1.00–25.00 |
Arginine | Arg | 2.643 | 2.643 | 2.650 | 1.37 | 0.10 | 0.78 | 4.57 | 0.32 | 2.60 | 0.50–20.00 | 0.50–25.00 | 1.00–25.00 |
Histamine | Hsn | 2.748 | 2.744 | 2.754 | 0.72 | 0.75 | 0.52 | 2.39 | 2.51 | 1.73 | 0.50–25.00 | 2.50–25.00 | 0.50–25.00 |
Glycine | Gly | 2.911 | 2.906 | 2.913 | 0.41 | 0.38 | 0.74 | 1.36 | 1.26 | 2.45 | 0.50–25.00 | 2.50–30.00 | 1.00–25.00 |
Ethanolamine | Eth | 3.208 | 3.205 | 3.212 | 0.25 | 0.22 | 0.28 | 0.84 | 0.75 | 0.93 | 0.50–25.00 | 2.50–30.00 | 0.25–15.00 |
Aspartate | Asp | 3.482 | 3.475 | 3.481 | 0.25 | 0.22 | 0.20 | 0.84 | 0.74 | 0.68 | 0.50–25.00 | 0.50–30.00 | 0.50–20.00 |
Methylamine | Mea | 3.876 | 3.870 | 3.879 | 0.26 | 0.31 | 0.20 | 0.85 | 1.02 | 0.68 | 0.25–25.00 | 0.50–30.00 | 0.25–15.00 |
Glutamate | Glu | 4.845 | 4.840 | 4.841 | 0.44 | 0.49 | 0.36 | 1.48 | 1.64 | 1.20 | 0.25–25.00 | 0.50–30.00 | 0.25–15.00 |
Citrulline | Cit | 4.940 | 4.938 | 4.938 | 0.37 | 0.44 | 0.28 | 1.24 | 1.46 | 0.92 | 0.25–25.00 | 2.50–30.00 | 0.25–15.00 |
Threonine | Thr | 5.493 | 5.500 | 5.514 | 0.18 | 0.17 | 0.20 | 0.61 | 0.56 | 0.66 | 0.25–25.00 | 2.50–30.00 | 1.00–25.00 |
Alanine | Ala | 5.946 | 5.956 | 5.977 | 0.22 | 0.24 | 0.12 | 0.74 | 0.78 | 0.41 | 0.25–25.00 | 1.00–30.00 | 0.25–15.00 |
Ethylamine | Eta | 6.146 | 6.157 | 6.181 | 0.18 | 0.13 | 0.15 | 0.61 | 0.44 | 0.50 | 0.50–25.00 | 0.25–30.00 | 0.25–15.00 |
Proline | Pro | 6.356 | 6.378 | 6.417 | 0.13 | 0.16 | 0.26 | 0.44 | 0.53 | 0.88 | 0.25–25.00 | 2.50–30.00 | 1.00–25.00 |
Ornithine | Orn | 6.914 | 6.970 | 7.061 | 0.15 | 0.17 | 0.16 | 0.50 | 0.56 | 0.55 | 0.25–25.00 | 2.50–30.00 | 0.25–15.00 |
Cysteine | Cys | 7.336 | 7.397 | 7.492 | 0.17 | 0.14 | 0.20 | 0.56 | 0.47 | 0.67 | 0.50–25.00 | 2.50–30.00 | 1.00–25.00 |
Lysine | Lys | 7.521 | 7.578 | 7.668 | 0.23 | 0.26 | 0.52 | 0.75 | 0.85 | 1.74 | 0.25–25.00 | 2.50–30.00 | 0.25–15.00 |
Tyrosine | Tyr | 7.596 | 7.643 | 7.724 | 0.17 | 0.24 | 0.78 | 0.56 | 0.81 | 2.60 | 0.50–25.00 | 2.50–30.00 | 0.50–25.00 |
Putrescine | Put | 7.665 | 7.719 | 7.796 | 0.14 | 0.26 | 0.13 | 0.47 | 0.87 | 0.44 | 0.25–25.00 | 2.50–30.00 | 0.25–15.00 |
Methionine | Met | 7.865 | 7.887 | 7.922 | 0.13 | 0.13 | 0.38 | 0.44 | 0.43 | 1.28 | 0.50–25.00 | 2.50–30.00 | 1.00–25.00 |
Serotonin | Stn | 7.920 | 7.935 | 7.962 | 0.81 | 0.12 | 0.38 | 2.71 | 0.41 | 1.28 | 0.50–30.00 | 2.50–25.00 | 0.25–30.00 |
Valine | Val | 7.991 | 8.001 | 8.019 | 0.11 | 0.39 | 0.21 | 0.38 | 1.30 | 0.69 | 0.25–25.00 | 2.50–30.00 | 0.25–20.00 |
Cadaverine | Cad | 8.029 | 8.033 | 8.044 | 0.201 | 0.14 | 0.33 | 0.69 | 0.47 | 1.10 | 0.25–25.00 | 2.50–30.00 | 0.25–15.00 |
Tyramine | Tra | 8.069 | 8.075 | 8.090 | 0.30 | 0.30 | 0.19 | 0.99 | 0.99 | 0.65 | 0.25–25.00 | 2.50–30.00 | 0.25–20.00 |
Isoleucine | Ile | 8.446 | 8.453 | 8.468 | 0.13 | 0.17 | 0.18 | 0.43 | 0.55 | 0.61 | 0.25–25.00 | 2.50–30.00 | 0.50–20.00 |
Leucine | Leu | 8.535 | 8.544 | 8.562 | 0.11 | 0.11 | 0.24 | 0.36 | 0.38 | 0.82 | 0.25–20.00 | 0.50–25.00 | 0.25–20.00 |
Phenylalanine | Phe | 8.662 | 8.673 | 8.696 | 0.17 | 0.16 | 0.21 | 0.55 | 0.53 | 0.70 | 0.25–25.00 | 2.50–30.00 | 0.50–25.00 |
Tryptophan | Trp | 8.785 | 8.794 | 8.807 | 0.61 | 0.22 | 0.20 | 2.02 | 0.72 | 0.66 | 1.00–25.00 | 2.50–30.00 | 0.25–25.00 |
Tryptamine + 2-phenethyl-amine | Tpa + Pha | 8.932 | 8.931 | 8.933 | 0.14 | 0.16 | 0.27 | 0.47 | 0.58 | 0.89 | 0.25–25.00 | 2.50–30.00 | 0.25–25.00 |
Compound | Abbreviation | Concentration (µmol/L) | ||||
---|---|---|---|---|---|---|
Subject 1 | Subject 2 | Subject 3 | Subject 4 | Subject 5 | ||
Histidine | His | 70.96 | 102.66 | 103.64 | 77.36 | 83.75 |
Asparagine | Asn | 42.47 | 64.76 | 50.61 | 55.29 | 53.83 |
Taurine | Tau | 52.09 | 129.92 | 41.72 | 53.22 | 60.30 |
Serine | Ser | 92.28 | 142.17 | 104.86 | 145.38 | 144.03 |
Glutamine | Gln | 790.05 | 702.40 | 1025.00 | 919.45 | 1073.15 |
Arginine | Arg | 46.95 | 115.61 | 72.63 | 126.12 | 92.15 |
Glycine | Gly | 389.10 | 161.67 | 377.60 | 298.28 | 410.85 |
Ethanolamine | Eth | 7.97 | 6.96 | 7.81 | 8.19 | 8.75 |
Aspartate | Asp | 2.67 | 7.13 | <LOQ | 3.14 | 4.07 |
Methylamine | Mea | SRM | SRM | SRM | SRM | SRM |
Glutamate | Glu | 7.93 | 24.02 | 5.02 | 14.91 | 14.53 |
Citrulline | Cit | 16.03 | 23.33 | 19.19 | 28.84 | 17.85 |
Threonine | Thr | 80.53 | 140.02 | 144.87 | 114.91 | 174.50 |
Alanine | Ala | 324.90 | 346.20 | 204.81 | 376.20 | 455.50 |
Ethylamine | Eta | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Proline | Pro | 277.47 | 173.13 | 167.17 | 195.59 | 194.99 |
Ornithine | Orn | 28.09 | 55.65 | 39.04 | 52.83 | 35.86 |
Cysteine | Cys | 103.82 | 82.85 | 92.39 | 92.79 | 133.90 |
Lysine | Lys | 103.09 | 223.05 | 129.16 | 111.65 | 171.02 |
Tyrosine | Tyr | 48.08 | 62.98 | 56.47 | 63.87 | 50.67 |
Putrescine | Put | <LOQ | <LOQ | <LOQ | <LOQ | 2.63 |
Methionine | Met | 17.89 | 26.42 | 31.44 | 18.52 | 21.25 |
Serotonin | Stn | SRM | SRM | SRM | SRM | SRM |
Valine | Val | 204.36 | 282.25 | 188.30 | 190.14 | 174.23 |
Cadaverine | Cad | <LOQ | 2.41 | <LOQ | N.D. | N.D. |
Isoleucine | Ile | 53.77 | 104.82 | 56.57 | 56.86 | 43.73 |
Leucine | Leu | 75.31 | 158.39 | 76.30 | 73.11 | 65.44 |
Phenylalanine | Phe | 46.62 | 59.21 | 36.84 | 48.95 | 39.50 |
Tryptophan | Trp | <LOQ | 6.33 | 2.60 | 2.915 | 2.27 |
Compound | Abbreviation | Concentration (µmol/L) | |||||||
---|---|---|---|---|---|---|---|---|---|
Subject 1 | Subject 2 | Subject 3 | Subject 4 | Subject 5 | |||||
OS | OD | OS | OD | OS | OD | OD | OD | ||
Histidine | His | 19.55 | 30.85 | <LOQ | <LOQ | N.D. | N.D. | N.D. | N.D. |
Asparagine | Asn | <LOQ | 8.65 | <LOQ | <LOQ | SRM | SRM | SRM | SRM |
Taurine | Tau | 7.77 | 12.47 | 10.38 | 11.68 | 9.67 | 11.48 | 11.38 | <LOQ |
Serine | Ser | 103.98 | 149.07 | 64.47 | 83.27 | 26.37 | 16.60 | 10.25 | 9.03 |
Glutamine | Gln | 20.97 | 38.72 | 9.70 | 17.77 | <LOQ | 23.15 | <LOQ | <LOQ |
Arginine | Arg | 36.98 | 46.60 | 18.80 | 17.52 | 10.25 | <LOQ | <LOQ | 7.70 |
Histamine | Hsn | N.D. | N.D. | N.D. | N.D. | SRM | N.D. | N.D. | N.D. |
Glycine | Gly | <LOQ | 12.58 | <LOQ | <LOQ | SRM | SRM | SRM | SRM |
Ethanolamine | Eth | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Aspartate | Asp | 13.35 | 26.98 | <LOQ | 11.53 | <LOQ | <LOQ | <LOQ | <LOQ |
Methylamine | Mea | SRM | SRM | SRM | SRM | SRM | SRM | SRM | SRM |
Glutamate | Glu | 15.35 | 30.22 | <LOQ | 11.02 | <LOQ | <LOQ | <LOQ | <LOQ |
Citrulline | Cit | 9.33 | 10.03 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Threonine | Thr | 21.53 | 31.72 | 13.40 | 16.712 | 7.68 | 7.167 | <LOQ | <LOQ |
Alanine | Ala | 40.02 | 48.17 | 25.53 | 30.00 | 10.45 | 9.05 | <LOQ | <LOQ |
Ethylamine | Eta | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Proline | Pro | 7.43 | 13.22 | <LOQ | <LOQ | <LOQ | 10.07 | <LOQ | <LOQ |
Ornithine | Orn | 11.12 | 24.93 | 11.23 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Cysteine | Cys | 9.32 | 9.33 | 8.75 | 8.57 | 10.57 | 7.93 | <LOQ | 8.33 |
Lysine | Lys | 9.10 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Tyrosine | Tyr | 8.62 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Methionine | Met | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | N.D. | <LOQ |
Serotonin | Stn | N.D. | N.D. | N.D. | N.D. | SRM | N.D. | N.D. | N.D. |
Valine | Val | 9.88 | 14.67 | <LOQ | 7.48 | <LOQ | <LOQ | <LOQ | <LOQ |
Cadaverine | Cad | N.D. | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | N.D. | N.D. |
Tyramine | Tra | <LOQ | <LOQ | N.D. | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Isoleucine | Ile | 7.30 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Leucine | Leu | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Phenylalanine | Phe | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Tryptophan | Trp | 8.88 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Tryptamine + 2-phenethyl-amine | Tpa + Pha | N.D. | N.D. | N.D. | N.D. | SRM | N.D. | N.D. | N.D. |
Time (min) | Flow Rate (mL/min) | Solvent A (%) | Solvent B (%) | Solvent C (%) | Solvent D (%) | Curve |
---|---|---|---|---|---|---|
0.00 | 0.65 | 10.00 | 0.00 | 90.00 | 0.00 | initial |
0.29 | 0.65 | 9.90 | 0.00 | 90.10 | 0.00 | 6 |
3.50 | 0.65 | 9.90 | 0.00 | 90.10 | 0.00 | 6 |
4.60 | 0.65 | 9.90 | 25.00 | 65.10 | 0.00 | 7 |
5.49 | 0.65 | 9.00 | 80.00 | 11.00 | 0.00 | 6 |
7.10 | 0.65 | 8.00 | 25.00 | 57.90 | 9.10 | 6 |
7.30 | 0.65 | 8.00 | 15.60 | 57.90 | 18.50 | 6 |
7.50 | 0.65 | 8.00 | 12.00 | 57.90 | 22.10 | 6 |
8.20 | 0.65 | 7.80 | 0.00 | 77.20 | 15.00 | 6 |
8.30 | 0.65 | 4.00 | 0.00 | 36.30 | 59.70 | 6 |
8.55 | 0.65 | 4.00 | 0.00 | 36.30 | 59.70 | 6 |
8.60 | 0.65 | 4.00 | 65.00 | 26.00 | 5.00 | 6 |
9.20 | 0.65 | 4.00 | 60.00 | 36.00 | 0.00 | 6 |
9.70 | 0.65 | 10.00 | 0.00 | 90.00 | 0.00 | 6 |
10.90 | 0.65 | 10.00 | 0.00 | 90.00 | 0.00 | 6 |
Compound | Q1 (m/z) | Q3 (m/z) | tR Window (min) | DP (eV) | CE (eV) |
---|---|---|---|---|---|
Histidine | 326.00 | 171.00 | 1.06–1.90 | 230 | 18 |
Asparagine | 303.00 | 171.00 | 1.30–2.14 | 150 | 15 |
Taurine | 296.15 | 171.00 | 1.51–2.35 | 120 | 25 |
Serine | 276.00 | 171.00 | 2.00–2.84 | 230 | 18 |
Glutamine | 317.00 | 171.00 | 2.16–3.00 | 210 | 16 |
Arginine | 345.00 | 171.00 | 2.28–3.12 | 110 | 21 |
Histamine | 282.15 | 171.00 | 2.39–3.23 | 120 | 25 |
Glycine | 246.00 | 171.00 | 2.54–3.38 | 230 | 15 |
Ethanolamine | 232.08 | 171.00 | 2.84–3.68 | 120 | 25 |
Aspartate | 304.00 | 171.00 | 3.10–3.94 | 160 | 16 |
Methylamine | 202.00 | 171.00 | 3.48–4.32 | 120 | 25 |
Glutamate | 318.00 | 171.00 | 4.45–5.29 | 210 | 16 |
Citrulline | 346.20 | 171.00 | 4.54–5.38 | 120 | 25 |
Threonine | 290.00 | 171.00 | 5.12–5.96 | 120 | 10 |
Alanine | 260.00 | 171.00 | 5.58–6.42 | 160 | 13 |
Ethylamine | 216.00 | 171.00 | 5.77–6.61 | 120 | 25 |
Proline | 286.00 | 171.00 | 6.01–6.85 | 130 | 15 |
Ornithine | 473.30 | 171.00 | 6.64–7.48 | 120 | 25 |
Cysteine | 291.00 | 171.00 | 7.06–7.90 | 120 | 13 |
Lysine | 487.00 | 171.00 | 7.25–8.09 | 230 | 22 |
Tyrosine | 352.00 | 171.00 | 7.30–8.14 | 210 | 15 |
Putrescine | 429.15 | 171.00 | 7.38–8.22 | 120 | 25 |
Methionine | 320.00 | 171.00 | 7.52–8.36 | 120 | 16 |
Serotonin 1 | 347.20 | 171.00 | 7.58–8.42 | 120 | 25 |
Valine | 288.00 | 171.00 | 7.63–8.47 | 100 | 16 |
Cadaverine | 443.20 | 171.00 | 7.65–8.49 | 120 | 25 |
Tyramine | 308.20 | 171.00 | 7.68–8.52 | 120 | 25 |
Isoleucine | 302.00 | 171.00 | 8.08–8.92 | 120 | 25 |
Leucine | 302.00 | 171.00 | 8.08–8.92 | 120 | 25 |
Serotonin 2 | 517.20 | 171.00 | 8.14–8.98 | 130 | 15 |
Phenylalanine | 336.00 | 171.00 | 8.30–9.14 | 160 | 20 |
Tryptophan | 375.00 | 171.00 | 8.41–9.25 | 160 | 20 |
SIL Tryptophan | 388.00 | 171.00 | 8.41–9.25 | 120 | 25 |
Tryptamine | 331.20 | 171.00 | 8.54–9.38 | 120 | 25 |
2-phenethyl-amine | 292.20 | 171.00 | 8.54–9.38 | 230 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guba, A.; Bába, O.; Tőzsér, J.; Csősz, É.; Kalló, G. Fast and Sensitive Quantification of AccQ-Tag Derivatized Amino Acids and Biogenic Amines by UHPLC-UV Analysis from Complex Biological Samples. Metabolites 2022, 12, 272. https://doi.org/10.3390/metabo12030272
Guba A, Bába O, Tőzsér J, Csősz É, Kalló G. Fast and Sensitive Quantification of AccQ-Tag Derivatized Amino Acids and Biogenic Amines by UHPLC-UV Analysis from Complex Biological Samples. Metabolites. 2022; 12(3):272. https://doi.org/10.3390/metabo12030272
Chicago/Turabian StyleGuba, Andrea, Orsolya Bába, József Tőzsér, Éva Csősz, and Gergő Kalló. 2022. "Fast and Sensitive Quantification of AccQ-Tag Derivatized Amino Acids and Biogenic Amines by UHPLC-UV Analysis from Complex Biological Samples" Metabolites 12, no. 3: 272. https://doi.org/10.3390/metabo12030272
APA StyleGuba, A., Bába, O., Tőzsér, J., Csősz, É., & Kalló, G. (2022). Fast and Sensitive Quantification of AccQ-Tag Derivatized Amino Acids and Biogenic Amines by UHPLC-UV Analysis from Complex Biological Samples. Metabolites, 12(3), 272. https://doi.org/10.3390/metabo12030272